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Abstract: The grey wolf optimization algorithm (GWO) is a new metaheuristic algorithm. The
GWO has the advantages of simple structure, few parameters to adjust, and high efficiency, and has
been applied in various optimization problems. However, the orginal GWO search process is guided
entirely by the best three wolves, resulting in low population diversity, susceptibility to local optima,
slow convergence rate, and imbalance in development and exploration. In order to address these
shortcomings, this paper proposes an adaptive dynamic self-learning grey wolf optimization
algorithm (ASGWO). First, the convergence factor was segmented and nonlinearized to balance the
global search and local search of the algorithm and improve the convergence rate. Second, the wolves
in the original GWO approach the leader in a straight line, which is too simple and ignores a lot of
information on the path. Therefore, a dynamic logarithmic spiral that nonlinearly decreases with the
number of iterations was introduced to expand the search range of the algorithm in the early stage and
enhance local development in the later stage. Then, the fixed step size in the original GWO can lead
to algorithm oscillations and an inability to escape local optima. A dynamic self-learning step size
was designed to help the algorithm escape from local optima and prevent oscillations by reasonably
learning the current evolution success rate and iteration count. Finally, the original GWO has low
population diversity, which makes the algorithm highly susceptible to becoming trapped in local
optima. A novel position update strategy was proposed, using the global optimum and randomly
generated positions as learning samples, and dynamically controlling the influence of learning
samples to increase population diversity and avoid premature convergence of the algorithm. Through
comparison with traditional algorithms, such as GWO, PSO, WOA, and the new variant algorithms
EOGWO and SOGWO on 23 classical test functions, ASGWO can effectively improve the
convergence accuracy and convergence speed, and has a strong ability to escape from local optima. In
addition, ASGWO also has good performance in engineering problems (gear train problem, ressure
vessel problem, car crashworthiness problem) and feature selection.
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self-learning; adaptive dynamics
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1. Introduction

The pursuit of the optimal solution among numerous alternatives to either maximize or minimize
the objective function, while adhering to constraints, constitutes an optimization problem. Such
challenges manifest ubiquitously across various domains including but not limited to signal
processing, image processing, production scheduling, task allocation, pattern recognition, automatic
control, and machine design. Optimization algorithms primarily harness the tremendous
computational prowess of computers to iteratively explore viable solutions to the problem. After a
large number of feasible solutions have been obtained, the most appropriate solution is selected to
formulate a computational method for solving the problem [1]. Various optimization methods such as
the particle swarm algorithm [2], Whale algorithm [3], and Ant-Lion algorithm [4], etc. have been
widely used in the above fields and have yielded great economic and social benefits. Given the myriad
variables, intricacies, computational overheads, and nonlinearity inherent in optimization challenges,
scientists and engineers globally continue their quest for an efficient and versatile optimization
methodology.

The grey wolf optimization algorithm (GWO) [5] is a new heuristic swarm intelligence
optimization algorithm proposed by Mirjalili et al. in 2014, that finds applications across diverse
domains including engineering, medicine, image processing, and biological sciences. The GWO
draws inspiration from the social structure and hunting tactics of grey wolves in the wild. As shown in
Figure 1, the wolf pack is specifically divided into four ranks. Through the guidance of the three alpha
wolves, the grey wolves conduct collective searches, encirclement, and attacks on prey, realizing the
search for targets. Owing to its remarkable efficiency and minimal adjustable parameters, the GWO
algorithm is characterized by ease of implementation. Consequently, in recent years, it has been
applied to many fields, such as workshop scheduling [6], path planning [7], power systems [8], fuzzy
control systems [9], image segmentation [10], and so on. However, the GWO algorithm’s reliance on
the top three wolves for guiding the entire search process often results in rapid convergence towards
these wolves. Therefore, GWO suffers from the disadvantages of low population diversity, tendency
to fall into local optima, slow convergence in later stages, and imbalance in the exploration and
exploitation process. Due to these deficiencies, there is a significant gap between GWO and
SMAF1 [11] in the optimal tuning of interval type-2 fuzzy controllers. In light of these drawbacks,
scholars have proposed a series of improved solutions. For instance, the method proposed in [12] to
delete half of the less fit search agents and relocate them near the three best wolves can improve local
search and convergence towards promising regions of the search space. In [13], GWO was applied to
optimally tune the parameter vectors of a fuzzy control system. With the rapid development of neural
networks, more and more improvements have emerged. In [14], the authors proposed an improved
anti-noise adaptive long short-term memory (ANA-LSTM) neural network with high-robustness
feature extraction and optimal parameter characterization for accurate Remaining Useful Life (RUL)
prediction. In [15], an improved robust multi-time scale singular filtering-Gaussian process
regression-long short-term memory (SF-GPR-LSTM) modeling method is proposed for remaining
capacity estimation, and these methods have achieved good improvement results. Nevertheless,
drawing inspiration from [16], there exists a potential to integrate intelligent optimization algorithms
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with LSTM. GWO could be employed to compute meaningful and optimal hyperparameters for
CNN-LSTM networks, yielding notable performance enhancements. In [17], the author introduced
random search agents into the position update equation to increase the algorithm’s exploration
capability. However, in the exploitation stage, there is no limit on the influence of random search
agents, which can weaken the local search capability of the algorithm and affect convergence
accuracy. The impact on convergence accuracy is particularly significant in constrained engineering
design problems. In [18], the author integrated GWO with PSO to improve convergence accuracy, but
the weakness of easily falling into local optima remains. In [19], the author introduced a crossover
operator between two random individuals to achieve information sharing among individuals,
improving convergence speed and solution quality. When the population falls into local optima,
individuals gather together, and the crossover operator loses its effect, lacking the ability to escape
local optima. In [20], the author incorporated opposition-based learning into GWO to improve
convergence speed, but the complexity of the algorithm also increases. In [21], the author used fuzzy
logic to dynamically adjust parameters, change the weights of the three alpha wolves, and highlight
the leadership disparities of the grey wolf pack to improve convergence accuracy. The original GWO
has slow convergence speed, is prone to falling into local optima, has weak search ability, and has low
convergence accuracy. To address these shortcomings, this paper proposes an adaptive dynamic
self-learning grey wolf optimization algorithm (ASGWO):

1). ASGWO proposes a piecewise nonlinear factor a to achieve a balance between global search
and local development.

2). ASGWO integrates a dynamic logarithmic spiral into the foundational position update equation,
gradually diminishing its configuration over successive iterations. This augmentation serves to broaden
the algorithm’s search domain while concurrently enriching population diversity.

3). ASGWO replaces the static step size of the original position update with an adaptive self-
learning step size, dynamically adjusting it according to the learning of evolutionary success rate and
iteration count. This adaptation enables the algorithm to optimize step size in alignment with current
information, thereby enhancing both convergence speed and the algorithm’s capability to circumvent
local optima.

4). ASGWO also proposes a new location update strategy, using the global optimal location and
randomly generated locations as learning samples, and adding dual adaptive convergence factors to
control the influence of the two learning samples.

Figure 1. Rank system of the grey wolf.

We endeavor for ASGWO to demonstrate robust performance across 23 test functions and to attain
exceptional outcomes when employed in engineering scenarios. Subsequent experimental findings will
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substantiate this notion.
The rest of the article is structured as follows: Section 2 briefly introduces the mathematical model

of the GWO algorithm. Section 3 describes the improvement strategy and implementation steps of
ASGWO. Section 4 analyzes the experimental results of the benchmark function. Section 5 shows
applications of ASGWO on real engineering problems. Finally, Section 6 presents the conclusions of
this article.

2. Grey wolf optimizer

In designing GWO, a mathematical model is constructed for the grey wolf population. The wolf
with the best fitness is the αwolf, followed by the βwolf and the δwolf, and the remaining solutions are
the ω wolves. During hunting, ω wolves will approach, surround, and attack prey under the guidance
of α wolf, β wolf, and δ wolf. For a d-dimensional optimization problem, the population in GWO
consists of multiple grey wolves, each representing a candidate solution. The position vector of the
grey wolf represents the feature vector of the corresponding candidate solution. The objective function
value of the candidate solution corresponds to the fitness of the grey wolf.

