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Abstract: Bortezomib and oncolytic virotherapy are two emerging targeted cancer therapies. Borte-
zomib, a proteasome inhibitor, disrupts protein degradation in cells, leading to the accumulation of
unfolded proteins that induce apoptosis. On the other hand, virotherapy uses genetically modified
oncolytic viruses (OVs) to infect cancer cells, trigger cell lysis, and activate anti-tumor response. De-
spite progress in cancer treatment, identifying administration protocols for therapeutic agents remains
a significant concern, aiming to strike a balance between efficacy, minimizing toxicity, and administra-
tive costs. In this work, optimal control theory was employed to design a cost-effective and efficient
co-administration protocols for bortezomib and OVs that could significantly diminish the population
of cancer cells via the cell death program with the NFκB-BAX-RIP1 signaling network. Both linear
and quadratic control strategies were explored to obtain practical treatment approaches by adapting
necroptosis protocols to efficient cell death programs. Our findings demonstrated that a combination
therapy commencing with the administration of OVs followed by bortezomib infusions yields an ef-
fective tumor-killing outcome. These results could provide valuable guidance for the development of
clinical administration protocols in cancer treatment.
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1. Introduction

Cancer is characterized by abnormal cell growth and several steps of genetic mutations. Glioblas-
toma multiforme (GBM), a type of brain tumor, is one of the most fatal human cancers, with a low
survival rate attributed to its aggressive growth and rapid, pervasive brain invasion [1,2]. Despite recent
progress in cancer treatment, toxicity and corresponding side effects such as cancer-related cognitive
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changes [3, 4] are common in conventional anticancer therapies such as chemotherapy and radiation
therapy. Targeted cancer therapy, a promising choice with recent advances, can be a great way of eradi-
cating cancer cells by controlling its dynamics and players in the signaling pathways that enable tumor
growth [5]. Thus, there is a need for optimal control of promotion or inhibition of these intracellular
molecules in cancer treatment including chemo- and oncolytic virus (OV) therapies.

The ubiquitin–proteasome system within a cell regulates the degradation of proteins, thus control-
ling cellular function and maintaining homeostasis [6,7]. Therefore, proteasome inhibitors can be used
to treat cancer due its inhibition of cancer cells’s increased need of protein synthesis and degradation in
cancer progression [6,8]. By interfering with appropriate degradation and recycling of proteins, a crit-
ical component for cell viability [9], proteasome inhibitors induce accumulation of ubiquitin-tagged
proteins, resulting in endoplasmic reticulum (ER) stress [10] and, thus, apoptosis, i.e., programmed
cell death, of cancer cells. Bortezomib, the first proteasome inhibitor agent in cancer treatment [11],
was approved for multiple myeloma and lymphoma by Food and Drug Administration (FDA) [6]. De-
spite minimal undesirable side effects such as accumulation of anti-apoptotic proteins, bortezomib was
shown to consistently overcome the well-known apoptotic resistance of cancer cells such as melanoma
cells [12], especially when combined with other anti-cancer agents [7, 13, 14].

NFκB , a master regulator that controls inflammation and immune responses as well as cell prolifer-
ation, stays usually in an inactive mode by its suppressor, IκB [15]. Various regulators such as ER stress
can activate NFκB by degrading IκB which induces the translocation of NFκB to the nucleus and sub-
sequent activation of various key genes, including the anti-apoptotic gate keeper, Bcl2 and suppression
of the final apoptosis gene BAX (Figure 1) [16–20]. While the systemic homeostasis can be maintained
by this production of IκB and the feedback control loop in normal tissue [21], a poor management of
NFκB by IκB , or a constitutively active NFκB state, can allow the critical resistance of tumor cells to
conventional anti-cancer therapy [22–26]. Therefore, agents targeting BAX showed a great potential of
killing cancer cells by up-regulating BAX, thus, inducing apoptosis [17, 27]. While apoptosis is a typ-
ical cell death program, necroptosis is another form of cell death process that is caspase-independent
and causes massive cell killing. This is executed by up-regulation of reactive oxygen species (ROS)
from activated RIP1, a receptor-interacting-protein kinase [28]. RIP1, a key activator of necroptosis, is
not involved in the apoptotic signaling pathway [28, 29]. Up-regulation of both Bcl2 and RIP1 as well
as down-regulation of caspase-8 were associated with necroptosis in glioma cancer cells [30].

An emerging treatment option with rapid advances for cancer patients is oncolytic virotherapy (OV)
that uses various forms of cancer-lysing viruses as a targeted therapy [31–33]. OVs can target and
kill cancer cells by infection and destruction of cell structure while avoiding unnecessary damages to
normal cells in tumor microenvironment (TME) [34,35]. While these viruses can be eliminated by the
immune system on the way to the target tumor [36], the high degree of replications within a cancer
cell and boosting effect of OV-induced immune activities within TME [31, 37] can compensate the
loss by immune cells, which enables these viruses to spread throughout the tumor from the infected
tumoral region [38]. Clinical trials for various types of OVs as well as combination therapies have been
conducted and are under way to test their anti-tumor efficacy and safety [6,31,39]. Some of them were
approved by FDA for clinical use, for instance, T-Vec, a modified herpes simplex virus 1 (oHSV), for
melanoma patients [6, 37, 40]. However, virus clearance due to OV-induced immunity prevents an OV
therapy from efficient anti-tumor efficacy [41]. Combination therapies including OVs were suggested
as an alternative method to overcome this low efficacy and several chemotherapeutic candidates are
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being tested for synergistic impact on cancer cell killing [37, 42].

