
MBE, 21(2): 1917–1937. 

DOI: 10.3934/mbe.2024085 

Received: 25 September 2023 

Revised: 20 December 2023 

Accepted: 25 December 2023 

Published: 05 January 2024 

http://www.aimspress.com/journal/MBE 

 

Research article 

HPCDNet: Hybrid position coding and dual-frquency domain 

transform network for low-light image enhancement 

Mingju Chen1,2, Hongyang Li1,*, Hongming Peng1, Xingzhong Xiong1,2 and Ning Long3 

1 School of Automation and Information Engineering, Sichuan University of Science & Engineering, 
Yibin 644002, China 

2 Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & 
Engineering, Yibin 644002, China 

3 School of Network & Communication Engineering, Chengdu Technological University, Chengdu 
611730, China 

* Correspondence: Email: 322085404523@stu.suse.edu.cn. 

Abstract: Low-light image enhancement (LLIE) improves lighting to obtain natural normal-light 
images from images captured under poor illumination. However, existing LLIE methods do not 
effectively utilize positional and frequency domain image information. To address this limitation, we 
proposed an end-to-end low-light image enhancement network called HPCDNet. HPCDNet uniquely 
integrates a hybrid positional coding technique into the self-attention mechanism by appending hybrid 
positional codes to the query and key, which better retains spatial positional information in the image. 
The hybrid positional coding can adaptively emphasize important local structures to improve modeling 
of spatial dependencies within low-light images. Meanwhile, frequency domain image information 
lost under low-light is recovered via discrete wavelet and cosine transforms. The resulting two 
frequency domain feature types are weighted and merged using a dual-attention module. More 
effective use of frequency domain information enhances the network’s ability to recreate details, 
improving visual quality of enhanced low-light images. Experiments demonstrated that our approach 
can heighten visibility, contrast and color properties of low-light images while better preserving details 
and textures than previous techniques. 
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1. Introduction 

Computer vision encompasses various pivotal tasks and methods like object detection, image 
classification, segmentation, deblurring and facial recognition [1–3]. However, these techniques 
presume well-lit input images, whereas real-world data is often dim and degraded. Such low-light 
images confound both human and machine perception, undermining subsequent analysis and impeding 
real-world computer vision applications. Addressing low-light images is thus imperative for computer 
vision. Low-light enhancement techniques aim to elucidate obscured content and avert performance 
declines in downstream tasks. Early methods like histogram equalization [4] and Retinex [5] have 
limited efficacy and generalizability for low-light enhancement. 

In recent years, numerous deep learning-based low-light image enhancement (LLIE) techniques 
have emerged. The advantage of deep learning is its ability to learn complex feature representations 
from large amounts of data and optimize them through a training process leading to more accurate 
image enhancement. These methods fall into two categories: end-to-end framework [6–13] and those 
based on Retinex [14–21]. Among them, Jiang et al. [22] proposed an unsupervised generative 
adversarial network framework for enhancement of low-light images that does not require paired 
images for training. Zhang et al. [23] proposed an unsupervised learning method for enhancement of 
low-light images, which utilizes the prior knowledge of histogram equalization to guide the network 
in learning the enhancement mappings. Deep learning methods enhance low-light images by 
modeling the relationship between low-light and high-quality images, generally outperforming 
traditional techniques. 

However, many existing methods ignore the position information of the image, which can lead to 
a lack of spatial coherence and difficulty in preserving the detailed texture of the image. In addition, 
there have been researches proving the importance of position information to the image. Dosovitskiy 
et al. [24] achieved state-of-the-art results in large-scale image classification tasks by using sine-based 
absolute position coding in Vision Transformer. In 3D target detection, Xu et al. [25] achieved a more 
effective aggregation of the two feature types by adding position coding between voxel features and 
original point features, thus improving the detection accuracy. All these methods demonstrate the 
importance of positional information for image, and similarly, positional information is also 
important for LLIE. 

Most LLIE techniques only consider spatial domain information, neglecting the usefulness of 
frequency domain cues for quality improvement. The frequency domain harbors data regarding an 
image's frequency components, offering salient insights into texture, detail, and structure. To better 
leverage frequency domain data, some studies have incorporated techniques including wavelet and 
cosine transforms into their networks. Wavelet transforms can decompose low-frequency illumination 
and high-frequency details, aiding detail and texture restoration. Cosine transforms can concentrate 
image information in lower frequencies, enhancing brightness and contrast. For example, Fan et al. [7] 
enriched the wavelet domain features by half-wavelet attention blocks, which effectively improved the 
quality of the image, and Tiwari et al. [26] proposed a method to control the enhancement degree based 
on the cosine transform, which verified the value of the frequency domain information to a certain 
extent. However, these methods do not fully utilize the frequency domain information, and there is still 
some room for improvement, especially in lighting and detailed texture. 