2.1. Encircling prey

The wolf’s strategy of surrounding the prey during hunting, to mathematically model it, proposes
the following equation:

−→
D =

∣∣∣∣−→C × −→Xp (t) −
−→
X (t)

∣∣∣∣ (2.1)

−→
X (t + 1) =

−→
Xp (t) −

−→
A ×
−→
D (2.2)

a (t) = 2 −
2t

MaxIter
(2.3)

−→
A = 2a · −→r1 −

−→a (2.4)

−→
C = 2 · −→r2 (2.5)

where the t represents the current iteration number, MaxIter is the total iteration number,
−→
D is the

distance between the wolf and the prey,
−→
Xp (t) is the position vector of the prey,

−→
X (t + 1) is the position

vector of the wolf at iteration t,
−→
A and

−→
C are coefficient vectors, −→r1 and −→r2 are random vectors in

[0,1], the component of a decreases linearly from 2 to 0 during the iteration process, and −→a is a vector
composed of scalars a.

2.2. Hunting

In an abstract search space, we do not know the location of the prey. To mathematically simulate
the hunting behavior of grey wolves, we assume that α wolves, β wolves, and δ wolves have better
knowledge of the potential location of the prey. Therefore, we save the first three best solutions
obtained so far and require other search agents to update their positions based on the guidance of the
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position of the three best search agent. In nature, there are also differences in social hierarchy among
the three best wolves. Therefore, this article refers to the fitness weight mentioned in the
literature [18] to reflect the differences between the three best wolves, making the algorithm more
consistent with the social hierarchy of grey wolves. The fitness of alpha wolf is the best among the
three best wolves, so the inertia weight of the alpha wolf is the largest, followed by the delta wolf and
the omega wolf. The following formula is proposed in this regard.

−→
Dα =

∣∣∣∣−→C1 ×
−→
Xα −

−→
X
∣∣∣∣ ,−→Dβ = ∣∣∣∣−→C2 ×

−→
Xβ −

−→
X
∣∣∣∣ ,−→Dδ = ∣∣∣∣−→C3 ×

−→
Xδ −

−→
X
∣∣∣∣ (2.6)

−→
X1 =

−→
Xα −

−→
A1 ×

−→
Dα,
−→
X2 =

−→
Xβ −

−→
A2 ×

−→
Dβ,
−→
Xδ =

−→
Xδ −

−→
A3 ×

−→
Dδ (2.7)

−→
X (t + 1) =

(
W1 ·
−→
X1 +W2 ·

−→
X2 +W3 ·

−→
X3

)
(2.8)

W1 =
Zα

Zα + Zβ + Zδ
,W2 =

Zβ
Zα + Zβ + Zδ

,W3 =
Zδ

Zα + Zβ + Zδ
(2.9)

where the
−→
Xα,
−→
Xβ, and

−→
Xδ are the position vectors of the alpha, beta, and delta wolves, and Zα, Zβ, and

Zδ represent the reciprocal of the fitness of alpha, beta, and delta wolves, respectively.

2.3. Exploration and exploitation in hunting

When the prey stops moving, the grey wolf attacks the prey to complete the hunt. To approach
the prey in the mathematical simulation, we reduce the value of a to reduce the fluctuation range of
−→
A .
−→
A is a random value in the range of [−2a,2a], where a decreases from 2 to 0 with the number of

iterations. When the random value of
−→
A is between [−1, 1], the next position of the search agent is

anywhere between the current position and the prey position. Therefore, when
∣∣∣∣−→A ∣∣∣∣ < 1, the wolf group

explores the search space. Grey wolves mainly search based on the positions of alpha wolves, beta
wolves, and delta wolves. They separate from each other to find prey and converge to attack prey. To
mathematically model divergence, we use random values when

−→
|A| > 1 to force the search agent to

deviate from the location of the prey, thus exploring the search space.
The grey wolf completes hunting by repeating the steps of encirclement and hunting as described

above. The pseudocode of the original GWO algorithm is shown in Algorithm 1.

Algorithm 1 Grey Wolf Algorithm.
1: Initialize the grey wolf population
2: repeat
3: Calculate parameters a, A, and C
4: Calculate the fitness of the search agent
5: Find the three best agents: α, β, γ
6: Update search agent position through Equation2.8
7: until The conditions for termination are met

Output: optimal solution
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3. ASGWO

3.1. Segmented nonlinear convergence factor

In the original grey wolf optimization algorithm, the global exploration and local exploitation
abilities of the algorithm are determined by the coefficient

∣∣∣∣−→A ∣∣∣∣, which is determined by the
convergence factor a. The convergence factor a decreases linearly from 2 to 0, imparting upon the
algorithm pronounced global exploration capabilities in its nascent phases and robust local
exploitation prowess in its subsequent stages. However, the algorithm’s convergence exhibits
nonlinearity throughout the iterative process. The linear reduction of the convergence factor a cannot
well fits the real search situation. In the iterative process of the algorithm, if the linear convergence
factor a decreases too fast in the early stage, it may lead to insufficient exploration, and then the
algorithm very easily falls into premature convergence in the exploitation process. Conversely, a
sluggish reduction of the linear convergence factor a in the later stages can significantly prolong
convergence time and diminish convergence efficiency. In the early stages of search, the nonlinear
convergence factor a can decrease at a smaller rate to ensure sufficient global exploration; in the later
stages of exploitation, the nonlinear convergence factor a decreases faster, thereby improving the
convergence speed and enhancing local exploitation. Dividing the iterative process into early-stage
exploration and late-stage exploitation can facilitate achieving a harmonious equilibrium between
global exploration and local exploitation across a wide spectrum of problems. Therefore, this article
advocates for the adoption of a segmented nonlinear convergence factor, with the concrete formula as
follows:


a = 2 − tan1.5

(
2 · t

MaxIter
·
π

4

)
, i f t <

MaxIter
2

a = tan1.5
(
2 · (MaxIter − t)

MaxIter
·
π

4

)
, otherwise

 (3.1)

For x within the interval [0,1], the growth rate of tan
(
π
4 x

)
is greater than that of x. Thus, the rate of

decrease for 2 − tan
(
π
4 x

)
is slower compared to 2 − x. On the other hand, for x within the interval

[1,2], the growth rate of tan(x) is exceeds that of x. Therefore, the descent rate of tan(2 − x) outpaces
that of 2 − x. To amplify this effect, an exponential function with a base greater than 1 can be applied.
As per Eq (3.1), during the initial phase of the iteration process, the nonlinear convergence factor a
undergoes a gradual reduction, maintaining a larger value compared to the linear convergence factor,
so that the algorithm can explore a broader search space, improve population diversity, and establish a
robust groundwork for algorithm exploitation. Subsequently, in the second half of the iteration
process, the preliminary comprehensive exploration reduces the possibility of falling into local
optimal solutions. Moreover, the nonlinear convergence factor a decreases faster, enabling the
algorithm to quickly enter fine local exploitation and improve the convergence speed. Figure 2
illustrates the curve of the nonlinear convergence factor a changing with the number of iterations.
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Figure 2. The curve of the nonlinear convergence factor a changing with the number of
iterations.