Yoo et al. [6] demonstrated that bortezomib was not only effective in killing cancer cells but pro-
motes synergistic anti-tumor efficacy by inducing unfolded protein response in cancer cells, which then
leads to the nuclear localization of the oHSV and a significant increase in viral replication. A follow-up
study [43] then showed that the OV-bortezomib combination therapy can induce necroptosis through
stimulation of the secretion of various cytokines associated with inflammation. While bortezomib treat-
ment alone initiated a typical apoptosis, the combination treatment induced necroptosis by diverting to
different signaling pathways [20,44]. Kim et al. [45] developed a mathematical model of the nonlinear
dynamics of complex interactions between cancer cells and immune cells in OV–bortezomib therapy
based on the experimental observations including those reported in [6, 43]. It was found that both in-
jection of exogenous natural killer (NK) cells and deletion of endogenous NK cells can lead to better
anti-tumor efficacy, illustrating the complex role of TME such as immune cells in regulation of dynam-
ics of OV-tumor interaction in a combination anti-cancer therapy. In a follow-up study [46], Kim et
al. investigated the intracellular signaling pathway that governs the cancer cell death mechanism in re-
sponse to various levels of bortezomib with OV therapy. Anti-apoptosis status and two different cellular
death mechanisms, i.e., apoptosis and necroptosis in response to bortezomib treatment, were charac-
terized by up- or down-regulation of three key intracellular molecules (NFkB/Bcl2, BAX, RIP1) [46],
which was consistent with experimental observations [6,20,43–45]. These works [45–47] showed that
the treatment protocols significantly affect the anti-tumor efficacy in the combination therapy and illus-
trated the importance of the detailed analysis of both apoptotic and necroptotic death of cancer cells in
bortezomib-OV therapies. Various types of mathematical models by other groups have been developed
for oncolytic virus therapy [48–58] and bortezomib treatment [59–61] in various cancers.
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Figure 1. A schematic diagram depicting the role of bortezomib and OV in the regulation of
cell death pathways. A minimal concentration of bortezomib combined with a robust amount
of oncolytic virus (OV) synergistically drive potent oncolysis. Intermediate quantities of
both bortezomib and OV promote necroptosis. Elevated bortezomib levels coupled with a
limited OV presence trigger apoptosis. Conversely, scant levels of both bortezomib and OV
collaboratively foster an anti-apoptotic environment.
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In this study, we employ a modified mathematical model of bortezomib-OV cancer therapy, integrat-
ing cell-death pathways based on Kim et al. [46]. This refined model enables the design of optimally
controlled treatment strategies. Our modeling framework utilizes optimal control theory, a mathemat-
ical tool that deals with complex biological systems that can be controlled by an external agent [62].
Optimal control theory has been used to determine effective administration schedules of anti-cancer
agents in various cancer types [63–67] including brain tumors [47, 68–71] and lung cancers [72, 73].
For example, an optimal control method was utilized to prevent aggressive glioma cell invasion by
up-regulating miR-451 [71] and controlling cell cycle [70] within cancer cells, or to optimize the anti-
tumor efficacy in a nonlinear immune microenvironment [47]. Optimal control theory along mathe-
matical models was used in various fields including epidemiology for COVID-19 [74] and MERS [75]
and cancer research. In particular, optimal control scheme was used to construct cost-effective therapy
protocols against cancer development, from earlier works [64–66] to recent works [76]. These studies
investigated the optimal strategies in controlling tumor growth under various treatments (chemother-
apy [64–66, 69, 76–78], immunotherapy [79–82], and review [63] by minimizing the tumor size and
costs. In previous studies [45,46], authors investigated the nonlinear dynamics of NK cells in a combi-
nation therapy (OVs + bortezomib) as well as anti-tumor efficacy via the intracellular signaling path-
way (NFκB-Bcl-2-BAX-RIP1) and invasion pattern of GBM cells in brain in response to OVs and
bortezomib. GBM is a serious brain cancer with very low survival rate and major cause of death is
regrowth of invasive tumor cells in different locations after surgery. In [46], Kim et al explores tumor
growth and invasion patterns in GBM patients based on the injection location of bortezomib and OVs.
These studies focus mainly on anti-tumor efficacy of NK therapy and invasion pattern of tumor cells in
the presence of bortezomib and OVs through constant treatment protocols. These approaches present
challenges in translating the findings into practical clinical applications. In particular, in order to better
understand the OV-mediated cell death program and provide personalized care for each cancer patient,
it is necessary to develop optimally controlled injection strategies. Due to the safety issues, injection
amount of OVs is usually limited and high doses of bortezomib can cause serious side effects. For ex-
ample, local or IV-administration of OVs can cause adverse reactions such as influenza-like symptoms
(vomiting, myalgia, headache, fatigue, elevated body temperature, nausea) and local reactions (pain,
rash, erythema, peripheral edema) [83, 84]. Despite the high degrees of anti-tumor effects, bortezomib
can also induce serious side effects such as nausea, diarrhea, tiredness, low platelets, fever, and low
white blood cell count [85–87]. On the other hand, low level of OVs and bortezomib decreases the
overall anti-tumor efficacy due to virus clearance and blood-brain barrier (BBB). Therefore, appro-
priate level of OVs and bortezomib need to be controlled for injection into patient’s body in order to
avoid serious side effects and to obtain maximal clinical outcomes. In our framework based on the
detailed hybrid type of mathematical model, we used an optimal control theory in order to maximize
the anti-tumor efficacy and minimize the side effects and costs associated with administration at clin-
ics by controlling the intracellular cell death program. We also investigated the dynamical systems
of intracellular module in terms of apoptosis, oncolysis, and necroptosis in much more detail. This
analysis provides a platform of developing more efficient next generation of OVs and another drugs
targeting the necroptosis signaling pathway. Hence, we aim to obtain optimal treatment regimens
(including timing and dosages) for OV and bortezomib, striking a balance where cancer cell eradica-
tion is maximized, while concurrently minimizing undesirable side effects and financial expenditures.
The OV/bortezomib-mediated intracellular signaling pathways of apoptosis, necroptosis, and oncoly-
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sis in cell death programs are very complex biological system itself, providing fundamentally different
mechanism of eradicating tumor cells. The necroptosis pathway plays a key role in cancer therapy in-
cluding OV therapy. For example, anti-cancer drugs such as doxorubicin can increase oncolytic effect
significantly (> 100-fold in breast cancer) by enhancing OV replication and inducing apoptosis and
necroptosis [88]. Other research groups found that a radiation therapy can induce necroptosis in cancer
progression [89]. However, it is poorly understood how these cell death programs work in OV ther-
apy in detail. Thus, better understanding of this complex cell-death program itself can shed light into
developing a new, more effective anti-cancer drug targeting NFκB-Bcl2-BAX-RIP1 in an OV combina-
tion therapy by manipulating the signaling network. Our findings enable the proposal of sophisticated
optimal treatment strategies in terms of controlling the precise components at the gene level within
a tumor cell rather than a population level (cf. [47]). Furthermore, detailed mathematical analysis of
the intracellular cell death cascade and optimally controlled injection schedule can provide a general
framework for the pharmaceutical companies to find new compounds targeting signaling pathways in
OV therapy. We employed an optimal control formulation to strategically reduce tumor size by trigger-
ing both necroptosis and apoptosis through modulating intracellular signaling pathways (NFκB/Bcl2,
BAX, RIP1), while managing the cumulative administration costs of bortezomib and OVs. Our results
provide efficient and cost-effective therapeutic management schemes for OVs and bortezomib, taking
into account overall anti-tumor efficacy.

2. Materials and methods

2.1. Mathematical model

In this work, we investigate the complex interactions between tumor cells and other therapeutic
agents such as bortezomib (B) and oncolytic virus (v) incorporating an intracellular pathway using a
mathematical model. Tumor cells are classified as : Uninfected (x), infected (y), and necrotic tumor (n)
cells. Four intracellular components involved in the cell-death program are considered: IκB (S ), NFκB
(F), BAX (A), and RIP1 (R). The regulatory network in Figure 2 describes the complex interactions
among the cellular components and intracellular modules. In the model, we consider a tumor mi-
croenvironment where (i) initially uninfected tumor cells (x) grow (i.e., initial condition of x is always
positive.) (ii) uninfected tumor cells (x) become infected tumor cells (y) under intracellular oncoly-
sis condition in response OV treatment (iii) bortezomib alone can kill tumor cells under intracellular
apoptosis condition (iv) uninfected tumor cells (x) become infected tumor cells (y) under intracellular
necroptosis condition in response both OV treatment and bortezomib, leading to necroptotic death.

Following administration, OVs navigate toward the tumor site and infiltrate the target cancer cells.
Within these cells, OVs vigorously replicate generating a substantial viral population. As the infected
cancer cells disintegrate, OVs are released, instigating the infection-elimination process anew.

Bortezomib alone, can induce cancer cell death through a typical programmed cell-death pathways,
involving apoptotic signaling cascade. Conversely, the combined therapy of bortezomib and OV or-
chestrates a synergistic assault on cancer cells, harnessing necroptotic signaling pathways to achieve a
heightened level of cell destruction.
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Figure 2. A regulatory network in the tumor microenvironment influenced by therapeutic
agents, bortezomib and OV. These agents disrupt the intracellular signaling pathways (IκB ,
NFκB , BAX, RIP1) that could lead to cell death, apoptosis or necroptosis.

The network of the model is shown in Figure 2 and the corresponding model dynamics can be
described by a system of ordinary differential equations in a dimensionless form as follows:

dS
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− β1xBIapop − β2xvIoncol − β3xvInecrop, (2.5)
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= −δy + β2xvIoncol + β3xvInecrop, (2.6)

dn
dt
= δy − µn, (2.7)

dv
dt
= uV + bδy(1 + α1B) − γv, (2.8)
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dB
dt
= uB − (µ1x + µ2y)

B
kB + B

− µBB. (2.9)

Here, λB is the signaling activation rate of IκB in response to bortezomib signal B, which is inhibited
by the presence of OVs. So, [oHS V] indicates a response switch function of OVs (v) in the form,
[oHSV]= v

k+v with a Hill-type parameter k. This IκB activity is inhibited by NFκB (F) with inhibi-
tion strength σ4, autocatalytic enhancement parameter σ1, and Hill-type parameters σ9. In a similar
fashion, the inhibition processes of NFκB (F) and BAX (A) by IκB and NFκB , are represented by cor-
responding parameters σ5, σ2, σ10 and σ6, σ3, σ11, respectively. Here, ω1(t) may depend on drugs that
enhance NFκB degradation, i.e., ω1(D) = ω†1eD where D is a concentration of a NFκB inhibitor. Here,
the drug concentration D is a constant. The signaling sources and decay rates of NFκB, BAX, and RIP1
are represented by σ7, σ8, σ12 and ω1, ω2, and ω3, respectively. The third term on the right hand side of
Eq (2.1) indicates the dimensionless natural decay of IκB. The same response switch function [oHS V]
in Eq (2.4) is used for activation of RIP1 in the presence of OVs in the system. Population dynamics
of uninfected tumor cells in Eq (2.5) consists of logistic growth with the growth rate λ and carrying
capacity x0, bortezomib-induced cell killing with the apoptotic death rate β1, infection process with
infection rate β2, and massive tumor cell killing with necroptotic death rate β3. An uninfected tumor
cell is infected when an oncolytic virus (OV) or a group of OVs enter this tumor cell and replicate upto
10,000-fold, initiating cell death program (either oncolysis and necroptosis) in response to OV ther-
apy. Therefore, the indicator functions Ioncol and Inecrop reflect this infection process and the transition
x → y. After infection and confirmation of the cell fate (either oncolysis or necroptosis), the infected
tumor cells go through the subsequent, cell death process which is reflected in the y → n transition
in the model. Here, Iapop, Ioncol, Inecrop are indicator functions for apoptotic, oncolytic, and necroptotic
status, respectively, based on up- or down-regulation of NFκB, BAX, and RIP1:

Iapop =

{
1 if apoptosis
0 otherwise

, Ioncol =

{
1 if oncolysis
0 otherwise

, Inecrop =

{
1 if necroptosis
0 otherwise

. (2.10)

The exact definition of these status will be defined in the next section. Infected tumor cells (y) from
the uninfected tumor population are cleared to dying tumor population (n) at a death rate δ and these
necrotic population are cleared from the population system at a death rate µ. OVs are supplied at a
rate uV and are able to replicate from lysis of infected cancer cells at a rate bδy with doubling number
b in the absence of bortezomib (B). Injection of bortezomib in addition to OV therapy enhances viral
replication at additional rate α1B, inducing synergistic anti-cancer effect. OVs are cleared from the
system at a rate γ. Bortezomib is injected at a rate µB, internalized in uninfected and infected cancer
cells at degradation rates µ1 and µ2, respectively, and cleared from the system at a decay rate µB.

A dimensional version of equations corresponding to Eqs (2.1)–(2.9) and the nondimensionaliza-
tion provided in the Supplementary material (Supporting information S1 File). Matlab (Mathworks)
software is used to simulate the transient dynamics of the model and to obtain the numerical results
for the optimal control problems. Table 1 provides the full list of parameters, its meaning and
corresponding values used in the model.
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Table 1. Parameters of the non-dimensionalized in the model.
Par Description Values Ref

Intracellular dynamics
λB Bortezomib signaling scaling factor 1.9 [46]
α Inhibition strength of bortezomib by oHSV 30 [46]
σ1 Autocatalytic enhancement rate of IκB 4 [46]
σ9 Hill-type parameter 1.0 [46]
σ4 Inhibition strength of IκB by the NFκB-Bcl-2 complex 2.2 [46]
σ7 Signaling strength of the NFκB-Bcl-2 complex 0.07 [46]
σ2 Autocatalytic enhancement rate of the NFκB-Bcl-2 complex 1.33 [46]
σ10 Hill-type parameter 1.0 [46]
σ5 Inhibition strength of the NFκB-Bcl-2 complex by IκB 1 [46]
ω1 Decay rate of NFκB-Bcl-2 complex 0.3 [107, 108]
σ8 Signaling strength of BAX 0.0033 [46]
σ3 Autocatalytic enhancement rate of BAX 0.111 [46]
σ11 Hill-type parameter 1.0 [46]
σ6 Inhibition strength of BAX by the NFκB-Bcl-2 complex 1 [46]
ω2 Decay rate of BAX 0.02 [107–109]
σ12 Signaling strength of RIP1 0.1 [46]
σ13 Activation rate of RIP1 in the presence of OVs 0.13 [46]
ω3 Decay rate of RIP1 0.139 [107, 108, 110]
k Hill type parameter of oHSV switching 0.01 v∗ [46]

Cancer cells
λ proliferation rate of tumor cells 4 × 10−3 [46, 57]
x0 Carrying capacity of uninfected tumor cells 1 [38, 45, 46, 57]
β1 Bortezomib-induced apoptosis rate of tumor cells 2 × 10−4 [46]
β2 Oncolysis rate of tumor cells 3 × 10−4 [45, 46, 57]
β3 Necroptosis rate of tumor cells 5 × 10−4 [46]
δ infected cell lysis rate 4.4 × 10−3 [45, 57]
µ Removal rate of dead cells 2.3 × 10−3 [45, 46, 57]

Anticancer drugs
b Burst size of infected cells 50 [46, 57]
α1 bortezomib-induced viral replication rate 1 [45, 46]
γ clearance rate of viruses 1.8 × 10−3 [45, 57]
µ1 consumption rate of bortezomib by uninfected tumor cells 0.2075 [45, 46]
µ2 consumption rate of bortezomib by infected tumor cells 0.2075 [45, 46]
kB Hill-type parameter 1 [45, 46]
µB decay rate of bortezomib 0.03 [46, 111, 112]

Reference values of main variables
S ∗ Concentration of IκB 0.05 µM [113, 114]
F∗ Concentration of the NFκB-Bcl2 complex 0.5 µM [113–116]
A∗ Concentration of BAX 0.1 µM [117]
R∗ Concentration of RIP1 5.0 µM [118]
x∗ Uninfected cell density 106 cells/mm3 [45, 57, 119]
y∗ Infected cell density = x∗ [45, 57, 119]
n∗ Dead cell density = x∗ [45, 57, 119]
v∗ Virus concentration 2.2 × 108 virus/mm3 [45, 57, 119]
B∗ Bortezomib concentration 1.0 × 10−11 g/mm3 [6, 43, 45]

2.2. Optimal control problem

The optimal control theory was used to yield an optimal administration strategies of OVs and borte-
zomib that minimizes tumor cell populations (uninfected and infected tumor cells) and associated costs.
Our goal is to obtain feasible therapeutic schedule of uV and uB to reduce the tumor size with minimal
administrative costs. The controls uV and uB represent dosages of OVs and bortezomib, respectively.
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These controls are assumed to be bounded. That is, the control sets are defined as

uV(t) ∈ [0, umax
V ] and uB(t) ∈ [0, umax

B ] for all t ∈ [ts, t f ] , (2.11)

where umax
V and umax

B are the maximum dosage of OVs and bortezomib, respectively, which could be
administered in a given treatment period [ts, t f ] (where ts is the start time of treatment with optimal
control applied, and t f is the end time).

Two distinct cost functionals are formulated to facilitate alternating administrations of OVs and
bortezomib, enhancing their synergistic efficacy against cancer cells. In the first formulation, both
integrands involve linear combination of uninfected x(t), infected y(t) and quadratic control. This
quadratic form guarantees a strictly convex Hamiltonian and a unique minimizer, rendering the math-
ematical problem more tractable. Incorporating quadratic controls within the cost function effectively
simulates the detrimental repercussions of excessive drug administration, a strategy observed in mul-
tiple studies [32, 82, 90–93]. However, the use of such quadratic functionals lacks robust biological
justification, raising concerns about the validity of its simplifying assumptions [94]. The quadratic
functional types may not be commonly motivated by biological systems making its simplifying model
assumptions bit questionable and ambiguous [94]. However, its use also showed qualitatively signifi-
cant outcomes in terms of incorporating the intrinsic nonlinearity of the given problem [90, 95]. Thus,
the quadratic controls in the cost function has been used in controlling the adverse effects of use of too
much therapeutic drugs in various works [32, 82, 90–93]. In cancer immunotherapy, a type of isoperi-
metric optimal controls has been applied [79–81]. This leads to the formulation of an alternative cost
functional, where linear controls are involved, supplemented by a penalty function serving as a guide
for controlled implemented.

1) Quadratic controls This strategy proposes a sequential administration of OV and bortezomib, min-
imizing both their dosages and the levels of uninfected (x(t)) and infected cancer cells (y(t)). Em-
ploying quadratic controls lead to the following cost functional

J(uV(t), uB(t)) =
∫ t f

ts

(
x(t) + y(t) +C1

u2
V(t)
2

)
dt +

∫ t′f

t′s

(
x(t) + y(t) +C2

u2
B(t)
2

)
dt. (2.12)

2) Linear controls with constraint In this approach, linear controls are employed to emulate a bi-
ologically plausible regulatory mechanism. To achieve the desired effect of inducing necroptosis,
a sigmoid function is integrated that ensures a sustained and optimal concentration of bortezomib.
The cost functional yields

J(uV(t), uB(t)) =
∫ t f

ts

(
x(t) + y(t) +C3uV(t)

)
dt +

∫ t′f

t′s

(
C4uB(t) +

B5

1 + ep(B−thB)

)
dt. (2.13)

Our goal is to find optimal administration of both OV and bortezomib (u∗V(t) and u∗B(t)), identifying
optimal dosages under the framework of optimal control theory. The principle technique for such an
optimal control problem is to solve a set of “necessary condition” that an optimal control and corre-
sponding state must satisfy. The necessary conditions we derived were developed by Pontryagin. He
introduced the concept of ‘adjoint functions’ to incorporate differential equations into the objective
function. Adjoint functions serve a similar purpose to the Lagrange multiplier of multivariate calculus,
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which adds constraints to functions of several variables that are being maximized or minimized [62,96].
We perform numerical simulations by employing a fourth-order iterative Runge-Kutta method. Com-
mencing with the initial conditions and an initial control estimate, we solve the state equations using
the forward scheme. Furthermore, the adjoint equations are solved using the backward scheme, ensur-
ing compliance with the transversality conditions. Control updates involve a convex combination of
the previous controls and values derived from the characterizations. This methodology, recognized as
the Forward-Backward Sweep Method (FBSM), has demonstrated convergence [94]. See supporting
information S1 File for more details.