To fully leverage positional and frequency domain image information, inspired by previous 
work [27–32], we propose an LLIE network called HPCDNet. HPCDNet more efficiently acquires 
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positional information of images by introducing hybrid positional encodings into the self-attention 
mechanism. Unlike conventional self-attention mechanisms that solely rely on absolute distances, this 
hybrid positional encoding considers both relative positional relationships within the image and global 
absolute coordinate information. Specifically, we add a unique sinusoidal encoding for each pixel 
position as its absolute coordinates, while also learning the relative offset relationships between each 
position and its surrounding pixels. Dual-frequency attention block modules are then utilized to extract 
frequency domain features lost under low-light conditions, which are then weighted by dual attention 
units (DAU) [33]. Finally, the features are converted back to the spatial domain via inverse transforms. 
Overall, the primary contributions of this work can be summarized as follows: 
 We propose a hybrid position coding scheme for self-attention mechanisms to better capture global 

structure and local details in images. The hybrid scheme combines both relative and absolute 
position encodings to capture such multi-scale information. 

 We propose an efficient feature extraction building block named dual-frequency attention block 
(DFAB), which extracts frequency domain features via discrete cosine transform and discrete 
wavelet transform and weighs these features using a DAU. By operating on both spatial and 
frequency domains, DFAB improves feature utilization and representation power. 

 To consolidate multilevel representations, we design a cross-layer fusion block (CFB) module 
based on partial convolutions for adaptive integration of hierarchical features via learned cross-
scale interactions. 

 We propose a generalizable LLIE network called HPCDNet.We evaluate HPCDNet on the LOL 
and MIT-Adobe FiveK datasets. Experiments show HPCDNet significantly outperforms prior arts 
in low-light enhancement. 

2. Related work 

2.1. Low-light image enhancement 

Traditional methods. Traditional methods for enhancing low-light images primarily includes 
histogram equalization-based approaches [4] and methods based on the Retinex theory [5]. One 
category of methods seeks to enhance low-light images by remapping brightness levels to expand the 
dynamic range, which accentuates darker regions to increase visibility and quality. In contrast, Retinex-
based approaches decompose images into reflectance and illumination layers, using the estimated 
reflectance as the final enhanced output. Thus, Retinex methods strongly rely on accurate modeling of 
image components and fitting prior knowledge. However, designing prior knowledge that is applicable 
to diverse scenarios is a challenging task [19]. To mitigate inherent constraints with conventional 
approaches, deep learning has been overwhelmingly embraced as a promising paradigm for low-light 
enhancement methodologies. 

Deep learning-based methods. In recent years, LLIE methods based on deep learning have 
shown good results. Lore et al. [34] proposed a method based on deep autoencoders to adaptively 
enhance images by identifying signal features in low-light images. Wei et al. [14] proposed a deep 
learning-based Retinex decomposition method, which mainly enhances low-light images by learning 
data-driven reflection maps and illumination maps. Zhang et al. [35,36] proposed two improved 
methods based on Retinex-Net, called KinD and KinD++, which adjusts image brightness by 
introducing global and local gains. Zamir et al. [33] enhanced the details and texture of low-light 
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images by learning multi-scale features and combining contextual information at different scales. 
Recently, Wu et al. [19] also proposed a Retinex-based network that decomposes low-light images into 
reflection maps and illumination maps and effectively suppresses noise in the image by learning to 
adaptively fit implicit prior knowledge. In addition, Fan et al. [7] also proposed an image enhancement 
network that effectively utilized the frequency domain information of the image by using semi-wavelet 
attention blocks to enrich wavelet domain features. In the same year, Zhang et al. [37] proposed a new 
deep color consistent network termed DCC-Net, which can jointly preserve color information and 
enhance the illumination. Wang et al. [30] proposed a low-light enhancement method based on 
transformer, and improved image quality through an axis-based multi-head self-attention mechanism 
and a cross-layer attention fusion block. However, these methods do not fully utilize the frequency 
domain information of the image. In contrast, the network we designed learns the frequency domain 
information of images in an end-to-end manner through an innovative dual frequency domain 
transformation module. In this way, the network can better perceive the overall pixel distribution of 
the image while restoring finer and natural local details. 