3.2. Dynamic logarithmic spiral

In the original grey wolf optimization algorithm, the wolf pack moves slowly towards the three
best wolves in a straight line to approach the prey, as these top-ranking wolves can acquire a wealth
of prey-related data. However, this approach to position updating is overly simplistic, potentially
leading to the oversight of crucial information during movement, resulting in a small search range
and easy premature convergence. Given the cautious nature of grey wolves, they do not move in a
straight line but move slowly in circles to avoid scaring the prey and causing hunting failure. During
the ultimate pursuit, straight-line movement enables swift proximity to the prey; however, owing to
the prey’s evasive maneuvers and the grey wolves’ limitations in maintaining straight-line hunting,
the final hunt is also curved movement. Therefore, the incorporation of a logarithmic spiral into the
position update process offers a more faithful emulation of grey wolf locomotion. Concurrently, as
the distance decreases, the curvature of the grey wolf motion also becomes smaller. Therefore, the

configuration of the logarithmic spiral is regulated by amalgamating the functions of cos and
√

t
Maxiter

to generate a monotonically decreasing function. With an escalation in the number of iterations, the
configuration of the logarithmic spiral is changed to become smaller, aligning more closely with the
movement patterns of grey wolves. Therefore, this article proposes a dynamic spiral position update,
with the concrete formula as follows:

−→
X1 =

−→
Xα −

−→
A1 ×

−→
Dα · eb·l1 · cos (2 · π · r3)

−→
X2 =

−→
Xβ −

−→
A2 ×

−→
Dβ · eb·l2 · cos (2 · π · r4)

−→
X3 =

−→
Xδ −

−→
A3 ×

−→
Dδ · eb·l3 · cos (2 · π · r5)

(3.2)

b = cos
√ t

MaxIter
· π

 (3.3)

where l1, l2, l3, r1, r2, r3 are random values of [-1,1], respectively.
Utilizing Eq (2.9), wolves can update their location via the logarithmic spiral, traversing regions

inaccessible to linear movement, obtaining additional information in the path, expanding the search
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range of the algorithm, and improving the diversity of the population. The dynamic spiral parameter in
Eq (3.1) depends on the number of iterations, resulting in a larger spiral configuration during the initial
stages of iteration. This enables the wolves to explore a larger range, further expanding the search
range of the algorithm, and circumventing premature convergence with better population diversity; in
the later stages of iteration, the spiral shape becomes smaller, enhancing the local development ability
of the wolves and improving the convergence speed of the algorithm.

3.3. Dynamic self-learning step size

Equation (2.8) stipulates that the step size of the traditional grey wolf optimization algorithm is
fixed. In scenarios where a longer step size is warranted for convergence, a short current step size
mandates a gradual approach to the optimal point, thereby impeding convergence speed. Conversely,
if a smaller step size is needed for convergence, an excessively large algorithmic step size may result
in the search agent’s oscillation around the optimal point, perpetually advancing and retreating.
Moreover, a single fixed step size cannot make reasonable use of current information, leading the
algorithm to fall into locally optimal solutions. Therefore, modulating the algorithm’s step size based
on the current evolutionary success rate (ratio) and iteration count offers a potential solution. When
the algorithm needs a longer step size, increasing the step size can improve the convergence speed.
When the algorithm needs a shorter step size, reducing the step size can prevent the search agent from
oscillating around the optimal point. In the early stages, the step size should be larger to conduct
wide-area exploration of the search space, and in the later stages, the step size should be smaller to
achieve fine local development of the search space. In addition, when the algorithm falls into local
optimal solutions, the ratio will decrease significantly. In this case, a larger step size is needed to help
the algorithm escape from locally optimal solutions. Therefore, this article proposes adaptive step
adjustment based on evolutionary success rate, with the concrete formula as follows:

ratio (t + 1) =
k (t)

S earchAgents
(3.4)

−→
X (t + 1) =

(
W1 ·
−→
X1 +W2 ·

−→
X2 +W3 ·

−→
X3

)
· S (t + 1) (3.5)

S (t) = 1 −
ratio (t) − ζ

abs (ratio (t) − ζ)
·

t
MaxIter

· (ratio (t) + 0.02)
1

ratio(t)2+0.01 (3.6)

where k (t) represents the number of search agents with improved fitness in the t iteration,
S earchAgents represents the number of all search agents, ratio (t + 1) represents the evolutionary
success rate of the t + 1 generation, and S (t) represents the step of the t generation.

In Eq (3.2), the concept of evolutionary success rate (ratio) is proposed. The evolutionary success
rate refers to the ratio of search agents with improved fitness in the previous iteration to the total
number of search agents. Through the adaptive adjustment of the wolf pack’s step size based on the
evolutionary success rate, the algorithm can better handle different situations. When the ratio is less
than the threshold value ζ (ζ = 0.67), the evolutionary success rate of the wolf pack is relatively low,
indicating that the algorithm may be trapped in a local optimum. Under such circumstances, a larger
step size is obtained by subtracting a negative number from 1, which is used to enhance the algorithm’s
ability to escape the local optima. When the ratio is greater than or equal to the threshold value ζ,
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the evolutionary success rate of the wolf pack is high, indicating that most wolves have found better
positions. This demonstrates that the current search method aligns with the optimization process.
Therefore, by subtracting a large positive number from 1, the step size of the grey wolves is reduced,
which enhances their local exploitation ability and allows for more precise development. In addition,
this article also takes into account the impact of iteration times on step size. In the early stages of
iteration, t is small, so the step size is large, and the wolf pack tends to conduct global exploration. In
the later stages of iteration, t is large, so the step size is small, and the wolf pack tends to focus on local
exploitation.

3.4. Position update strategy based on dual convergence factors

In the traditional grey wolf optimization algorithm, the positions of the wolf pack are completely
guided by alpha, delta, and omega wolves. However, as the number of iterations increases, the wolf
pack tends to concentrate in a limited region. This phenomenon significantly heightens the risk of
falling into local optima and makes it difficult to jump out of local optima when facing complex
problems. The randomness of evolutionary algorithms leads most evolutionary algorithms to be black
box optimizers, and we cannot accurately judge when the algorithm is exploring the search space
when it is developing, or whether it has fallen into local optima. Therefore, when the evolutionary
success rate of the algorithm is low, it may be exploring the search space or may have fallen into local
optima. When the algorithm is in the exploration stage, randomly generated positions can help the
algorithm explore a broader search space. When the algorithm falls into local optima, randomly
generated positions can increase population diversity and help the algorithm jump out of local optima.
In both cases, randomly generated positions can provide effective assistance. By adding a
convergence factor that decreases with the number of iterations to the randomly generated position,
we prioritize exploration in the early stages and increase the ability to jump out of local optima in the
later stages. The global optimal position can better guide the search direction of search agents. When
the evolutionary success rate is low, the algorithm may have fallen into local optima, so we should
reduce the influence of the global optimal position, and vice versa. Therefore, this article proposes a
new position update strategy that adds convergence factors to both the global optimal position and
randomly generated positions. The equation is as follows:

−→
X (t + 1) =

(
1 + eratio(t)

)
·
−→
Xp − e

(
−4· l2

MaxIter2

)
·

((
−→
ub −

−→
lb

)
·
−→r6 +
−→
lb

)
, r7 < 0.5

−→
X (t + 1) =

(
1 + eratio(t)

)
·
−→
Xp + e

(
−4· l2

MaxIter2

)
·

((
−→
ub −

−→
lb

)
·
−→r6 +
−→
lb

)
, r7 > 0.5

 (3.7)

where −→r6 is a random vector in [0,1],
−→
ub and

−→
lb are the lower and upper bounds, respectively, and r7 is

a random value in [0,1].
In the new position update strategy, we changed the strategy of using the three best wolves to guide

the evolution direction of the algorithm to using both the global optimal position and randomly
generated positions as learning samples. The global optimal position as a learning sample ensures that
the search agents evolve in the correct direction, while adding randomly generated positions can
increase population diversity, expand the search range of the algorithm, and greatly enhance the
ability to jump out of local optima. Second, we utilize the ratio to control the inertia weight of the
global optimal position, ensuring that the inertia weight of the global optimal position is always
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greater than 1 to ensure its influence. Additionally, we use an exponential function ex to amplify the
influence of the global optimal position. When the ratio is small, the inertia weight of the global
optimal position is small, increasing the influence of randomly generated positions and improving the
ability to jump out of local optima. Finally, in the early stages of the search, the algorithm should
focus on exploration to ensure that search agents explore the search space as much as possible.
Therefore, the inertia weight of randomly generated positions is relatively large in the early stages.
When x is linearly increasing on the interval [0,1], e−4x2

is nonlinearly decreasing. On the interval
[0,1], the function e−4x2

exhibits convexity in the initial segment where the second derivative is greater
than 0, indicating a slower rate of decrease. In the later segment, where the second derivative is less
than 0, the function demonstrates concavity, indicating a faster rate of decrease. As the number of
iterations increases, the inertia weight of randomly generated positions decreases nonlinearly; it
decreases slowly in the early stages to maintain a large inertia weight to explore the search space, and
it decreases quickly in the later stages while not affecting the exploitation of the algorithm in later
stages to provide a possibility for jumping out of local optima.