3. Results

3.1. Intracellular dynamics

The fundamental structure of four phenotypic modes in response to various bortezomib levels in
the absence and presence of OVs are represented in Figure 3. Specifically, Figure 3(A),(B) illustrate
the steady states of three key intracellular variables: NFκB (represented by blue solid curve), BAX
(depicted by the dashed red curve), and RIP1 (shown as the dotted yellow curve). These plots delineate
the behavior of these variables under varying bortezomib (B) concentrations, when OVs are absent
(v = 0 in Figure 3(A)) and present (v = 1 in Figure 3(B)).

In the absence of OV within the system, we observe elevated levels of NFκB, coupled with low lev-
els of both BAX and RIP1 in response to lower levels of bortezomib. This dynamic pattern prevents the
initiation of bortezomib-induced apoptosis, as the key apoptotic gene, BAX, remains suppressed. As
the bortezomib concentration increases, a shift occurs: NFκB is down-regulated, while RIP1 maintains
a low level; moreover, the BAX level transitions to an overexpression state, triggering programmed
cell death, specifically apoptosis (Figure 3(A)). However, the intracellular dynamics of NFκB, BAX,
and RIP1 undergo a significant transformation in the presence of OV when responding to bortezomib
stimuli. Both NFκB and RIP1 consistently sustain high levels irrespective of bortezomib concentra-
tions, while the BAX level remains consistently low (Figure 3(B)). This particular state signifies the
activation of necroptotic signaling (depicted within the pink box in Figure 3(B)) under conditions of el-
evated bortezomib levels. Conversely, when bortezomib stimulus is limited, cell demise ensues through
oncolysis (illustrated by the green box in Figure 3(B)), rather than necroptosis.

By defining thresholds for these intracellular variables, thF = 1.7 for NFκB, thA = 1.7 for BAX,
thR = 1.7 for RIP1, and thB = 0.1 for bortezomib, we can delineatefour different phenotypic modes,
namely the anti-apoptotic (Tt), apoptotic (Ta), necroptotic (Tn), and oncolysis (To) phases as follows:

Tt = {(F, A,R) ∈ R3 : F > thF , A < thA,R < thR}, (3.1)
Ta = {(F, A,R) ∈ R3 : F < thF , A > thA,R < thR}, (3.2)
Tn = {(F, A,R, B) ∈ R4 : F > thF , A < thA,R > thR, B > thB}, (3.3)
To = {(F, A,R, B) ∈ R4 : F > thF , A < thA,R > thR, B < thB}. (3.4)

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3876–3909.



3886

Anti-apoptosis Apoptosis

0 0.5 1
Bortezomib

0

2

4

6

C
on

ce
nt

ra
tio

n 
(S

.S
)

Dynamics without OV

NF B
BAX
RIP1 O

nc
ol

ys
is

Necroptosis

0 0.5 1
Bortezomib

0

2

4

6

C
on

ce
nt

ra
tio

n 
(S

.S
)

Dynamics with OV

NF B
BAX
RIP1

0 200 400 600 800 1000
0

1

2

3

4

5

6
Anti-
apoptosis

Apoptosis

*

Anti-
apoptosis

Apoptosis

*

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
Anti-
apoptosis

Apoptosis

(A) (B)

D
yn

am
ic

s w
ith

ou
t O

V

(D) (E) (F)

(G) (H) (I)

With Low Bortezomib Level

With High Bortezomib Level
Apoptosis

Necroptosis

Anti-apoptosis

Oncolysis00 1.7 4

1.7

4

0
1.7

4

NF B / Bcl-2

B
A

X

RIP1

(C)

Figure 3. Bifurcation diagram of intracellular variables and characterization of the cell death
program. (A,B) Steady states (stable) of intracellular variables (NFκB, BAX, and RIP1)
in response to high and low bortezomib stimuli in the absence ((A), v = 0) and presence
((B), v = 1) of OV in the system. (C) Characterization of four different modes based on
expression levels of NFκB/Bcl-2, BAX, and RIP1: Apoptosis, Anti-apoptosis, Necroptosis,
and Oncolysis. (D,E) Time courses of concentrations of NFκB (D) and BAX (E) for various
bortezomib levels (0 ≤ B ≤ 1). (F) Time course of the IκB level in response to a time-
dependent bortezomib input (B(t) = −0.5 cos

( π
500 t + 0.5

)
). (G–I) Concentrations (G) of key

intracellular variables (NFκB, BAX, and RIP1) and corresponding trajectories in the F−R−A
plane (F) and bifurcation diagram (I) in response to a fluctuating bortezomib stimulus and
IκB in (F). Initial conditions used in the simulations: S (0) = 0, F(0) = 4.5, A(0) = 0.5,R(0) =
0.7. D = 0.
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Figure 4. Effect of anti-NFκB antibodies on dynamics of apoptotic death in cancer (A–
C) Steady states of intracellular variables (NFκB, BAX, and RIP1) for various bortezomib
stimuli in the absence ((A), D = 0) and presence (D = 0.45 in (B) and D = 1 in (C)) of anti-
NFκB drug in the system. In Figure 4A,4C, the equilibrium is stable. In Figure 4B the upper
and lower branches are stable while the middle one is unstable (US). (D,E) Time courses of
concentrations of NFκB (D) and BAX (E) in response to various drug levels (0 ≤ D ≤ 1)
when B = 0.1 with initial conditions: S (0) = 0, F(0) = 4.5, A(0) = 0.5,R(0) = 0.7. (F)
Trajectories of solutions in the F − A plane when D = 0.45, B = 0.1 with initial conditions:
S (0) = 1.7, F(0) = 0.82, A(0) = 0.5,R(0) = 0.7 for red curve, and S (0) = 1.7, F(0) =
0.83, A(0) = 0.5,R(0) = 0.7 for the blue curve. (G,H) Time courses of concentrations of
NFκB (G) and BAX (H) in response to various drug levels (0 ≤ D ≤ 1) when B = 0.1. Initial
condition S (0) = 5, F(0) = 0.5, A(0) = 4.5,R(0) = 0.7. (I) Characterization of apoptosis,
bistability, anti-apoptosis regions in the B − D plane.

Figure 3(C) illustrates the anti-apoptosis (yellow cube), apoptosis (blue cube), necroptosis (red
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cube), and oncolysis (green cube) modules in a NFκB-BAX-RIP1 state space. Figure 3(D),(E) show
temporal dynamics of concentrations of NFκB and BAX, respectively, with various fixed bortezomib
levels (0 ≤ B ≤ 1), illustrating convergent behaviors of two key intracellular variables. Sharp contrast
in expression levels at final time (t = 200) in both NFκB and BAX reflects different modes: anti-
apoptosis (yellow cube in Figure 3(C)) for low bortezomib levels (0 ≤ B ≤ 0.46) and apoptosis (blue
cube in Figure 3(C)) phases for high bortezomib levels (0.46 ≤ B ≤ 1). In Figure 3(F)–(I), we investi-
gate the temporal dynamics of the intracellular module in response to a fluctuating bortezomib stimulus
(B(t) = −0.5 cos

( π
500 t+ 0.5

)
). The concentration of IκB undergoes a sudden increase surpassing that of

B(t), and reaches its peak coinciding with that of bortezomib’s maximum concentration. Conversely, as
B(t) decreases, the concentration of IκB takes a downward course, undergoing an abrupt reduction that
surpasses the decline in bortezomib levels. This sequence culminates a cycle of bortezomib-triggered
activation and deactivation. The inherent mutual inhibition between IκB and NFκB, as described in Eqs
(2.1) and (2.2), gives rise to a pivotal dynamic. Specifically, the upward shift (from down-regulation
to up-regulation) of IκB during the initial stimulus phase (0 ≤ t ≤ 500) induces a downward transition
(from up-regulation to down-regulation) in NFκB and brings about an upward transition (from down-
regulation to up-regulation) in BAX. This orchestrated sequence results in a significant phenotypic
switch, steering the system from an anti-apoptosis state to an apoptosis mode (as depicted in Figure
3(G)).