2.2. Position encoding 

In recent years, several positional coding methods have been proposed, and these methods can be 
categorized into two groups: Relative positional coding and absolute positional coding. 

Relative positional coding. Shaw et al. [29] introduced a relative positional encoding approach 
tailored for self-attentional architectures. The input tokens are modeled as directed, fully connected 
graphs, and each edge between two arbitrary positions i and j is represented by a learnable vector. Dai 
et al. [38] introduced an additional bias term for the query and use a sinusoidal function for relative 
position encoding. Recently, Huang et al. [39] proposed a new approach that simultaneously considers 
the interaction of query, key and relative positions. While Ramachandran et al. [40] proposed a position 
coding method for images, which divides the 2D relative coding into horizontal and vertical directions 
so that each direction can be modeled by a 1D coding, Wang et al. [41] introduced a position-sensitive 
method by incorporating a qkv-dependent positional bias in the self-attention. Inspired by their 
predecessors, Wu et al. [42] proposed a new relative position coding method specifically for images, 
called image RPE (iRPE), which takes into account the modeling of relative position distances in a 
self-attention mechanism and the interaction between query and relative position embedding. 

Absolute positional coding. Parmar et al. [43] proposed an image transformer framework, using 
transformer in image tasks for the first time, and by using absolute position encoding to introduce 
spatial information, they proved its effectiveness in tasks such as image classification and segmentation. 
Dosovitskiy et al. [24] used absolute position coding in the ViT model and achieved good results on 
image classification tasks, which reflects the importance of absolute position coding in image 
classification tasks. In the same year, Carion et al. [44] proposed the first end-to-end transformer target 
detection model DETR, which also used absolute position encoding to obtain spatial prior knowledge. 
In addition, Xie et al. [45] designed a SegFormer model suitable for image segmentation, which also 
used absolute position coding to provide spatial information to the transformer, and achieved optimal 
segmentation performance on multiple datasets. 

Notwithstanding the achievements of prevailing techniques, the value of positional encoding 
remains underestimated. Current methods generally adopt either relative or absolute positional coding 
exclusively; thus, they are unable to fully leverage the spatial knowledge encompassed within the 
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image. Discerning that the local orientation cues of relative positional coding and global coordinate 
information of absolute positional coding are complementary, we consolidate both schemes for LLIE 
to empower superior modeling of the spatial structure. 

 

Figure 1. The overall structure of our proposed HPCDNet. Due to our unique design, it 
can better capture the position and frequency domain information of the image. 

3. Proposed method 

This section delineates the proposed LLIE network architecture depicted in Figure 1. The 
framework incorporates four pivotal constituents: (a) Hybrid position encoding self-attention (HPE-
SA): This module is used to perform nonlinear transformation and combination of input image features 
to improve the performance of the model. Attention mechanism plays a crucial role in modeling and 
capturing global contextual information in images, and the self-attention mechanism with hybrid 
positional encoding can better preserve the image spatial structure. (b) Gated-pconv feed-forward 
network (GPFN): Employs partial convolutions alongside nonlinearities to learn representations for 
enriching details and enhancing visual quality. (c) DFAB: Leverages frequency domain knowledge to 
adaptively aggregate input characteristics via attention-based merging to heighten global detail while 
preserving textures. (d) CFB: Aggregates multi-scale representations by weighting crucial 
characteristics, thereby upholding holistic structure alongside enriching local cues. 
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Figure 2. Main components in attention block, from left to right in order (a) HPE-SA and 
(b) GPFN. 

3.1. Hybrid position encoding self-attention 

For LLIE, positional cues are especially pivotal for modeling spatial correlation amongst pixels. 
Specifically, lacking such localization knowledge hinders comprehensive characterization of inter-
region connections required for effective image upgrading. Moreover, in the traditional self-attention 
mechanism, the time and memory complexity of the key-query dot-product interaction grows 
quadratically with the spatial resolution of input, i.e., 2 2( )W H  for images of W × H pixels, which 

means that when applying the self-attention mechanism in LLIE tasks, you may encounter the problem 
of insufficient computing resources. 