3.5. Theoretical convergence analysis

Based on the Eqs (3.2) and (3.5), we can derive the position update value of the j-th dimension for
the i-th wolf as follows:

xt+1
i j = w1st

[
xα j − (2αtr11 − αt)

∣∣∣2r12xα j − xt
i j

∣∣∣ spiral1

]
+ w2st

[
xβ j − (2αtr21 − αt)

∣∣∣2r22xβ j − xt
i j

∣∣∣ spiral2

]
+ w3st

[
xδ j − (2αtr31 − αt)

∣∣∣2r32xδ j − xt
i j

∣∣∣ spiral3

]
=

(
w1xα j + w2xβ j + w3xδ j

)
st − at

[
(2r11 − 1)

∣∣∣2r12xα j − xt
i j

∣∣∣ spiral1

(2r21 − 1)
∣∣∣2r22xβ j − xt

i j

∣∣∣ spiral2 + (2r31 − 1)
∣∣∣2r32xδ j − xt

i j

∣∣∣ spiral3

] (3.8)

where xt+1
i j represents the value of the j-th dimension position of the ith wolf in the next iteration, xt

i j
represents the value of the j-th dimension position of the ith wolf in the current iteration, xα j, xβ j, xδ j

represents the value of the j-th dimension position of the three best wolves in the current iteration, αt is
the value of α in the current iteration, which decreases from 2 to 0 as the number of iterations increases,
st is the step length in the current iteration, and r11, r12, r21, r22, r31, r32 is a random value in [0,1].

In ASGWO, as the number of iterations increases, αt gradually approaches 0. When the number of
iterations approaches its maximum value, the impact of the second term in Eq (3.8) on the xt+1

i j position
can be ignored. At this time, st also approaches infinity with 1. Assuming that the positions of the
three leader wolves remain unchanged, xt+1

i j approaches a constant value, so ASGWO has convergence.
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Figure 3. Flowchart of the ASGWO algorithm.
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4. Experimental verification and analysis

4.1. Benchmarking functions and testing environment

To evaluate the performance of ASGWO, we used two sets of test functions from the literature [22]
to benchmark the algorithm’s exploration and exploitation. The first set of test functions are the classic
unimodal functions (f1–f7) in Table 1, which have only one global optimal value and do not risk falling
into local minima. They are used to test the algorithm’s exploitation. The second set of test functions
are the common multimodal functions (f8–f13) in Table 2 and fixed-dimension multimodal benchmark
functions (f14–f23) in Table 3, which have many local minima and the algorithm is highly likely to fall
into local optima. They are used to test the algorithm’s ability to jump out of local optima and examine
exploration [23]. In Tables 1–3, the third column Dim, represents the dimension of the benchmark
function, the fourth column Range, represents the upper and lower limits of the benchmark function,
and the fifth column fmin, represents the global minimum point of the benchmark function.

All encoding in this article was implemented on a Windows - 10 platform using Python 3.8 on a
computer with an Intel(R) Core(TM) i5-8300H CPU processor and 8GB of memory.

4.2. Composition with GWO and tranditional algorithm

In assessing ASGWO’s convergence accuracy, convergence speed, population diversity, and
capability to evade local optima, we juxtaposed its optimization efficacy on both unimodal and
multimodal test functions with the native GWO algorithm, alongside two classical algorithms:
PSO [2] and WOA [3]. The parameter settings for the algorithms are recorded in Table 4. For
different benchmark functions, the four algorithms were independently run 30 times, with an iteration
number of 500 per independent run and a population size of 20. The average and variance were taken
to generate statistical results. The experimental results for unimodal, multimodal, and
fixed-dimension multimodal benchmark functions are shown in Tables 3, 5, and 6, respectively.

Table 1. Unimodal benchmark functions.

Function Dim Range fmin
f1 (x) =

∑n
i=1 xi

2 30 [−100,100] 0
f2 (x) =

∑n
i=1 |xi| +

∏n
i=1 |xi| 30 [−10,10] 0

f3 (x) =
∑n

i=1

(∑i
j−1 x j

2
)2

30 [−100,100] 0
f4 (x) = maxi {|xi| , 1 ≤ i ≤ n} 30 [−100,100] 0

f5 (x) =
∑n−1

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30,30] 0

f6 (x) =
∑n

i=1 ([xi + 0.5])2 30 [−100,100] 0
f7 (x) =

∑n
i=1 ixi

4 + random [0, 1) 30 [−1.28,1.28] 0
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Table 2. Multimodal benchmark functions.

Function Dim Range fmin
f8 (x) =

∑n
i=1 −xi sin

(√
|xi|

)
30 [−500,500] 0

f9 (x) =
∑n

i=1

[
x2

i − 10 cos (2πxi) + 10
]

30 [−5.12,5.12] 0

f10 (x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x2

i

)
− exp

(
1
n

∑n
i=1 cos (2πxi)

)
+ 20 + e 30 [−32,32] 0

f11 (x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600,600] 0

f12 =
π

n

{
10 sin (πy1) +

∑n−1

i=1
(yi − 1)2

[
1 + 10sin2 (πyi+1)

]
+ (yn − 1)2

}
+

∑n

i=1
u (xi, 10, 100, 4)

yi = 1 +
xi + 1

4

u (xi, a, k,m) =


k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a


30 [−50,50] 0

f13 (x) = 0.1
{
sin2 (3πxi) +

∑n

1
(xi − 1)2

[
1 + sin2 (3πxi + 1)

]
+

(xn − 1)2
[
1 + sin2 (2πxn)

]}
+

∑n

i=1
u (xi, 5, 100, 4)

30 [−50,50] 0

Table 3. Fixed-dimension multimodal benchmark functions.

Function Dim Range fmin

f14 (x) =
(

1
500 +

∑25
j=1

1
j+

∑2
i=1 (xi−ai j)

)−1
2 [−65,65] 1

f15 (x) =
∑11

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5,5] 0.0003

f16 (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316

f17 (x) =
(
x2 −

5.1
4π2 x2

1 +
5
π
x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos x1 + 10 2 [−5,5] 0.398

f18 (x) =
[
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
×[

30 + (2x1 − 3x2)2
×

(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)] 2 [−2,2] 3

f19 (x) = −
∑4

i=1 ci exp
(
−

∑3
j=1 ai j

(
x j − pi j

)2
)

3 [−1,3] −3.86

f20 (x) = −
∑4

i=1 ci exp
(
−

∑6
j=1 ai j

(
x j − pi j

)2
)

6 [0,1] −3.32

f21 (x) = −
∑5

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0,10] −10.1532

f22 (x) = −
∑7

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0,10] −10.4028

f23 (x) = −
∑10

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0,10] −10.5363
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Table 4. The parameter settings of the four algorithms.

Algorithm Parameters
GWO a linearly decreased over iterations from 2 to 0
PSO ω = 1, c1=2, c2 = 2
WOA a linearly decreased over iterations from 2 to 0
ASGWO a decreased from 2 to 0 unlinearly, ζ = 0.67

Table 5. The results of unimodal benchmark functions.

Function GWO PSO WOA ASGWO
Mean Std Mean Std Mean Std Mean Std

f1 2.42 × 10−26 3.07 × 10−26 5.89 5.27 5.28 × 10−7 1.58 × 10−6 0.00 0.00
f2 4.08 × 10−16 2.71 × 10−16 8.85 8.00 2.42 × 10−10 6.57 × 10−10 9.1 × 10−243 6.7 × 10−243

f3 5.89 × 10−4 1.62 × 10−2 22.4 7.83 2.14 × 10−2 3.60 × 10−2 0.00 0.00
f4 2.83 × 10−5 1.86 × 10−5 1.24 0.398 1.27 × 10−2 2.59 × 10−2 1.1 × 10−201 5.7 × 10−201

f5 27.3 0.813 2.36 × 102 1.64 × 102 28.6 0.330 26.3 0.314
f6 1.37 0.492 9.26 3.25 22.8 53.2 4.39 × 10−5 1.66 × 10−5

f7 3.65 × 10−3 1.52 × 10−3 1.73 × 102 53.1 8.56 × 10−2 0.177 3.03 × 10−3 4.71 × 10−4

Table 6. The results of multimodal benchmark functions.

