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Abstract: This study proposed an interpretable multi-scale infrared small object detection network 

(IMD-Net) design method to improve the precision of infrared small object detection and contour 

segmentation in complex backgrounds. To this end, a multi-scale object enhancement module was 

constructed, which converted artificially designed features into network structures. The network 

structure was used to enhance actual objects and extract shallow detail and deep semantic features of 

images. Next, a global object response, channel attention, and multilayer feature fusion modules 

were introduced, combining context and channel information and aggregated information, selected 

data, and decoded objects. Finally, the multiple loss constraint module was constructed, which 

effectively constrained the network output using multiple losses and solved the problems of high 

false alarms and high missed detections. Experimental results showed that the proposed network 

model outperformed local energy factor (LEF), self-regularized weighted sparse model (SRWS), 

asymmetric contextual modulation (ACM), and other state of the art methods in the 

intersection-over-union (IoU) and Fmeasure values by 10.8% and 11.3%, respectively. The proposed 

method performed best on the currently available datasets, achieving accurate detection and effective 

segmentation of dim and small objects in various infrared complex background images. 

Keywords: multi-scale object enhancement module; global object response module; multilayer 

feature fusion module; multiple loss constraint module; dim and small object detection 
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1. Introduction 

The infrared search and track system (IRST) is widely used in many fields, such as aerospace 

precision guidance, military early warning, and sea rescue [1,2]. Dim-small targets detection and 

recognition is one of the bottleneck problems in the intelligent process of various early warning 

systems, precision guidance systems, security systems, and unmanned aerial vehicle (UAV) 

inspection systems [3–5]. Infrared imaging has the advantages of long imaging distance and strong 

anti-interference ability over visible light imaging. However, due to the detection distance and 

imaging of grayscale images, the actual object in the source image is displayed as a Gaussian 

distribution of gray spots. The manifestation of dim-small targets includes tiny size, variable (object 

size 2 × 2 ~ 9 × 9), and low signal-to-noise ratio (less than 5.0). Such targets are very common in 

deep space and sea surface exploration. Additionally, cloud edges in the complex background, the 

corners of the natural scenery and artificial buildings, ocean clutter and deep-space noise pose a great 

challenge to detecting infrared small and weak objects. 

At the present stage of multi-mode/multi-band imaging used to detect dim targets, the main 

purpose is to make comprehensive use of the advantages of different mode imaging to achieve a 

more accurate and comprehensive interpretation of the scene and target. Typical applications in 

Europe and the United States integrate the near-ultraviolet to far-infrared multi-band image 

information for deep space detection and security monitoring. China‟s satellites use visible light, 

infrared short wave, infrared medium wave and infrared long wave four bands to implement 

all-weather monitoring of the same target simultaneously. With the intensification of global 

competition and the expansion of applications, the intelligence of high-precision detection systems 

has now become one of the new commanding heights of high-tech competition worldwide. 

Intelligent dim-small targets detection and recognition means that the algorithm model can quickly 

extract dim targets from one or more images and automatically classify the extracted targets 

according to the changes of detected image features, just like the human brain. 

Infrared dim-mall object detection methods are mainly classified into model-driven mathematical 

modeling methods [6] and data-driven deep learning (DL) [7] methods. Among them, mathematical 

modeling methods design handcrafted features for infrared weak objects‟ physical and mathematical 

characteristics and construct mathematical models using a priori knowledge to extract objects and 

suppress background. This class of methods is further subdivided into three categories: 1) The 

background subtraction method [8,9], which constructs a mathematical model to predict the 

background and obtains the actual object by the difference between the source image and the predicted 

background; 2) The local contrast method based on the human vision system (HVS) [10,11], which 

extracts the actual object by using the grayscale difference between the object and the local 

neighborhood and 3) the paradigm-constrained optimization method [12], which exploits the sparse 

features of the actual object and the low-rank properties of the background matrix [13] to perform 

paradigm constraints and optimal solutions for the object and background. Model-driven mathematical 

modeling-based methods are fast in detection, good in specific types of backgrounds, and require no 

training, and the computational process and output results are controllable. However, this type of 