To alleviate these problems, inspired by [3,27,28,30,32], we propose HPE-SA, a self-attention 
mechanism with hybrid position encoding, whose structure is shown in Figure 2(a). The HPE-SA 
module greatly reduces the amount of computation by performing self-attention calculation across the 
feature dimension instead of the spatial dimension, and by specifically fusing local and global 
contextual information before doing so, it applies the attention mechanism to C feature channels 
instead of to HW spatial locations. It computes a transposed attention map of size C × C, so the 
complexity is 2( )C ; C is usually much smaller than HW and the number of feature channels is much 

smaller than the number of pixels, so 2( )C  can be regarded as a constant level complexity. Even if 

the image size increases, C does not change, so the complexity is not affected by H, W. Therefore, it 
can be said that there is a linear relationship between the computational complexity of the HPE-SA 
module and the spatial size (H, W). This substantially alleviates complexity versus conventional self-
attention models. Additionally, hybrid positional encodings empower the attention mechanism to better 
model nuanced inter-pixel relationships, simultaneously refining local details as well as global contexts. 

In detail, for an input tensor of size X H W C    , we first obtain a representation with local 
context information through a 1 × 1 convolution. Following this, we encode the spatial context using 
a 3 × 3 partial convolution, resulting in 3 3 1 1XQ Q

P
QW W  , 3 3 1 1XK K K

PW W   and 3 3 1 1XV V V
PW W  . Here, 

( )
3 3PW 
  and (

1
)

1W 
  denote 3 × 3 partial convolution and 1 × 1 ordinary convolution, respectively. Thus, 

it can be expressed as: 
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    Softmax ,X V Q K   (1) 

Subsequently, hybrid positional encodings are formulated to augment queries and keys with both 
absolute spatial coordinates alongside relative pixel displacements. Specifically, this hybrid 
representation comprises distinct absolute and relative positional encodings, detailed as follows. 

Absolute position coding can provide additional spatial information to help the attention 
mechanism better model the dependencies between different positions of an image. We use an absolute 
position coding method based on sine and cosine; specifically, a position coding matrix absP  can be 

constructed, and the formula for absP  is as follows: 
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where H W C

absP    denotes the absolute position encoding matrix, i and j denote the row and column 

indices in the absolute position encoding matrix, k denotes the index of the third dimension of the absP  

matrix, and d denotes the dimension of the model. We then decompose absP  into Q
absP  and K

absP  to 

obtain the absolute position encoding matrices of Q  and K . 

While integration of absolute positional encoding imparts global localization, relative spatial 
offsets across different areas remain equally vital. Hence, we supplement relative positional encoding 
to facilitate improved modeling of inter-pixel spatial correlations. Nevertheless, existing relative offset 
encodings condition solely on the query without considering the key. Since key could indicate 
attention-worthy regions, we propose a trainable relative encoding mechanism. Specifically, we first 
construct a trainable encoding matrix (2 1)C DE   , where C is the total number of channels of Q and 
K, and 2D−1 represents the range of relative positions in the two-dimensional space. Each row vector 
of matrix E encodes the relative displacement between any two positions. Next, we precalculate a 

relative position index matrix D D
ijM    based on the row and column coordinates, where

 , 1M i j i j D     . For efficient indexing, we flatten M into a one-dimensional index vector 
2DI   , then retrieve the corresponding encoding vector 

2

[:, ] C DP E I     from the encoding 

matrix E based on the index vector I. Finally, we split the coding tensor P into Q and K in proportion 
to the number of channels C, so that we can obtain Q

rPE and K
rPE , then we can obtain the positional 

bias Q Q
rPE  associated with the query and the positional bias term K K

rPE  associated with the key 

pixel.  In this way, combined with the absolute position encoding proposed above, the specific 
representation of HPE-SA can be expressed as follows: 

        LN Softmax ( / ,X V Q K Q K )Q K
pW P P         (3) 
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 Q Q Q
rel absP P P   (4) 

 K K K
rel absP P P   (5) 

where X   represents the output feature map, Q HW C  , K C HW   and V C HW  , QPE   and
KPE  , respectively denote the hybrid position encoding for Q   and K  , LN stands for layer 

normalization [44] and   is a learnable scaling parameter used to regulate the magnitude of the dot 
product of Q  and K  before it is input into the softmax function. 