Function GWO PSO WOA ASGWO

Mean Std Mean Std Mean Std Mean Std

f8 −6.2 × 103 6.51 × 102 −5.2 × 103 7.00 × 102 −3.3 × 103 2.87 × 102 −7.0 × 103 4.52 × 102

f9 13.4 10.6 1.73 × 102 22.4 9.42 × 10−12 2.74 × 10−11 0.00 0.00
f10 1.38 × 10−13 2.52 × 10−14 2.78 0.448 1.13 × 10−8 2.96 × 10−8 1.11 × 10−14 2.91 × 10−15

f11 5.81 × 10−3 8.93 × 10−3 0.650 0.174 2.22 × 10−16 3.71 × 10−13 0.00 0.00
f12 6.86 × 10−2 5.72 × 10−2 0.839 0.405 0.868 0.271 1.40 × 10−2 9.56 × 10−3

f13 0.632 0.244 1.52 0.757 2.36 0.149 3.34 × 10−5 1.27 × 10−5
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Table 7. The results of fixed-dimension multimodal benchmark functions.

Function GWO PSO WOA ASGWO

Mean Std Mean Std Mean Std Mean Std

f14 5.01 4.27 1.13 0.302 2.86 0.971 1.10 0.288
f15 8.38 × 10−3 9.77 × 10−3 1.04 × 10−2 8.53 × 10−3 3.94 × 10−3 3.25 × 10−3 4.53 × 10−3 7.91 × 10−3

f16 −1.0 2.99 × 10−8 0.861 0.921 0.640 0.326 −1.0 5.10 × 10−8

f17 0.397 6.30 × 10−5 0.861 0.921 0.640 0.326 0.397 5.10 × 10−8

f18 3.00 1.46 × 10−5 3.02 1.84 × 10−2 4.20 2.01 3.00 5.04 × 10−5

f19 −3.8 3.47 × 10−3 −3.8 2.98 × 10−3 −3.7 3.20 × 10−2 −3.8 3.15 × 10−3

f20 −3.2 9.32 × 10−2 −3.0 0.271 −2.5 0.608 −3.2 4.76 × 10−2

f21 −8.0 2.46 −8.1 1.62 −2.3 1.91 −9.0 2.00
f22 −7.6 3.16 −6.2 1.76 −1.9 1.41 −8.6 2.97
f23 −10 3.20 × 10−3 −6.7 1.36 −1.8 1.57 −10 1.61 × 10−5

Figure 4. Exponential convergence curve of f1–f4.
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Figure 5. Exponential convergence curve of f5–f10.
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Figure 6. Exponential convergence curve of f11–f13.

Figure 7. 2-D version of f5.
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Figure 8. Actual convergence curve of f14–f19.
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Figure 9. Actual convergence curve of f20–f23.

4.2.1. Unimodal function analysis

According to the experimental results of Table 3 for the unimodal test functions, we can observe that
ASGWO exhibits superior performance compared to GWO, PSO, and WOA. First, in the test functions
f1 and f3, ASGWO found the global optimal value, while the other three algorithms were still distant
from the global optimal value. Second, in the test functions f2, f4, f6, and f7, although ASGWO did not
find the global optimal value, it still demonstrated a significant improvement in convergence accuracy
compared to the original GWO, PSO, and WOA. Finally, as shown in Figure 7, the contour lines of
function f5 form a parabolic shape, and the global optimal value lies in the valley of this parabolic
shape. While it may be easy for algorithms to find this valley, convergence to the global optimal value
is extremely challenging due to the slow gradient change within this narrow valley. Therefore, the
performance improvement of ASGWO on the function f5 was not as significant as expected, but it still
outperformed GWO, PSO, and WOA. Additionally, as shown in Table 1, function f6 is a step function,
which is characterized by plateaus and discontinuity. Since GWO, PSO, and WOA performing searches
within local neighborhoods, all the points within the local neighborhood will have the same fitness
value except for a few boundaries between plateaus, it is difficult for them to move from the current
plateau to a lower plateau. However, ASGWO’s adaptive step size can help the algorithm produce
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longer jumps with a higher probability, making it easier for ASGWO to move towards lower plateaus.
As shown in Figures 4 and 5, ASGWO’s convergence speed far exceeded the other algorithms. Finally,
the experimental results of Table 3 indicate that compared to the other three algorithms, ASGWO has
a smaller standard deviation, representing more stable convergence and stronger robustness.

In summary, ASGWO has significantly improved the convergence accuracy, convergence speed,
and robustness of unimodal test functions. This is because ASGWO improves the local development
ability of the algorithm by rapidly decreasing the nonlinear convergence factor in the later stages, and
utilizes more path information through the spiral to improve the local development ability by making
the spiral smaller in the later stages, thereby improving the convergence accuracy. In addition, the
dynamic spiral and adaptive step size also significantly contribute to the improvement of convergence
speed.

4.2.2. Multimodal function analysis

The experimental results of Table 5 indicate that ASGWO still performs better than GWO, PSO,
and WOA on multimodal test functions. First, in the test functions f9 and f11, ASGWO found the
global optimal value. In contrast, the original GWO, PSO, and WOA had significant differences in
convergence accuracy. The test functions f9 and f11 have the characteristics of highly multimodal
and regularly distributed minimum positions, suggesting that ASGWO performs well on multimodal
functions with regularly distributed minimum positions. Additionally, from the convergence curve of
function f9 in Figure 5, we can observe that, even when ASGWO gets trapped in a local optimum in
the later stages of the algorithm, it still has the ability to escape from the local optimum and find the
global optimal value. Then, for the remaining functions f8, f10, f12, and f13, ASGWO did not find
the global optimal value. However, the final convergence result of ASGWO is still superior to the
other three algorithms. Therefore, ASGWO has a significant improvement in the convergence results
on multimodal functions with many local minima. This is because the nonlinear convergence factor
decreases slowly in the early stage, allowing ASGWO to fully explore the search space and lay a solid
foundation for avoiding premature convergence. Due to the similarity of function f12 and function f5,
the improvement of ASGWO on function f12 did not meet our expectations. From Figures 6 and 7,
we can see that because of the complexity of multimodal functions, algorithms may still get trapped in
local optima. Therefore, we use the evolution success rate to assess the state of the algorithm. When
the algorithm gets trapped in a local optimum, increasing the step size can help it escape from the
local optimum. Additionally, new position update strategies can also improve population diversity and
help the algorithm escape from local optima. Furthermore, function f8 is a typical deception problem:
there is only one global optimal point, which is far away from the local minima. Getting trapped in
a local optimum is difficult to escape. However, as shown in Figure 5, ASGWO still demonstrates an
impressive ability to escape from local optima on function f8. Finally, from Figures 5–8, we can see
that ASGWO still exhibits good convergence speed on multi-peak functions.

On the experimental results of the Table 7 fixed-dimension multimodal benchmark functions,
ASGWO has a slight gap with WOA on f15, but has significant advantages on other functions. From
Figure 9, it can be seen that ASGWO has a significant improvement in convergence speed on
complex functions.
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4.2.3. Convergence analysis

As illustrated in Figure 4, ASGWO places emphasis on exploring the search space during the early
stages, leading to swift convergence in the subsequent phases. Owing to the GWO’s linearly decreasing
convergence factor, the algorithm encounters inadequate exploration in the initial phases and gradual
convergence in the later stages. To mitigate this, we introduced a modification, transitioning it to a
piecewise nonlinear convergence factor. Furthermore, during the exploitation stage, a preference for a
smaller step size is evident in ASGWO to ensure precise convergence, as opposed to larger step sizes
that might induce oscillations and impact convergence speed. This is facilitated through ASGWO’s
incorporation of a dynamic self-learning step size, computed based on the current iteration number
and population evolution success rate. This adaptation is reflected in the substantial enhancement of
convergence speed, as evidenced in Figures 5, 6, and 9.