method has the following main drawbacks. First, the method is less robust, due to the excessive 

reliance on hand-designed features, the detection accuracy cannot be guaranteed for different types of 

complex backgrounds, and it isn‟t easy to apply to practical engineering. Second, this method is less 

descriptive of the contour and can only obtain the object‟s center of mass and the coordinates of the 
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surrounding pixels, providing less a priori knowledge for the next recognition or tracking operations. In 

modern local wars and conflicts, real-time tracking of UAV is a challenge for the downstream task of 

target detection. This type of target is not easy to be captured, detected and tracked at high speed, 

which is a hot spot in the field of dim target detection. Han et al. proposed a generic framework for a 

correlation filter (CF) based tracker, which jointly considers the discrimination and reliability 

information in the filter learning stage. Context patches are employed into the filter training stage to 

better distinguish the target from backgrounds [14].  

Data-driven DL methods excavate the grayscale distribution of actual infrared objects, various 

types of complex backgrounds, and clutter noise from a large amount of data and then use the 

powerful feature extraction ability and nonlinear data fitting ability of neural networks to extract 

features and pixel classification of infrared source images to obtain actual objects. DL-based 

detection methods are mainly classified into two categories. The first is the object regression 

network, which adopts the regression of the object‟s minimum outer rectangular box, such as 

Faster-RCNN (faster-region convolutional neural networks), YOLO (you only look once), SSD 

(single shot multibox detector) [15,16] and other series of networks. These networks achieve weak 

object detection by fine-tuning the detection structure. Still, because the objects are too small and 

need more detailed features such as texture and color, it is very easy to lose actual objects in the 

stage of extracting image features, so this type of method leads to a high leakage rate. The second 

category is the object segmentation network, which achieves object detection by classifying each 

pixel in the source image. The object segmentation network structure not only locates the position 

of the actual object accurately but also effectively describes the contour features of the infrared 

object at different scales. 

A series of infrared object segmentation networks have been proposed in recent years. For 

example, the context-based network ACM model by Dai et al. [17] used an asymmetric contextual 

module to aggregate shallow and deep features, then introduced an expanded local contrast to achieve a 

trainable local contrast metric based on the introduction of expanded local contrast to achieve a 

trainable local contrast metric. In the follow-up study of the same research team, the ALC-Net 

(attentional local contrast networks) was constructed [18]. Alternatively, Wang et al. decomposed the 

infrared object detection problem into two relative subproblems. First, they used the generative 

adversarial network MDvsFA-CGAN (miss detection vs. false alarm: Conditional GAN) [19] to 

compromise between missed detection and false alarms in infrared small object detection, then they 

adopted the dense nested interaction structure of the DNA-Net (dense nested attention network) 

model [20], combining different information in the deep and shallow layers of the neural network for 

redundancy to ensure that the object information could be maintained at high intensity to the decoder 

side for object decoding to achieve weak small object detection. Alternatively, the LSPM (local 

similarity pyramid module) segmentation network proposed in [21] simulated the multi-scale 

features of infrared weak objects by designing a local similarity pyramid. AGPC (attention-guided 

pyramid context) [22] segmentation network empowered the modeling capability of infrared weak 

small targets with multi-scale features by incorporating a well-designed attention-guided pyramid 

context module. It aggregated shallow and deep features using an asymmetric feature fusion module. 

Furthermore, a segmentation network called FC3Net (feature compensation and cross-level 

correlation) was proposed to segment weak infrared small targets using feature compensation 

structures and attention mechanisms [23]. Multiple well-designed feature compensation modules 

facilitated the transmission of detailed information on infrared weak small targets to deeper layers of 
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the network. The above network models could segment infrared objects in different complex 

backgrounds. Still, there is the problem of completely discarding the a priori knowledge of infrared 

weak objects in the source image, failing to enhance the weaker objects effectively. The 

computational process of DL is not interpretable, making the model training and parameter tuning 

extremely difficult [24]. The interpretability of network models refers to the ability to explain to 

users via understandable logic rules, i.e., the ability to use symbols or words to describe the model 

structure rationally and ensure that the theoretical design is consistent with the actual output. 