Bortezomib has been demonstrated to induce cancer cell elimination through diverse mechanisms,
including the suppression of the NFκB pathway. Furthermore, it effectively inhibits the NFκB-mediated
tumor growth enhancement by suppressing the degradation of IκB, thereby manifesting its multifaceted
antitumor effects [97–101]. Thus, bortezomib can successfully induce apoptotic death of cancer cells
in the absence of OV as illustrated in Figure 3(F)–(H) and corroborated by experimental evidences
[97–101]. As the value of B(t) is reduced during the second half of the period (500 ≤ t ≤ 1000), the
backward switch (NFκB (low→high); BAX (high→low)) follows, leading to the reverse (Ta → Tt)
transition (Figure 3(G)). This loop of forward and backward transitions with initial (red asterisk) and
mid point (blue circle) on the trajectory curve is shown in Figure 3(H). This illustrates the dynamic
movement of concentrations of key intracellular molecules in the bifurcation diagram, forming a loop
of that characterizes a cell death program (Tt → Ta → Tt, Figure 3(H)), in response to a fluctuating
bortezomib stimulus (Figure 3(I)).

In Figure 4, we investigate the effect of anti-NFκB antibodies on the dynamic progression of apop-
totic cell death within cancer cells. These antibodies serve as valuable tools to study the activation
and regulation of NFκB signaling pathways in various biological contexts, including cancer, inflam-
mation, and immune responses. In therapeutic applications, targeting NFκB with specific antibodies
may have potential applications in treating diseases characterized by aberrant NFκB activity, such as
certain autoimmune disorders and cancers [102, 103]. Figure 4(A)–(C) depict the steady states of
intracellular variables (NFκB, BAX, and RIP1) for various bortezomib stimuli in the absence (Fig-
ure 4(A), D = 0) and presence (D = 0.45 in Figure 4(B) and D = 1 in Figure 4(C)) of anti-
NFκB drug in the system. The results demonstrate that the area of apoptosis expands as the dose
of NFκB antibody increase from 0 to 1. This suggests that apoptosis can be induced even with a
small amount of bortezomib, and its effect becomes more prominent as the dose of NFκB antibody
increases. Figure 4(D),(E) show the time courses of concentrations of NFκB (Figure 4(D)) and BAX
(Figure 4(E)) in response to various drug levels (0 ≤ D ≤ 1) when B = 0.1 with nitial condition
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S (0) = 0, F(0) = 4.5, A(0) = 0.5,R(0) = 0.7. Figure 4(G),(H) illustrate the time courses of concentra-
tions of NFκB (Figure 4(G)) and BAX (Figure 4(H)) in response to various drug levels (0 ≤ D ≤ 1)
when B = 0.1 with initial condition S (0) = 5, F(0) = 0.5, A(0) = 4.5,R(0) = 0.7. Figure 4(F)
depicts the trajectories of solutions in the F − A plane when D = 0.45, B = 0.1. Initial conditions
used for the red curve are S (0) = 1.7, F(0) = 0.82, A(0) = 0.5,R(0) = 0.7 while for the blue curve
are S (0) = 1.7, F(0) = 0.83, A(0) = 0.5,R(0) = 0.7. The bistability region exist when the level of
NFκB antibody is intermediate. Indeed, near the bistable point, small changes in the initial values can
lead to convergence in opposite directions, resulting to different treatment outcomes. Therefore, when
proposing a treatment strategy in the early stages, it is crucial to carefully consider the condition of
intracellular signaling. The sensitivity to initial conditions near the bistable point highlights the need
for precision and thorough analysis when designing therapeutic interventions to achieve the desired
treatment outcomes. Figure 4(I) shows the characterization of apoptosis, bistability, anti-apoptosis
regions in the B − D plane.
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Figure 5. The effect of Bortezomib on determining the phenotypic states in OV therapy.
(A–C) Trajectories of solutions of intracellular variables (NFκB, BAX, and RIP1) in the
F −A−R space in the absence (B) and presence (C) of bortezomib in response to OV stimuli
(A): v(t) = − 2

25 cos π
100 t + 0.0008t + 0.28. (D–F) Time courses (B) and trajectories (C) of

solutions of intracellular variables (NFκB, BAX, and RIP1) in the F − A − R space in the
presence of bortezomib in response to fluctuating OV stimuli (A): v(t) = −1

2 cos π
250 t + 0.5.

Initial conditions: S (0) = 0, F(0) = 0.5, A(0) = 4.5,R(0) = 0.7, v(0) = 0.2. Bortezomib
level: B = 0 (in (B)), 1 (in (C)).

Within oncolytic virotherapy (OV therapy), the mere presence of active OVs proves adept at erad-
icating cancer cells through oncolysis, that avoids the initiation of necroptosis signaling pathways,
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even in the absence of bortezomib. Intriguingly, empirical evidence has illuminated the amalgama-
tion of therapies, wherein OVs and bortezomib are combined, induces a synergistic impact, notably
enhancing the efficacy of cancer cell eradication [6, 43]. We investigate the temporal dynamics of in-
tracellular variables in Eqs (2.1)–(2.4) in response to fluctuating OV supply in the absence and presence
of bortezomib. In response to increasing OV input described by v(t) = − 2

25 cos π
100 t + 0.0008t + 0.28

(Figure 5(A)), the system starting from the same apoptotic status (red asterisks in Figure 5(B),(C))
converges to oncolytic phenotype (blue asterisk in Figure 5(B)) and necroptotic mode (blue asterisk
in Figure 5(C)) in the absence (B = 0) and presence (B = 1) of bortezomib, respectively. In other
words, the typical apoptotic cell death program in response to bortezomib transits to more severe cell
death program, i.e., necroptosis (red asterisk→ blue asterisk in Figure 5(C)), when oncolytic virus is
present in the tumor microenvironment. The phenotypic transition between apoptosis and necroptosis
is bidirectional. When OV stimulus fluctuates according to v(t) = −1

2 cos π
250 t + 0.5, the initial curve in

v(t) leads to the first transition from the apoptotic mode (red asterisk in Figure 5(F)) to the necroptotic
mode (green circle in Figure 5(F)) but it is followed by back-transition to the apoptotic mode (blue
triangle in Figure 5(F)) in response to the declining OV level. The second wave of OV stimuli also
induces a loop of transition series Ta → Tn → Ta by the forward and backward movements.
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Figure 6. Bifurcation diagram of intracellular variables and characterization of the cell death
program. (A,B) Steady states of intracellular variables (NFκB, BAX, and RIP1) in response
to high and low [oHSV] stimuli in the absence ((A), B = 0) and presence ((B), B = 1) of
bortezomib in the system.

3.2. Intracellular dynamics in response to OVs

The fundamental structures of four phenotypic modes in response to various bortezomib levels in the
absence and presence of OVs are represented in Figure 3. Here, we further scrutinized the fundamental
structures of four phenotypic modes, discerning their responses to diverse levels of oncolytic viruses
in both the absence and presence of bortezomib. Specifically, Figure 6 illustrates the steady states of
three key intracellular variables (NFκB, BAX, and RIP1). These plots delineate the behavior of these
variables under varying [oHSV] conditions in the absence (B = 0 in Figure 6(A)) and presence (B = 1
in Figure 6(B)) of bortezomib.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3876–3909.



3891

NFκB consistently sustains high levels irrespective of [oHSV], while the BAX level remains consis-
tently low (Figure 6(A)). However, the level of RIP1 increases as the [oHSV] increases. This particular
state signifies the activation of oncolysis signaling (depicted within the green box in Figure 6(A)) un-
der conditions of elevated [oHSV] levels. Conversely, when [oHSV] stimulation is limited, the cell
death program is not initiated, leading to the anti-apoptosis phenotype (illustrated by the yellow box
in Figure 6(A)). However, the intracellular dynamics of NFκB, BAX, and RIP1 undergoes a signifi-
cant transformation in the presence of bortezomib in response to [oHSV] stimuli. In the presence of
bortezomib within the system, we observe elevated levels of BAX, coupled with low levels of both
NFκB and RIP1 in response to lower levels of [oHSV] (Figure 6(B)). This dynamic pattern prevents
the initiation of bortezomib-induced apoptosis, as the key apoptotic gene, BAX, remains suppressed.
As the concentration of [oHSV] increases, we have a dramatic shift: NFκB and RIP1 are up-regulated,
while the level of BAX remains low, leading anti-apoptosis (yellow box in Figure 6(B)). As the [oHSV]
increases further, the RIP1 level transits to an overexpression state, triggering necroptosis (pink box in
Figure 6(B)).