The original strategy of the GWO algorithm involves the wolf pack consistently converging
towards the best three wolves, leading to premature convergence, diminished population diversity, and
a propensity to be ensnared in local optima. As depicted in Figures 5 and 6, ASGWO maintains
convergence even when conventional algorithms succumb to local optima entrapment. This attribute
is credited to the dynamic logarithmic spiral, which empowers the algorithm to glean more
information along the path, thereby enriching population diversity. Moreover, the updated position
update equation introduces a dynamic influence factor, endowing more significant influence to
randomly generated positions during the initial stages, further bolstering population diversity. In
Figures 5 and 9, the descending zigzag shape evident in ASGWO’s convergence curves suggests that,
utilizing the dynamic self-learning step size, ASGWO adapts its step size to be larger during periods
of low evolution success rate. This strategic adjustment enhances the algorithm’s capacity to evade
local optima. In summary, these refinements in ASGWO culminate in enhanced optimization
performance, convergence speed, and population diversity.

4.3. Composition with GWO Variants

In Section 4.2, wherein ASGWO was juxtaposed with traditional algorithms, it exhibited notable
superiority. To further substantiate ASGWO’s optimization prowess, we opted to assess it against
two novel variants of the GWO algorithm, specifically SOGWO [24] and EOGWO [25]. SOGWO
utilizes Spearman’s correlation coefficient to select certain dimensions of the ω wolves for opposition
learning, thus avoiding unnecessary exploration and enabling rapid convergence without compromising
the probability of finding the optimal solution. EOGWO performs a simplex based opposition on all
the wolves. Instead of taking the upper and lower limits of the function, opposition is done using the
limits of all the wolves. For different benchmark functions, the three algorithms were independently
run 25 times each with a maximum iteration of 1000 and a population size of 50. The average value
and variance were calculated to generate statistical results, as shown in Table 8.

From the experimental results in Table 8, we can see that ASGWO converges to the global optimum
point on 30-dimensional unimodal functions f1–f4, 30-dimensional multimodal functions f9, and f11,
and fixed-dimension multimodal benchmark functions f16–f20, while SOGWO and EOGWO only
converge to the global optimum point on function f9. In addition, ASGWO also has good performance
on functions f5, f6, f8, f12, and f13, with convergence accuracy far exceeding SOGWO and EOGWO.
Finally, ASGWO performs slightly worse than SOGWO and EOGWO on function f7, f10, and f15,
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but the error is within a reasonable range. Therefore, compared with new GWO variants, ASGWO still
has good optimization performance.

Table 8. The result of benchmark functions.

Function SOGWO EOGWO ASGWO
Mean Std Mean Std Mean Std

f1 6.04 × 10−77 1.48 × 10−76 2.81 × 10−71 8.46 × 10−71 0.00 0.00
f2 1.17 × 10−44 1.34 × 10−44 4.31 × 10−42 7.87 × 10−42 0.00 0.00
f3 5.39 × 10−22 2.59 × 10−21 1.52 × 10−20 4.02 × 10−20 0.00 0.00
f4 7.08 × 10−21 1.51 × 10−19 8.06 × 10−19 1.11 × 10−18 0.00 0.00
f5 26.4 0.762 26.3 0.7364 25.2 0.663
f6 0.282 0.247 0.3290 0.245 1.06 × 10−6 2.37 × 10−7

f7 4.93 × 10−4 2.71 × 10−4 6.07 × 10−4 4.32 × 10−4 1.04 × 10−3 6.49 × 10−4

f8 −6.5 × 103 8.02 × 102 −6.27 × 103 7.71 × 102 −7.31 × 103 8.67 × 102

f9 0.00 0.00 0.00 0.00 0.00 0.00
f10 8.88 × 10−16 0.00 1.40 × 10−14 3.20 × 10−15 1.36 × 10−14 2.71 × 10−15

f11 0.00 0.00 1.68 × 10−3 4.80 × 10−3 0.00 0.00
f12 5.60 × 10−2 1.42 × 10−5 2.29 × 10−2 1.85 × 10−2 3.91 × 10−3 3.16 × 10−3

f13 0.352 0.128 0.257 0.164 1.27 × 10−6 4.73 × 10−7

f14 3.40 3.72 3.82 3.86 0.998 8.24 × 10−13

f15 2.38 × 10−3 6.02 × 10−3 5.24 × 10−3 8.68 × 10−3 4.31 × 10−3 7.01 × 10−3

f16 −1.03 3.75 × 10−9 −1.02 3.45 × 10−9 −1.03 2.42 × 10−11

f17 0.397 4.85 × 10−7 0.398 4.82 × 10−7 0.398 1.68 × 10−8

f18 3.00 4.63 × 10−6 3.00 3.60 × 10−6 3.00 3.57 × 10−6

f19 −3.86 2.71 × 10−3 −3.86 2.36 × 10−3 −3.86 1.03 × 10−6

f20 −3.26 7.37 × 10−2 −3.27 7.55 × 10−2 −3.32 2.93 × 10−8

f21 −9.65 1.50 −9.93 2.07 −9.34 1.40
f22 −10.4 2.65 × 10−4 −10.2 1.05 −10.6 1.06 × 10−5

f23 −10.4 0.540 −10.2 1.62 −10.4 1.04 × 10−5

5. Applications of ASGWO on real engineering problems

ASGWO has exhibited promising outcomes when compared with GWO, PSO, WOA, SOGWO,
and EOGWO across 23 test functions. In order to ascertain the efficacy of ASGWO in unfamiliar
domains characterized by constraints, we juxtapose it with diverse algorithms on four practical
application problems.

5.1. Design of gear train problem

The gear train design problem is an unconstrained discrete design problem in mechanical
engineering. It involves arranging and combining multiple gears in a specific way to transmit
rotational motion and force from one shaft to another. To simplify the problem, we only consider the
gear ratio, which is the most basic factor, as shown in Figure 10. The objective of this problem is to
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minimize the gear ratio as close as possible to 1/6.931. The gear ratio is defined as the ratio of the
angular velocity of the output shaft to the angular velocity of the input shaft. For matching gears, this
ratio is inversely proportional to the number of teeth on the input and output gears. The minimum
tooth count for each gear is 12, and the maximum tooth count is 60. Treating the number of teeth
A(x1), teeth B(x2), teeth C(x3), and teeth D(x4) as a design variable, reasonable selection and
optimization of this variable can be used to achieve better performance of the gear system.
Mathematically, the problem is stated as follows:

Figure 10. Design of gear train problem.

Min f (x) =
(

1
6.931

−
x3x2

x1x4

)2

s.t. 12 ≤ x1, x2, x3, x4 ≤ 60 (5.1)

We solve this problem with ASGWO and compare the results to GWO, WOA, K-WOA [26],
IWOA [27], GSA-BBO [28], GSO [29], ABC [30], CAB [31], CS [32], FUZZY [33], and MFO [34]
in Table 10. K-WOA utilizes K-means clustering to create multiple collaborative search sub-groups
based on WOA to explore the search space; IWOA assigns exploration or exploitation to search
agents based on their fitness. All the parameters of these algorithms are recorded in Table 9. The
results show the average best fitness obtained from 30 independent executions of each algorithm, the
standard deviation (SD) of the best fitness obtained from each independent execution, and the
optimization parameters (x1, x2, x3, x4) selected in the best solution of each algorithm. The
experimental result of WOA, K-WOA, IWOA, GSA-BBO, GSO, ABC, CAB, CS, FUZZY, and MFO
in Table 10 are from the literature [26]. In Table 10, the ASGWO algorithm obtains the best value
with transmission ratio (4.14 × 10−15).

5.2. Design of pressure vessel problem

The objective of Pressure Vessel Design (PVD) is to minimize the total cost related to materials,
forming, and welding while fulfilling production requirements, as shown in Figure 11. This
engineering problem involves four constraints and four design variables: shell thickness (Ts = x1),
head thickness (Th = x2), inner radius (R = x3), and vessel length (L = x4). The welding cost is
divided into vertical welding cost and horizontal welding cost. The estimation method is to multiply
the average cost per pound of welding material by the weight of the required welding material, which
is 0.6224x1x3x4 + 1.7781x2x2

3. The material and forming costs will be represented by combining the
two costs into an average cost per forming operation, which is 3.1661x2

1x4 + 19.84x2
1x3.