3.2. Gated-pconv feed-forward network 

Conventional feedforward networks are often limited in modeling intrinsic local cues embedded 
within images. To address such limitations, we conceive a new feedforward formulation termed GPFN 
toward improved characterization of localized features. The structure is illustrated in Figure 2(b), and 
this network consists of two parallel branches. The former enacts 3 × 3 partial convolutions with 
GELU [46] activation function to extract structural impressions, while the latter aggregates contextual 
inter-pixel knowledge via a 3 × 3 partial convolutional layer. Subsequently, we perform element-wise 
multiplication between the output feature map of the second branch and the feature map of the first 
branch. This operation enhances the representation of crucial features while mitigating the influence 
of less important ones. With this innovative network design, the model becomes more adept at learning 
and representing local features within the image. Given an input tensor X H W C   , the formula for 
GPFN is as follows: 

 
  1 1 Gate ,W  XX X 

 (6) 

   1 2
3 3 1 1 3 3 1 1Gate ( ) ( ( )),P PW W W W   X X X  (7) 

where    represents multiplication, and    signifies the GELU activation function. In summary, 
GPFN efficiently manages the flow of information across various hierarchical levels. This enables each 
level to focus on specific details and complement one another, ultimately enhancing the model's overall 
performance. 

 

Figure 3. The architecture of DFAB. 
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3.3. Dual-frequency attention block 

Figure 3 illustrates the structure of the proposed DFAB, which comprises two branches 
corresponding to discrete wavelet transform (DWT) and discrete cosine transform (DCT). Each 
branch incorporates an attention mechanism block known as DAU [33,47], which includes channel 
attention [48] and spatial attention [49,50] to weigh the transformed feature maps. The outputs from 
these two branches are then fused to obtain the final feature representation. The design concept behind 
DFAB is to enhance the feature representation by leveraging DWT [51] and DCT [26,52]. By encoding 
multi-scale, multi-frequency cues, these transformations prove effective for representing structural and 
textural content. Within each branch, channel attention weighs the relevance of different feature 
channels to enable better feature selection and prioritization. Similarly, spatial attention assesses the 
importance of different spatial positions, allowing greater emphasis on salient areas. 

The input feature H W C

inf    is partitioned along the input channel direction into three parts:

1f , 2f  and identityf , where / 4

1
H W Cf   , / 4

1
H W Cf   , and / 2H W C

identityf   . The main purpose 

of dividing the input features is to reduce computational complexity and retain contextual information. 
Among them, identityf  is used to preserve the normal domain features, 2f  performs discrete cosine 

transform, while 1f   undergoes DWT to obtain wavelet domain features Wf  . Through DWT, the 

input feature is decomposed into multiple subbands, where each subband represents a different 
frequency range. Since these subbands contain information about different aspects of the original 
feature, spatial and frequency information can be better captured. These subbands are combined into a 
wavelet domain feature map /2 / 2H W C

Wf
  . 

The wavelet domain feature map Wf   will be obtained by the DAU module with weighted 

wavelet domain features /2 /2ˆ H W C

wf
   . Finally, we perform an inverse wavelet transform on the 

weighted wavelet domain feature ˆ
wf   and reshape it to the same shape as 1f   and become the 

weighted normal domain feature /4

1
ˆ H W Cf   . 

The other branch 2f  is obtained by DCT to get the feature / 2 / 2H W C

cf
  , and similarly, we 

input cf  into the DAU module to obtain the weighted low-frequency feature /2 /2ˆ H W C

cf
  . In this 

way, we can better utilize the low-frequency information of the input image and fuse it with the features 
in other domains to improve the performance of the model. We then perform an inverse cosine 

transform on the weighted feature ˆ
cf  and reshape it to the same shape as 2f , which becomes the 

weighted normal domain feature /4

2
ˆ H W Cf   . These three features ( 1f̂ 、 2f̂  and identityf ) are then 

stitched together and passed into a 3 × 3 convolutional and PReLU layer to obtain the residual features. 
Finally, we add the input features to the residual features to get the output features C

out
H Wf   . 
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Figure 4. The architecture of CFB. This technique utilizes features extracted from multiple 
convolutional streams and then aggregates them using self-attention. 

3.4. Cross-layer fusion block 

Recently, Zamir and Wang et al. [32,53] adopted feature joins or jump joins to aggregate 
representations across layers in Transformer networks. However, these operations do not fully utilize 
the dependencies between different layers. The low-light image contains many black zero-valued pixels, 
and partial convolution can effectively avoid the contamination of the results by zero-valued pixels in 
the convolution operation. The partial convolution only updates the valid non-zero pixels, which avoids 
the invalid spatial information from interfering with the results, so we designed a CFB module built 
upon partial convolutions, with the architecture illustrated in Figure 4. Same as self-attention in HPE-
SA, we use 1 × 1 convolution to aggregate context information, and then use 3 × 3 partial convolution 
to generate Q, K and V and flatten them into a matrix of 3 × HWC. Next, we compute an attention 
matrix of size 3 × 3 and compute the attention weights based on the matrix and add the features of the 
upper V. Finally, we get the fused features and the process can be represented as: 

    
3 3 Softmax( / ) ,AF V Q K VW     (8) 

  1 1 ,LNout A AF F FW    (9) 

where outF   represents the output features of layers within the network that contains substantial 

information. We strategically incorporate CFB modules at the start and end of our pipeline. This 
bidirectional design enables consolidation of multilevel representations, yielding more holistic and 
descriptive feature embeddings. 