3.3. Sensitivity analysis

In the main text model, certain parameters lack experimental data and may influence simulation
results. We considered all parameters in the intracellular signaling (B, v, λB, α, σ1, σ9, σ4, σ7, σ2,
σ10, σ5, ω1, σ8, σ3, σ11, σ6, ω2, σ12, σ13, ω3) for sensitivity analysis. We examined the sensitivity
of intracellular molecules’ activities (IκB, NFκB, BAX, and RIP1) at t = 0.1, 1, 10, 100 to these
parameters. A range was selected for each parameter, divided into 10,000 intervals of uniform length.
For each of the 20 parameters of interest, a partial rank correlation coefficient (PRCC) value was
calculated. PRCC values range between -1 and 1, with the sign determining whether an increase in the
parameter value will decrease (-) or increase (+) activities of the intracellular dynamics at a given time.
The sensitivity analysis, as described below, followed the method outlined in [104]. In Figure 7, The
BAX (activities of apoptosis inducer) level is positively correlated to ω1, σ8, σ3, σ11 but negatively
correlated to ω2. In a similar fashion, the RIP1 (activities of necroptosis or oncolysis inducer) activity
is positively correlated to σ7, σ2, σ10, σ12, σ13 but negatively correlated to ω1, ω3. These results are
summarized in Table 2.

Table 2. Model parameters used in sensitivity analysis and PRCC values of intracellular
signaling network (IκB (S ), NFκB (F), BAX (A), and RIP1 (R)) at t = 0.1, 1, 10, 100 h for 20
perturbed parameters (B, v, λB, α, σ1, σ9, σ4, σ7, σ2, σ10, σ5, ω1, σ8, σ3, σ11, σ6, ω2, σ12,
σ13, ω3). A range (minimum and maximum) of 20 perturbed parameters and their baseline
are given in the upper table. Sample size N = 10, 000.

Parameter B v λB α σ1 σ9

PRCC(S ,0.1 h) 0.28187 −0.03828 0.26953 −0.33367 0.94918 0.50929
PRCC(F,0.1 h) −0.02305 0.01961 −0.02248 0.04351 −0.27969 −0.04106
PRCC(A,0.1 h) 0.00822 0.00416 −0.01449 −0.01347 −0.01005 −0.00355
PRCC(R,0.1 h) −0.00527 0.13183 −0.00513 0.02775 −0.06686 −0.01338

Continued on next page
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Parameter B v λB α σ1 σ9

PRCC(S ,1 h) 0.26056 −0.02550 0.25868 −0.29694 0.82422 0.73676
PRCC(F,1 h) −0.07284 0.02242 −0.08059 0.09171 −0.48167 −0.32707
PRCC(A,1 h) 0.02008 0.00165 0.01746 −0.02042 0.11314 0.05378
PRCC(R,1 h) −0.03627 0.11745 −0.04266 0.06355 −0.27849 −0.14751
PRCC(S ,10 h) 0.37318 −0.03499 0.35211 −0.35990 0.55805 0.62897
PRCC(F,10 h) −0.09981 0.02151 −0.10770 0.12735 −0.32377 −0.35500
PRCC(A,10 h) 0.04337 0.00249 0.04355 −0.04101 0.16069 0.14905
PRCC(R,10 h) −0.06094 0.07032 −0.07396 0.10494 −0.23546 −0.24755
PRCC(S ,100 h) 0.38143 −0.03454 0.36085 −0.36390 0.51007 0.58888
PRCC(F,100 h) −0.09180 0.01882 −0.10493 0.12160 −0.27286 −0.30714
PRCC(A,100 h) 0.04653 −0.00022 0.02574 −0.01787 0.11811 0.10076
PRCC(R,100 h) −0.04955 0.05732 −0.06608 0.09572 −0.17990 −0.19896
Minimum 0 0 0.19 3 0.4 0.1
Baseline 0.5 0.01 1.9 30 4 1
Maximum 5 0.1 5.7 60 8 5
Parameter σ4 σ7 σ2 σ10 σ5 ω1

PRCC(S ,0.1 h) −0.17767 −0.06597 −0.24638 −0.03404 −0.00584 0.02214
PRCC(F,0.1 h) 0.00846 0.63726 0.96485 0.53649 −0.19325 −0.15541
PRCC(A,0.1 h) −0.01288 −0.03460 −0.19312 −0.03172 −0.00515 0.00624
PRCC(R,0.1 h) 0.02074 0.26024 0.79329 0.14504 −0.05250 −0.04657
PRCC(S ,1 h) −0.40421 −0.20533 −0.50535 −0.30275 0.12012 0.16696
PRCC(F,1 h) 0.12788 0.52405 0.85069 0.68899 −0.35946 −0.55150
PRCC(A,1 h) −0.02169 −0.16545 −0.45533 −0.24162 0.08285 0.14085
PRCC(R,1 h) 0.06123 0.32027 0.72956 0.46364 −0.19797 −0.28509
PRCC(S ,10 h) −0.36729 −0.27416 −0.40630 −0.34399 0.15168 0.53178
PRCC(F,10 h) 0.18956 0.49155 0.67193 0.55311 −0.26960 −0.81199
PRCC(A,10 h) −0.06678 −0.25292 −0.36120 −0.29522 0.11705 0.42062
PRCC(R,10 h) 0.13050 0.35427 0.54956 0.43078 −0.19729 −0.69605
PRCC(S ,100 h) −0.33893 −0.24777 −0.38422 −0.30025 0.12914 0.56675
PRCC(F,100 h) 0.17244 0.45223 0.63376 0.50030 −0.23642 −0.82047
PRCC(A,100 h) −0.06158 −0.17745 −0.25095 −0.20439 0.06632 0.38276
PRCC(R,100 h) 0.11273 0.30119 0.48277 0.35914 −0.15850 −0.70620
Minimum 0.22 0.007 0.133 0.1 0.1 0.03
Baseline 2.2 0.07 1.33 1 1 0.3
Maximum 6.6 1.4 6.65 5 5 1.5
Parameter σ8 σ3 σ11 σ6 ω2 σ12

PRCC(S ,0.1 h) 0.00418 0.00133 0.00721 −0.00730 0.00880 −0.00095
PRCC(F,0.1 h) 0.00491 −0.02376 −0.00479 −0.01447 0.00070 0.00029
PRCC(A,0.1 h) 0.94584 0.94967 0.43179 −0.14146 −0.02909 0.01632
PRCC(R,0.1 h) −0.00100 −0.00278 0.00123 0.00560 0.00341 0.99028

Continued on next page
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Parameter σ8 σ3 σ11 σ6 ω2 σ12

PRCC(S ,1 h) −0.00087 0.00042 −0.00427 0.00687 0.00177 0.00779
PRCC(F,1 h) 0.00618 −0.00739 0.00563 −0.01924 0.00263 −0.00287
PRCC(A,1 h) 0.91506 0.83297 0.64729 −0.35019 −0.17798 0.00315
PRCC(R,1 h) 0.00334 −0.01925 0.00145 0.00094 0.00290 0.71206
PRCC(S ,10 h) −0.00308 −0.01061 −0.00714 0.00995 −0.01861 0.01484
PRCC(F,10 h) 0.01215 −0.00269 0.00844 −0.01508 0.00412 −0.01259
PRCC(A,10 h) 0.88966 0.56291 0.46346 −0.27714 −0.70996 0.00142
PRCC(R,10 h) 0.01655 −0.01123 0.00754 −0.01035 −0.00245 0.30818
PRCC(S ,100 h) −0.00690 −0.01292 −0.00574 0.00764 −0.01664 0.01243
PRCC(F,100 h) 0.01736 0.00037 0.00739 −0.01191 0.00101 −0.01150
PRCC(A,100 h) 0.81841 0.37472 0.30075 −0.17214 −0.87775 −0.00371
PRCC(R,100 h) 0.02093 −0.00869 0.00635 −0.01199 −0.00584 0.25393
Minimum 0.00033 0.0111 0.1 0.1 0.002 0.01
Baseline 0.0033 0.111 1 1 0.02 0.1
Maximum 0.99 1.11 5 5 0.2 1
Parameter σ13 ω3