Mathematically, the problem is stated as follows:
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Table 9. Parameter settings for gear train problem.

Parameter Value
same initialization configuration Population Size is 50, Maxiter is 50000
ASGWO a decreased from 2 to 0 unlinearly, ζ = 0.67
GWO a linearly decreased over iterations from 2 to 0
WOA a linearly decreased over iterations from 2 to 0

IWOA
Scaling factor for beta (0.2, 0.8), DE mutation scheme(DE/best/1/bin),
a linearly decreased over iterations from 2 to 0

K-WOA fixed number of clusters k = 18
GSA-BBO k = 2, I = 1, E1 = 1, S iv = 4, Rnorm = 2, Rpower = 1
GSO the acceleration constants are 2.05

ABC
Onlooker 50%,
employees 50%, acceleration coefficient upper bound (a)= 1,
LL = (0.6×dimensions×population)

CAB Mbest = 4, Hp = 0.2
CS β = 1.5, Discover = 0.25
FUZZY Nflames = round

(
Npop - k

) (
Npop - 1

)
kmax

MFO c1=2, c2 = 2, ω decreased from 0.9 to 0.2

Table 10. The result of gear train design problem.

Algorithm Optimal solution Optimal cost SD
x1 x2 x3 x4

ASGWO 24 18 59 53 4.14 × 10−15 7.57 × 10−15

GWO 26 18 60 54 1.49 × 10−14 2.75 × 10−14

WOA 16 19 49 43 1.15 × 10−9 1.39 × 10−9

IWOA 30 13 51 53 2.39 × 10−9 2.53 × 10−9

K-WOA 19 16 43 49 2.70 × 10−12 0.00
GSA-BBO 16 19 49 43 8.72 × 10−10 8.38 × 10−10

GSO 60 29 52 60 0.732 0.00
ABC 16 19 49 43 6.62 × 10−11 1.65 × 10−10

CAB 12 12 35 12 0.675 0.180
CS 16 19 43 49 1.47 × 10−10 2.65 × 10−10

FUZZY 12 23 33 57 2.57 × 10−3 4.87 × 10−3

MFO 19 16 49 43 4.85 × 10−9 6.90 × 10−9

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3910–3943.



3934

Min f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t. g1 (x) = −x1 + 0.0193x3 ≤ 0
g2 (x) = −x2 + 0.00954x3 ≤ 0

g3 (x) = −πx2
3x4 −

4
3
πx2

3 + 1296000 ≤ 0

g4 (x) = x4 − 240 ≤ 0
1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625
10 ≤ x3, x4 ≤ 200

(5.2)

Figure 11. Design of pressure vessel problem.

In order to find the optimal cost, the ASGWO algorithm is implemented 30 times on this problem
and the recorded results are shown in Table 12. We obtain the results of GWO, WOA, PSO, GA, SSA,
ES [35], SC-GWO [36], mGWO [37], wGWO [38], and chaotic SSA from literature [36], which are
also presented in the same table. SC-GWO combines the SCA, which integrates social and cognitive
components, with GWO that balances exploration and exploitation. mGWO uses adaptive methods
to strike a balance between exploration and exploitation. All the parameters of these algorithms are
recorded in the Table 11. From the Table 12, it can be observed that the optimal cost of the proposed
algorithm (6010.9908) is better than all other reported algorithms.

Table 11. Parameter settings for pressure vessel problem.

Parameter Value
same initialization configuration Population Size is 25, Maxiter is 500
SC-GWO ω decreased from 0.7 to 0.2
mGWO a = 2

(
1 − t

Maxiter

)
wGWO a linearly decreased over iterations from 2 to 0
GA Crossover Rate = 0.7, Mutation Rate = 0.01
SSA c1 unlinearly decreased over iterations
Chaotic SSA c1 = logistic chaotic map(c1)
ES σ = 3.0, µ = 100, λ = 300
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Table 12. The result of design of pressure vessel problem.

Algorithm Optimal solution Optimal cost
x1 x2 x3 x4

ASGWO 0.8327 0.4122 43.1396 168.1458 6010.9908
GWO 0.8750 0.4375 44.9807 144.1081 6136.6600
SC-GWO 0.8125 0.4375 42.0984 176.6370 6059.7179
mGWO 0.8125 0.4375 42.0982 176.6386 6059.7359
wGWO 0.8125 0.4375 42.09842 176.637 6059.7207
PSO 0.8125 0.4375 42.0913 176.7465 6061.0777
GA 0.9375 0.5000 48.3290 112.6790 6410.3810
SSA 0.8125 0.4375 42.09836 176.6376 6059.7254
Chaotic SSA 0.8750 0.4375 45.33679 140.2539 6090.527
WOA 0.8125 0.4375 42.0982 176.6389 6059.7410
ES 0.8125 0.437 42.0980 176.6405 6059.7456

Table 13. The result of car crashworthiness problem.

Algorithm ASGWO IROA SMA HHOCM ROLGWO MALO
x1 0.500041 0.5 0.5 0.50016380 0.5012548 0.5
x2 1.1345446 1.23105679 1.22739249 1.248612358 1.2455510 1.22810442
x3 0.5000862 0.5 0.5 0.65955791 0.50004578 0.5
x4 1.2790514 1.19766142 1.20428741 1.098515362 1.18025396 1.21264054
x5 0.5002007 0.5 1.20428741 0.757988599 0.50003477 0.5
x6 1.4999609 1.07429465 1.04185969 0.76726834 1.16588047 1.30804056
x7 0.5000544 0.5 0.5 0.500055187 0.50008827 0.5
x8 0.3449606 0.3449999 0.345 0.34310489 0.3448952 0.34499984
x9 0.3324805 0.3443286 0.3424831 0.19203186 0.2995826 0.28040129
x10 −16.33320 0.9523965 0.2967546 2.89880509 3.5950796 0.42429341
x11 −2.149117 1.0114033 1.1579641 −4.5511746 2.2901802 4.65653809
fmin 22.871876 23.188937 23.191021 24.483584 23.222427 23.229404

5.3. Design of car crashworthiness problem

The design of car crashworthiness poses a challenge in the context of car side impact mitigation,
aiming to minimize vehicle weight, passenger impact forces, and the average velocity of the V-shaped
pillar. This challenge encompasses ten constraints, including limits on abdominal load, pubic force,
V-pillar velocity, rib defects, and so on. Additionally, there were eleven design variables that described
the thickness of the B-pillar inner panel (x1), the B-pillar reinforcement (x2), the floor inner panel
thickness (x3), the crossbeam (x4), the door beam (x5), the door belt line reinforcement (x6), the roof
longitudinal beam (x7), the B-pillar inner panel (x8), the floor inner panel (x9), the guardrail height
(x10), and the collision position (x11). The optimization problem formula is as follows:
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Min f (x) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7

s.t. g1 (x) = 1.16 − 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 − 1 ≤ 0
g2 (x) = 46.36 − 9.9x2 − 12.9x1x8 + 0.1107x3x10 − 32 ≤ 0
g3 (x) = 33.86 + 2.95x3 + 0.1792x3 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22.0x8x9 − 32 ≤ 0
g4 (x) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10 − 32 ≤ 0
g5 (x) = 0.261 − 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10 + 0.08045x6x9

+ 0.00139x8x11 + 0.00001575x10x11 − 0.32 ≤ 0
g6 (x) = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7 + 0.0208x3x8

+ 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10 + 0.00121x8x11 − 0.32 ≤ 0
g7 (x) = 0.74 − 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2

2 − 0.32 ≤ 0
g8 (x) = 4.72 − 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x2

11 − 4 ≤ 0
g9 (x) = 10.58 − 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10 − 9.9 ≤ 0
g10 (x) = 16.45 − 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x2

11 − 15.7 ≤ 0
0.5 ≤ x1, x2, x3, x4, x5, x6, x7 ≤ 1.5
0.192 ≤ x8, x9 ≤ 0.345
− 30 ≤ x10, x11 ≤ 30

(5.3)

Table 14. Parameter settings for car crashworthiness problem.