3.5. Loss function 

We used a loss function in our experiments consisting of three parts, each of which is specified 
below: 

Smooth L1 Loss. To encourage accurate regression for low-light enhancement and to suppress 
noise interference, we used the smooth L1 loss function 1smooth L  between the predicted enhanced 
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image eI  and the ground truth g tI : 

 
2

1

0.5( ) | | 1
( , )

| | 0.5, otherwise
,

e g t e g t

smooth L e g t

e g t

I I if I I
I I

I I


    
 

  (10) 

SSIM Loss. Considering that the degradation of low-light images is caused by a variety of factors, 
in order to comprehensively evaluate the differences between images in terms of luminance, contrast, 
and structure, we adopt the structural similarity (SSIM) index as the loss function. Specifically, the 
SSIM loss s  is defined as: 

 1 SSIM( , ),s ge tI I   (11) 

where SSIM( )  
calculates the structural similarity between two images based on statistical measures. 

By minimizing s  , it allows the model to generate enhancement results with better perceptual 

consistency with the high quality reference image in terms of luminance, gradient and structural 
patterns. 

Perceptual Loss. In order to utilize the semantic information to improve the visual quality of 
enhanced images, we adopt the perceptual loss p  as the perceptual metric. Specifically, it is the 

Euclidean distance between the feature representations extracted from the pretrained convolutional 
neural network. Given the enhanced image eI  and the ground truth gtI , the mathematical definition 

of the perceptual loss p  is as follows: 

 21
( ) ( ) ,p g etI I

WHC
  ‖ ‖  (12) 

where W, H and C denote the three dimensions of the image, respectively, and ( )  denotes the pre-

trained VGG network [54]. 
Total Loss. By combining 1smooth L , s  and p  , we can get the total loss function  : 

 1 ,smooth L s p       (13) 

4. Experimental section 

In this section, we present the implementation details of our experiments. We offer 
visualizations to showcase the comparison between the images generated by our model and those 
produced by other algorithms. We then evaluate and compare the results generated by our model 
with those of previous methods. First, we conduct a quantitative evaluation using a range of 
commonly employed image quality assessment metrics, including PSNR, SSIM and LPIPS. These 
metrics help measure the similarity between the images generated by our model and the ground truth. 
Second, these visual comparisons provide insights into the qualitative performance of our approach 
in enhancing low-light images. 

4.1. Experimental details 

The experiments in this paper were conducted using an NVIDIA GTX TITAN Xp GPU and 
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PyTorch 2.0.0. The network was trained exclusively on images with dimensions of 128 × 128, 
utilizing a batch size of four for a total of 1200 iterations. The Adam optimizer was employed, with 
an initial learning rate set to 1 × 10–4. The learning rate was then reduced to 1 × 10–6 following the 
cosine decay strategy. Finally, the model was tested on the LOL dataset and images from the MIT-
Adobe FiveK dataset. 

4.2. Experiments and result 

 

Figure 5. Visual comparison on the LoL dataset [14]. We performed a visual comparison 
of low-light enhancement methods. Our method outperforms other methods in enhancing 
images with complex colors and textures. 

 

Figure 6. Visual comparison on the LoL dataset [14]. We performed a visual comparison 
of low-light enhancement methods. 

Figures 5 and 6 present qualitative comparisons on the LOL dataset against several state of the 
art methods. Specifically, we compare against leading existing techniques. It can be observed that 
KinD, LLFormer and MIRNet introduce noticable noise, especially for images with vibrant colors and 
intricate textures. In contrast, our proposed approach demonstrates slight improvements over 
LLDiffusion in reconstructing such challenging cases. Additionally, our technique showcases strengths 
in preserving textural details while heightening contrast. Notably, our method restores more naturalistic 
color patterns resembling real-world scenarios. 
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Table 1. Comparison of low-light enhancement methods performed on the LoL dataset 
[14]; ↑ (↓) denotes that larger (smaller) values lead to better performance; the times in the 
table represent the total time taken by the model to reason about the 15 images on the test 
set. 