PRCC(S ,0.1 h) 0.01202 −0.00260
PRCC(F,0.1 h) 0.01100 −0.00583
PRCC(A,0.1 h) 0.00190 0.00014
PRCC(R,0.1 h) 0.84920 −0.25007
PRCC(S ,1 h) 0.00730 0.00780
PRCC(F,1 h) 0.01072 −0.01173
PRCC(A,1 h) 0.01013 0.00761
PRCC(R,1 h) 0.82148 −0.49732
PRCC(S ,10 h) 0.00154 0.01567
PRCC(F,10 h) 0.00974 −0.01014
PRCC(A,10 h) 0.00512 0.01810
PRCC(R,10 h) 0.68681 −0.75844
PRCC(S ,100 h) −0.00381 0.01276
PRCC(F,100 h) 0.01531 −0.00586
PRCC(A,100 h) 0.00191 −0.00058
PRCC(R,100 h) 0.61909 −0.74965
Minimum 0.013 0.0139
Baseline 0.13 0.139
Maximum 1.3 1.39
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*: (p-value) < 0.05, **: (p-value) < 0.01
**

**

**

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*

**

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

B v
B 1 9 4 7 2 10 5 1 8 3 11 6 2 12 13 3

S(0.1)

F(0.1)

A(0.1)

R(0.1)

S(1)

F(1)

A(1)

R(1)

S(10)

F(10)

A(10)

R(10)

S(100)

F(100)

A(100)

R(100)
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7. Sensitivity analysis: General Latin Hypercube Sampling (LHS) scheme and Partial
Rank Correlation Coefficient (PRCC) performed on the model. The colors in each sub box
indicated PRCC values of the intracellular molecules carried out using the method of [104]
with sample size 10,000.

3.4. Constant sequential administration of bortezomib and OV

To investigate the effect of injection sequence, we consider two administration schedules: (i) Borte-
zomib + oncolytic-virus (bortezomib first) (Figure 8(A)–(D)) and (ii) oncolytic-virus + Bortezomib
(OV first) (Figure 8(E)–(H)). The approach involves partitioning the 30-day interval evenly, allocating
15 days for the first therapeutic administration followed by an additional 15 days for the subsequent
treatment. The objective is to discern the therapeutic administration sequence that yields a synergistic
effect in the eradication of cancer cells. In these cases, the cumulative amounts of OV and bortezomib
are the same (

∑t=30
t=0 uV = 0.5 and

∑t=30
t=0 uB = 0.75). Figure 8(A),(B) show the time courses of injection

rate and concentration of OV (red curves) and bortezomib (blue curves) of the case where bortezomib
is administered first. Figure 8(C) shows the time courses of intracellular signaling (NFκB (F), BAX
(A), and RIP1 (R)) in response to bortezomib first administration. Simulations reveal a scenario where
cancer cells might elude the apoptotic pathway over the 15-day course of bortezomib administration (as
depicted in Figure 8(C)). Notably, the initiation of oncolysis becomes feasible only upon the subsequent
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implementation of oncolytic virus therapy (as illustrated in Figure 8(D)). This observation prompted
to explore an alternative scenario, involving the administration of oncolytic virus (OV) prior to borte-
zomib. Figure 8(E),(F) display the time courses of injection rate and concentration of OV (red curves)
and bortezomib (blue curves) of the OV first administration. Corresponding time course evolutions
of intracellular signaling variables (NFκB (F), BAX (A), and RIP1 (R)) are depicted in Figure 8(G).
Significantly, the induction of oncolysis ensues as a result of OV administration, subsequently leading
to necroptosis following bortezomib administration. Despite the equal administration of OV and borte-
zomib, distinct profiles emerge within the cancer cell population (depicted in Figure 8(D),(H)) as well
as intracellular signaling dynamics (illustrated in Figure 8(C),(G)). In the scenario where bortezomib
is administered first, cancer cells can evade the apoptotic phenotype. Conversely, when OV takes
precedence in administration before bortezomib, oncolysis followed by necroptosis can be promoted.
Consequently, the synergistic effect of these therapeutic agents is achieved by administering OV before
bortezomib. However, constant administration of bortezomib and OV, as illustrated in Figure 8, poses
challenges within a clinical context, encompassing concerns related to drug toxicity and practical fea-
sibility. Consequently, we intend to explore a scenario in which the administration durations for both
OV and bortezomib are confined to a single day, with a sole administration of OV.
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Figure 8. The effect of sequential administration of bortezomib and OV on anti-tumor ef-
ficacy. (A,B) Time evolution of injection rates (uB, uV) and concentration of OV (v) and
bortezomib (B) in response to the case where bortezomib is administered first. (C) Time
courses of the NFκB (F), BAX (A), and RIP1 (R) in response to the case where bortezomib
first administration. (D) Time courses of cancer cells in the response bortezomib first admin-
istration. (E,F) Time evolution of injection rates (uB, uV) and concentration of OV (v) and
bortezomib (B) in response to OV first administration. (G) Time courses of the NFκB (F),
BAX (A), and RIP1 (R) in response to OV first administration. (H) Time courses of cancer
cells in response to OV is first administration.
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We examined a periodic bortezomib administration and a single OV administration within the time
interval [0, 30]. The 30-day duration is partitioned where OV is introduced for a single day, followed
by a 14-day interval of rest. Subsequently, the remaining days are divided into five segments, during
which bortezomib is administered five times. Given its inherent replication capacity, OV is adminis-
tered solely on the initial phase within a 15-day interval. We have examined six distinct injection sched-
ules, comprising a single administration of OV and five instances of bortezomib. The total amount of
OV and bortezomib is same as in the constant sequential OV and bortezomib administration above.
We denote OV and bortezomib as ‘V’ and ‘B’, respectively. For instance, ‘BBBBBV’ reflects five
administration of bortezomib within the first 15 days and one time OV administration in the remain-
ing 15 days. Figure 9(A)–(D) show the time courses of injection rates (uB, uV), concentration of OV
and bortezomib, concentration of intracellular signaling variables (NFκB, BAX, and RIP1), and can-
cer cells (uninfected, infected, and total cancer cells) of the ‘BBBBBV’, respectively. Observe that
in Figure 9(C), there are two phenotypes: apoptosis (blue region) and oncolysis (green region). Re-
markably, despite employing an equivalent quantity of bortezomib as seen in the constant sequential
administration of OV and bortezomib shown in Figure 8, distinct phenotypic outcomes can be elicited.
Hence, administering a substantial quantity separately proves more effective than delivering a smaller
dose over an extended period. Figure 9(E)–(H) showcase the outcomes for the ‘VBBBBB’ scenario,
revealing a clear manifestation of the synergistic effect between OV and bortezomib. Upon each borte-
zomib injection (from day 15th), a rapid increase in the level of OV becomes evident (depicted in
Figure 9(F)). This phenomenon arises from the combined action of OV and bortezomib treatment,
which induces a necroptotic phenotype and consequently enhances viral infections. As a result, the
replication term (second term in Eq (2.8)) contributes to the substantial increase in OV levels. In Fig-
ure 9(G), a distinct alternation between necroptosis and oncolysis emerges starting at the 15-day mark,
coinciding with bortezomib injections. However, the discernible effect on the cancer cell population
remains limited, primarily attributed to the supplementary role played by bortezomib, which acts as an
enhancer, while OV alone displays only modest infectivity towards cancer cells (as demonstrated in
Figures 8(H) and 9(H)). In the context of single administering OV and five bortezomib injections, an
intriguing query arises: Should the OV injection be administered solely at the beginning or the end of
bortezomib administration? To address this concern, we strategically place the OV injection between
the bortezomib administrations. The temporal dynamics of phenotypic changes corresponding to di-
verse injection schedules are illustrated in Figure 9(I). Figure 9(I) illustrates the discrete phenotypic
states of cancer cells resulting from various injection schedules. Figure 9(J) displays the normalized
cancer cell (green: uninfected cancer cells; pink: infected cancer cells; red: total cancer cells (un-
infected + infected) outcomes across all scenarios at the final time point. Evidently, the ‘BBBBBV’
scenario exhibits the least effectiveness in eradicating cancer cells. Conversely, the ‘VBBBBB’ sce-
nario emerges as the most potent in targeting uninfected cancer cells for elimination. Generally, the
strategy commencing with OV demonstrates a superior anti-cancer effect compared to the approach
initiated with bortezomib. Nonetheless, an important query arises regarding the optimality of the strat-
egy derived from these findings. Up to this point, the injection timings have been manually set, and
the cumulative dosage of anti-cancer drugs has been predetermined. Furthermore, it’s noteworthy that
the bortezomib dosage surpasses our reference threshold of 1, consequently impacting patient toxicity
levels.