Parameter Value
same initialization configuration Population Size is 25, Maxiter is 500
IROA C = 0.1; α ∈[−1,9]; µ = 0.499; z = 0.07; y = 0.1
SMA z = 0.03

HHOCM
The value of escaping energy decreases from 2 to 0,
mutation rate decreases linearly from 1 to 0

ROLGWO r3 ∈ [0, 1]
MALO Switch possibility = 0.5

Through the literature [39], the optimal experimental results of IROA [39], SMA [40],
HHOCM [41], ROLGWO [42], and MALO [43] in the design of car crashworthiness problem are
obtained. IROA introduces an autonomous foraging mechanism, giving each search agent a small
chance to randomly search for food or search based on the current food location. ROLGWO proposes
a modified parameter “C” strategy to balance exploration and exploitation in GWO. Additionally, a
new random opposite-based learning strategy is introduced to help the population escape local
optima. All the parameters of these algorithms are recorded in the Table 14. In this article, under the
same experimental parameters (500 iterations and 30 search agents), the ASGWO is tested, and the
best experimental result is 22.871876, ranking first among these algorithms. Therefore, ASGWO has
outstanding advantages in solving the design of the car crashworthiness problem.
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5.4. Feature selection

Data mining is currently a highly discussed topic, with the aim of acquiring and processing large
datasets to extract actionable knowledge. However, the high dimensionality of feature space poses a
significant challenge in data mining, mainly due to the computational complexity involved. Feature
selection has emerged as a solution to overcome this challenge. It aims to choose the most relevant
subset of features from the original feature set to reduce dimensionality, lower computational costs,
and significantly enhance the efficiency of models. Moreover, feature selection can reduce feature
redundancy, thereby improving the generalization ability of models. Therefore, feature selection is an
indispensable part of the machine learning process, enabling the construction of simpler, more efficient,
and more interpretable machine learning models.

This paper considers feature selection as a multi-objective problem: minimizing the number of
selected features and maximizing the feature-measure. The goal of feature selection is to either select
or not select the most beneficial features, which is a binary problem. However, the positions generated
by ASGWO are continuous and cannot be directly applied to feature selection. Therefore, this paper
sets the search space of ASGWO to [0, 1] and maps the positions of the standard ASGWO agents to
the binary space using the simplest transformation function, as shown in the equation below.

xbinary
i j =

0 i f xi j ≤ 0.5
1 i f xi j > 0.5

(5.4)

where xi j represents the numerical value of the position of the j-th dimension of the i-th search agent,
while xbinary

i j represents the numerical value of the position of the j-th dimension of the i-th search agent
mapped to the binary space.

Table 15. List of the datasets.

Datasets No. of attributes No. of samples
Breast-w 9 699
Credit-g 20 1000
Dermatology 34 366
Glass 9 214
Ionosphere 34 351
Lymphography 18 148
Sonar 60 208

This paper evaluates the performance of ASGWO using a KNN classifier through a ten-fold
cross-validation approach on the seven UCI datasets listed in Table 15. In each run, the F-measure
value and the number of selected features are recorded, and the averages are taken over ten iterations.
These results are then compared with those obtained for BASO, BGA, BPSO, and BGWO from the
literature [44], and the comparisons are tabulated in Table 17. To ensure fairness in testing, the same
test parameters as those listed in Table 16 are used for all five algorithms.
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Table 16. Parameter settings for feature selection.

Parameter Value
K for KNN 3
Dimension of population 10
Number of iterations 100
Number of runs 10
Acceleration constants in PSO [2,2]
Inertia w in BPSO [0.9,0.4]
Parameter A in BGWO min = 0, max = 2

Table 17. The results of feature selections.

Dataset Breast-w Credit-g Dermato Glass Ionosph Lymph. Sonar
KNN 0.965 0.593 0.873 0.591 0.817 0.712 0.816

Average F-measure

BASO 0.982 0.829 0.988 0.778 0.887 0.896 0.892
BGA 0.983 0.831 0.988 0.750 0.887 0.896 0.892
BPSO 0.981 0.824 0.987 0.753 0.870 0.893 0.880
BGWO 0.981 0.825 0.989 0.754 0.853 0.868 0.865
ASGWO 0.988 0.733 0.998 0.705 0.958 0.955 0.969

Selected feature

BASO 6.5 11.1 19.7 7.6 11.4 10.8 27.5
BGA 6.3 10.6 19.4 6.3 11.4 10.2 28.8
BPSO 6.5 9.9 20 7.8 11.1 9.9 28.9
BGWO 7.1 13.9 25.6 7.4 11.7 13.3 41.6
ASGWO 4.74 10.04 17.82 4.92 13.24 7.6 27.46

By analyzing Table 17, we can observe that the F-measure results of the KNN classifier with
feature selection using ASGWO significantly outperforms the direct application of the KNN classifier.
Additionally, the number of features is effectively reduced. Therefore, ASGWO can be effectively
applied to feature selection, improving classification accuracy and reducing computational
complexity. Notably, on the Lymphography and Sonar datasets, ASGWO outperforms BASO, BPSO,
and BGWO in terms of F-measure, while also selecting the fewest number of features. On the
Breast-w and Dermatology datasets, although ASGWO has only a slight advantage in F-measure, the
number of features is significantly reduced by 24 and 30.3%, respectively, significantly improving the
efficiency of the classifier. This is due to ASGWO’s self-learning ability, which allows it to fully
associate the current state with each feature, enhancing its understanding of feature availability.
Furthermore, on the Ionosphere dataset, ASGWO achieves the best F-measure, albeit with a slightly
higher number of features compared to other algorithms. This tradeoff of slightly increased
computational cost for improved F-measure is entirely acceptable. However, on the Credit-g dataset,
ASGWO performs poorly due to the significant increase in sample size compared to the increase in
feature size. This is because ASGWO’s binary mapping is too simple and cannot make good
decisions when dealing with low-dimensional features in multi-class classification tasks.
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6. Conclusions

Due to the low convergence accuracy, slow convergence speed, and tendency to get trapped in the
local optima of the original grey wolf optimizer (GWO), this article proposes an adaptive dynamic
self-learning grey wolf optimization to address these issues. First, a nonlinear piecewise convergence
factor is proposed to ensure sufficient search and rapid development. Second, a dynamic logarithmic
spiral line based on the number of iterations is used to guide the wolves toward the best wolf,
expanding the search range in the early iterations and improving population diversity. In the later
iterations, the algorithm’s local development ability is enhanced to accelerate convergence. Third, a
dynamic self-learning step size based on the rational learning of evolution success rate and the
number of iterations is introduced to improve algorithm convergence speed. Through self-learning of
current information, calculate the appropriate step size for the current algorithm, preventing the step
size from being too cautious or aggressive, to avoid algorithm oscillation and the effect of
convergence speed. When the algorithm gets trapped in a local optimum, increasing the step size
helps the algorithm escape from the local optimum. Finally, a new position update strategy is
proposed. Based on the evolution success rate, the original position update strategy and the new
position update strategy are selected. The new position update strategy adds a randomly generated
search agent as a learning sample. In the early stage of the algorithm, it can help improve population
diversity and expand the search range. In the later stage of the algorithm, it can help escape from local
optima. The learning samples of the new position update strategy also include the global optimal
position to provide effective guidance for the evolution direction. In addition, controlling the
influence of two learning samples based on the algorithm’s state using dual convergence factors is
crucial in the position update stragegy. One convergence factor ensures global optimal leadership, and
the other expands exploration in the early stage, and increases the possibility of jumping out of local
optima without affecting development in the later stage. The performance of ASGWO was tested on
23 benchmark functions and compared with classical algorithms GWO, PSO, WOA, and new GWO
variants: SOGWO, EOGWO. The experimental results showed that ASGWO had higher convergence
accuracy, faster convergence rate, and stronger ability to escape local optima compared to both the
original GWO and classical algorithms, as well as new variants. In addition, through the results of real
engineering problems, we can find that ASGWO also performs better in the unknown search space,
which shows the applicability of ASGWO in solving real problems and feature selection. However,
on valley test functions where local optimal changes are not obvious, there is still much room for
improvement in the convergence accuracy of ASGWO, which will be our future research direction.
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