Method PSNR↑ SSIM↑ LPIP↓ Params Times Method PSNR↑ SSIM↑ LPIP↓ Params Times

RUAS [17] 16.41 0.50 0.27 0.003 M 0.02s LLFormer [30] 23.65 0.82 0.17 24.5M 0.34 s

Uretinex [19] 16.77 0.56 0.47 6.7 M 0.37s MIRNet [33] 24.14 0.83 0.13 31.8M 0.16 s

ELGAN [22] 17.48 0.65 0.32 7.0 M 0.18s HWMNet [7] 24.24 0.85 0.12 3.6M 0.47 s

HEP [23] 20.23 0.79 0.19 2.9 M 0.06s LLDiffusion [55] 24.65 0.85 0.08 — — 

KinD [36] 20.87 0.80 0.17 8.5 M 0.02s GlobalDiff [56] 27.83 0.87 0.09 17.4M 0.93 s

Diff-Retinex [57] 21.98 0.86 0.05 — — HPCDNet(Ours) 24.83 0.87 0.11 3.8M 0.02 s

As can be seen from Table 1, compared with the optimal model GlobalDiff, it seems that 
GlobalDiff is more competitive in the field of LLIE. The PSNR index of GlobalDiff is better than our 
model, but in terms of SSIM index, our model performs the same and it is competitive. More 
importantly, the number of parameters of our model is much less than that of GlobalDiff. The number 
of parameters is only 21.8% of GlobalDiff and outperforms GlobalDiff in terms of reasoning time. 
This shows the competitiveness of our model. 

 

Figure 7. In the context of LLIE on the MIT-Adobe FiveK dataset [38], our method 
demonstrates superior visual results, particularly in the domains of color correction and 
contrast adjustment. 

The intuitive comparison using the MIT-Adobe FiveK dataset is illustrated in Figures 7 and 8. 
Our method was compared to the current state of the art approach, with results presented in Table 2. 
Compared to other methods, our approach demonstrates accurate adjustment of image color and 
contrast, while also showing superior text enhancement. Additionally, our method achieves top-three 
performance in PSNR and SSIM metrics, surpassed only by MIRNet and Retinexformer, while 
maintaining outstanding LPIPS results. 
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Figure 8. In comparison to the current state of the art methods on the MIT-Adobe FiveK 
dataset [38], our approach demonstrates superior performance. It excels in precisely 
adjusting the image's color and contrast while also outperforming other methods in terms 
of text enhancement. 

Table 2. Comparison of low-light enhancement methods performed on the MIT-Adobe 
FiveK dataset, ↑ (↓) denotes that, larger (smaller) values lead to better performance. 

Method PSNR↑ SSIM↑ LPIP↓ Method PSNR↑ SSIM↑ LPIP↓ 

ELGAN [22] 15.91 0.82 0.15 HWMNet [7] 19.81 0.87 0.09 

RUAS [17] 16.99 0.87 0.13 DSLR [58] 20.24 0.83 0.15 

KinD [36] 17.07 0.78 0.19 MIRNet [33] 23.73 0.93 0.06 

LLFormer [30] 18.75 0.84 0.15 Retinexformer [59] 24.94 0.91 0.06 

LIME [60] 18.91 0.75 0.11 HPCDNet(Ours) 21.97 0.90 0.05 

 

Figure 9. Visual comparison on the DICM dataset [47]. 

We further exhibit the visual enhancement results on the DICM dataset in Figure 9. From the 
enhancement effect of image illumination, our algorithm is better than other comparative algorithms, 
which can more naturally brighten the low-light area and show richer details. Meanwhile, the bright 
area will not show obvious overexposure phenomenon, and the overall color and contrast are balanced 
to improve and maintain natural tonal consistency with the input image. Other algorithms still have 
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some deficiencies in the brightening effect, such as the HWMNet, RUAS, and MIRNet algorithms are 
not enough to brighten the dark areas of the processed image, as well as KinD, Uretinex-Net algorithms 
that have more noise points, which weaken the visual effect. 

4.3. Ablation studies 

Ablation studies were performed to assess the impact of four key architectural components on 
model performance: (1) hybrid position encoding, (2) absolute position encoding, (3) relative position 
encoding, (4) connection with weights, (5) CFB, and (6) DFAB. The model was trained on 128 × 128 
images from the LOL dataset for 600 epochs, with performance evaluated using PSNR. Figure 10 
illustrates the visual impacts of ablating each individual component from the model. Quantitative 
results are tabulated in Table 3. Our ablation study enables several key conclusions: 

(1) By introducing hybrid position encoding, the PSNR of the model is improved by 1.05 dB, 
proving the effectiveness of this module. The improvement of PSNR index without increasing model 
parameters proves the efficiency of our proposed encoding method. However, due to the extra 
computation, the training time was extended by 4.01 hours. 