As a result, the subsequent section will elucidate how the application of optimal control theory can
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yield favorable outcomes, further utilizing minimal quantities of OV and bortezomib.
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Figure 9. Dynamics of the system corresponding to vary alternating schemes of bortezomib
and OV. (A,B) Time evolution of injection rate (uB, uV) and concentration of OV (v) and
bortezomib (B) in the response to the case where bortezomib is injected first. (C) Time
courses of the NFκB (F), BAX (A), and RIP1 (R) in response to the case where bortezomib
is injected first. (D) Time courses of cancer cells in the response to the case where bortezomib
is injected first. (E,F) Time evolution of injection rate (uB, uV) and concentration of OV (v)
and bortezomib (B) in the response to the case where OV is injected first. (G) Time courses
of the NFκB (F), BAX (A), and RIP1 (R) in response to the case where OV is injected first.
(H) Time courses of cancer cells in the response to the case where OV is injected first. (I)
Time courses of changing phenotype. (J) Normalized cancer cells at final time for various
injection schedules.

3.5. Optimal administration of OV and bortezomib

Now, we investigate the optimal control problems for various objective functions in Eqs (2.12) and
(2.13). As observed from the previous results, it is evident that administering OV first is significantly
more effective compared to administering bortezomib first. The simulation outcomes and analysis
support the idea that initiating the treatment with OV leads to superior therapeutic results in combating
cancer progression and inducing necroptotic phenotype. This finding can have important implications
for designing optimized treatment strategies in clinical settings, prioritizing OV administration for
improved efficacy and better patient outcomes. Regarding the objective function, as described in the
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previous section, we will examine the following results using two different objective functions (Eqs
(2.12) and (2.13)). Each objective function represents a distinct therapeutic goal, and by analyzing the
outcomes based on these different criteria, we aim to gain comprehensive insights into the effectiveness
of the treatment strategies in different scenarios. These objective functions allow us to assess the
impact of the interventions from multiple perspectives, providing a more comprehensive evaluation of
the treatment outcomes.

1) Quadratic controls
In this therapeutic strategy, we investigate the optimal control problem for objective function
Eq (2.12). Figure 10(A),(B) shows the time courses of the injection rate and concentration of OV
and bortezomib, respectively. We set that the state stays at necroptotic phenotype after injecting
bortezomib (day 15th). That is, the level of bortezomib never falls under the threshold (thB = 0.1).
In Figure 9(G), necroptotic and oncolytic mode alternately appeared even though the total amount
of bortezomib is 0.75. However, with the application of optimal control theory, necroptotic pheno-
type is maintained from the moment bortezomib is injected (Figure 10(C)). It is worth noting that
with optimal control, total amount of bortezomib is just 0.6733. Because we set the upper bound
of the control when applying the optimal control theory, the level of bortezomib does not exceed
the reference value (Figure 10(B)). However, in this case, one-time OV is coupled with frequent
bortezomib administrations, the inconvenience arises from the need for repetitive hospital visits
solely for the purpose of bortezomib injections. Hence, we present an alternative approach, incor-
porating intervals of respite between bortezomib injections (depicted in Figure 10(E)–(H)). This
strategy involves a one-time OV coupled with intermittent bortezomib administration. In this latter
scenario, the injection intervals are designed, ensuring that the bortezomib dosage threshold will
not be exceeded that could potentially lead to toxicity. The total amount of bortezomib, in this case,
is calculated at 0.2823, significantly lower by over fifty percent compared to the previous scenario’s
value of 0.6733. Furthermore, there is a notable reduction in the total amount of OV, diminishing
from 0.5 as seen in Figures 8 and 9, to 0.2938 as demonstrated in Figure 10. In the second scenario,
the injection strategy of bortezomib shows four injections in 15 days. The possible actual adminis-
tration of bortezomib could be bolus intravenous injection twice weekly for two weeks (days 1, 4,
8, and 11) followed by a ten-day rest period [105, 106]. Hence, our mathematical model utilizing
optimal control theory, aligns with the practical drug administration protocols and has the potential
to provide valuable insights into optimizing drug utilization within real treatment scenarios.

2) Linear controls with constraint
In this therapeutic approach, we consider the impact of initially administering OV followed by
bortezomib, employing a sigmoid function to effectively steer cells toward a necroptotic phenotype.
We divided the entire time into two periods: the period of injecting only OV and the period of
injecting only bortezomib. In the first integration term (in Eq (2.13)), a term for uninfected cancer
cells (x(t)) is added because the main purpose is to infect cancer cells through OV. The objective
function of the second integration term (in Eq (2.13)) considers a sigmoid term for bortezomib to
keep the cells in the necroptotic phenotype. Figure 11 are the results for Eq (2.13). Figure 11(A),(B)
shows the time courses of injection rate (uV and uB) and concentration of OV (v) and bortezomib
(B), respectively. Figure 11(C),(D) illustrate the time courses of intracellular signaling (NFκB,
BAX, RIP1) and cancer cell population (uninfected, infected, and total cancer cells), respectively.
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Bortezomib continues to maintain a level that satisfies the necroptotic phenotype (blue curves in
Figure 11(B)). As a result, after 15 days, the necroptosis phenotype is maintained and more can-
cer cells can be infected (Figure 11(C),(D)). The mechanism of quadratic controls necessitates the
dynamic adjustment of infusion rates over time, as both uV and uB exhibit continuous dynamics
when the necessary conditions for optimal control are computed. In contrast, linear controls result
to either 0 or the maximum injection rate which is due to the calculation of necessary conditions
in the optimal control formulation. Consequently, linear controls provide practical administration
protocol as it do not require temporal adjustments to the injection rate.
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(uninfected, infected, and total cancer cells), respectively.
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4. Discussion

The optimal control framework herein is based on the mathematical models developed by [45, 46]
describing the intracellular dynamics and tumor suppression in response to a combination therapy in-
volving bortezomib and OV in cancer patients. While bortezomib is quite effective in killing cancer
cells in general, it can cause strong toxicity and serious side effects. One of our goals of this study is to
analyze the cellular system behaviors in response to bortezomib-OV combination therapy via a delicate
intracellular signaling pathway (NFkB-Bcl-2-BAX-RIP1). Another goal is to find optimal strategies
that effectively kill cancer cells by OV and bortezomib through both apoptotic and necroptotic pheno-
type with minimal costs (side effects + administrative costs) using optimal control theory [46]. The
associated optimal control problems are formulated such that the overall cancer cell population and the
total cost of the two anticancer drugs are minimized.

Yoo et al. showed that OV replication, thus anti-tumor efficacy, can be improved by the unfolded
protein response (UPR) after bortezomib treatment, inducing synergistic cancer cell killing [6]. Kim
et al. [46] introduced the apoptosis and necroptosis cell death mechanism involved in this combination
(OV + bortezomib) therapy. In this work, a detailed analysis of the model in this work suggests
that injection of OVs followed by bortezomib can effectively increase anti-tumor efficacy due to the
higher infection rate of cancer cells from the oncolytic mode and superior killing capacity of tumor
cells from combined cell death (necroptosis + oncolysis) phase while the OV treatment at a latter
time induces only oncolysis or a mild killing phase (apoptosis + oncolysis), leading to lower killing
rates (Figures 8 and 9). Treatment of a tumor with OVs at an earlier time usually leads to better
anti-tumor efficacy [6] and our study supports the idea of effectiveness of initial OV treatment even in
the combination therapy by revealing the dynamics of detailed sub-cellular cell death program at an
intracellular level. Relative order of OVs relative to bortezomib treatment in a combination therapy
induces the cellular transition from the severe ON (oncolysis + necroptosis) mode to the intermediate
AON phase (apoptosis + oncolysis + necroptosis), and to mild AO (apoptosis + oncolysis) phase
(Figure 9). Therefore, delays in OV treatment decrease anti-tumor efficacy, suggesting the importance
of OV injection time. Excessive use of OVs and bortezomib also has to be limited due to safety issues
and drug-associated side effects, respectively, in addition to a need to minimize administrative costs.
Anti-cancer strategies with optimal control in our work suggest that both the necroptosis-dominant
phase from frequent injection of bortezomib and a mixed (necroptosis + oncolysis) mode from less
frequent injection mode of bortezomib can effectively kill cancer cells in the 2nd cell death program
a combination therapy with initial administration of OVs (Figures 10 and 11). Optimally controlled
injection strategy of OVs and bortezomib in this work may lead to better understanding of fundamental
mechanisms of the cell death program and effective anti-cancer efficacy in various cancers [105, 106].
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