(2) Through an independent analysis of absolute position encoding, we performed an ablation 
study and noted the following key observations: Removing only the absolute position encoding results 
in a minor 0.69 dB decrease in PSNR, while still improving PSNR by 0.36 dB compared to not using 
position encoding. Despite no change in model parameters, a slight 0.5 hour increase in training time 
per 600 epochs was observed relative to the absence of position encoding. This minimal additional 
computational cost demonstrates the feasibility of incorporating absolute position encoding. 

 

Figure 10. Visual comparison of the impact of individual module omissions on our 
model’s performance, highlighting the contributions of key techniques used in our study. 
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Table 3. Ablation experiments were conducted to analyze the contribution of four critical 
components of the proposed HPCDNet architecture. 

Hybrid position encoding  √ √ √ √ √ √ 

Absolute position encoding √  √ √ √ √ √ 

Relative position encoding √ √  √ √ √ √ 

Connection with weights √ √ √  √ √ √ 

Cross-layer fusion block √ √ √ √  √ √ 

Dual-frequency attention block √ √ √ √ √  √ 

Params(M) 3.8 3.8 3.8 3.6 3.5 3.8 3.8 

Training time(H) 13.73 14.23 15.28 13.94 14.11 16.22 17.74 

PSNR 22.18 22.64 22.31 22.94 22.94 22.36 23.23 

(3) Furthermore, an ablation study was conducted on solely removing the relative position 
encoding. This resulted in a 0.92 dB decrease in PSNR compared to the full model. Meanwhile, the 
training time reduced by 2.46 hours relative to the baseline. Though compared to ablating just the 
absolute position encoding, training time increased by 1.05 hours. 

(4) The introduction of connection with weights only achieved a small PSNR improvement of 
0.29 dB. At the same time, it increases the parameter size by 0.2 M and introduces additional 
computational overhead. The performance improvement is small, indicating that the benefit of this 
module is limited. 

(5) Using CFB results in an increase of 0.3 M parameters, and a moderate increase in 
computational complexity. However, this module plays a key role in representing layered features, 
improving PSNR by 0.49 dB. 

(6) DFAB brings a significant PSNR improvement of 0.87 dB, with minimal computational 
overhead and no additional parameters, proving that combining the spatial domain and frequency 
domain is effective. 

These discussed module parameters have very little overhead. While individually they may not 
significantly enhance the network, the additional training time required is negligible. This means we 
can optimize these factors to improve the model without requiring extensive computing resources. 
Compared to other algorithms that rely on large models and a large number of parameters, our method 
requires only few parameters to run. Compared with HWMNet (PSNR: 24.24 dB, Params: 3.6 M), the 
PSNR of our network is 0.59 dB higher, although the number of parameters is 0.2 M more than 
HWMNet. Similarly, compared with LLFormer (PSNR: 23.65 dB, Params: 24.5 M), our PSNR is not 
only 1.18 dB higher than LLFormer, but also reduces the number of parameters by 85%, which greatly 
reduces the number of parameters of the model. This benefits from the hybrid position encoding, dual 
frequency domain transformation module and other efficient components we designed, and our model 
can be embedded into external devices. 

5. Conclusions 

This work proposed an LLIE network. Thanks to the hybrid positional encoding module, the 
network was able to model both local pixel-level interactions and global dependencies in larger image 
areas. By applying attention analysis and weighting frequency domain information in the frequency 
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domain through a dual frequency domain transformation module, the global structure and local details 
of low-light images were efficiently enhanced. Through the cross-layer fusion module, the features of 
the previous layer were fused to form high-order features that represent global information, thereby 
enhancing the expressive ability of the network. Experimental results showed that our network 
achieves good results on both the LOL dataset and the MIT-Adobe dataset, especially in restoring 
image details and improving contrast. However, the improvement of this hybrid position encoding for 
LLIE is limited. In the future, we will continue to explore more efficient position encoding methods to 
further improve the model's modeling ability of global and local features, thereby achieving greater 
success. levels and performance improvements. At the same time, we will also study other modules 
that contribute to image enhancement to enrich the expressive capabilities of the network so that it can 
generate more natural and clear results. 
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