Although the robustness and generalization of network models based on DL are better than those 

based on mathematical modeling methods, DL results in a less reliable detection system due to poor 

interpretability and black box characteristics. 

Given the above issues, this study proposes an interpretable multi-scale infrared weak object 

detection network (IMD-Net) to address the problems of object regression and segmentation 

networks, improving the network model's interpretability while enhancing the object using 

hand-designed features. The detection network first transforms the hand-designed features into a 

network structure to enhance the actual object and extracts the shallow and deep features of the 

source image at the same time. It calculates the pixel global correlation to capture the object‟s 

long-range dependence and obtains the object response; then it fuses the different levels of features 

with redundancy to decode the object. Finally, it unites multiple loss functions to constrain the 

network output effectively and obtains the network output. While using the neural network‟s 

powerful feature extraction and data fitting ability, the hand-designed features are combined to 

enhance the weak objects and achieve the robust segmentation of multi-scale infrared weak objects 

under various complex backgrounds. In this paper, “network” refers to the structure of the network 

model and „method‟ refers to the way to solve the problem, which has different meanings. 

2. Materials and Methods 

2.1. Related works 

Object detection using convolutional networks for infrared source images faces the following 

problems: 1) The actual object has a low and weak gray level, and the process of extracting image 

features by cascading convolutional blocks is prone to result in the loss of the object, preventing its 

maintenance at the decoder side; and 2) the convolutional network suffers from a constrained sensory 

field, preventing its aggregation of the global information for classifying the object and background 

pixels. This section introduces the proposed network to solve the above problems and improve the 

detection segmentation accuracy and interpretability of the detection model. 

2.1.1. Infrared weak object enhancement 

In the infrared source image, the infrared weak object has a small size and low signal-to-noise 

ratio. However, it differs from the neighborhood background, where (i) the infrared weak object gray 

value is larger than the neighborhood background gray value, implying that it is brighter than the 

local neighborhood background, and (ii) the infrared weak object gray level is a Gaussian 

distribution, which is the same as the neighborhood background gray difference in eight directions. 

Therefore, a mathematical model can be constructed based on these physical properties to enhance 

the infrared ray (IR) weak object and suppress the background clutter. 
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Given an infrared source image as 𝑤, a sliding window 𝑣 is used to compute the local 

grayscale contrast information. In Figure 1, 𝑢 is the central object region, while 𝑣 is presented in 

Figure 1(b) and is equally divided into nine cells, and 𝑢 corresponds to S0 in Figure 1(b). The 

sliding window slides from left to right and top to bottom on the source image. The mean value of 

the pixels in the sliding window is calculated as follows: 

𝑚𝑖,𝑘 =
1

𝑁𝑖
∑ 𝐼𝑗

𝑖,𝑘𝑁𝑖
𝑗=1 ,                               (1) 

where 𝑁𝑖 is the number of pixels in the 𝑖th cell; 𝐼𝑗
𝑖,𝑘

 is the gray level of the 𝑗th pixel in the 𝑖th cell 

(cell size𝑘 × 𝑘(𝑘 = 3,5,7,9)); 𝑚𝑖,𝑘(𝑖 = 1,2, … ,8) is the mean gray value of the 𝑖th cell (S1, S2,..., 

S8) when the cell size is 𝑘 × 𝑘. 

 

(a) Grayscale contrast calculation            (b) Sliding window 

Figure 1. Calculating local gray contrast. 

The contrast between the center cell and the neighboring cells is defined as 

 𝑐𝑖
𝑛,𝑘 =

𝐿𝑛,𝑘

𝑚𝑖,𝑘
 ,                             (2) 

where 𝐿𝑛,𝑘 is the average gray value of the 𝑛th sliding window center cell S0 in window 𝑣, and 

𝑐𝑖
𝑛,𝑘

 is the contrast between the 𝑛th sliding window center cell and the 𝑖th neighborhood cell. From 

Eq (1), the object pixel is 𝑐𝑖
𝑛,𝑘 ≥ 1 and the background pixel is 𝑐𝑖

𝑛,𝑘 ≤ 1. From Eq (2), the object 

pixel is 𝑚𝑖𝑛
𝑖

(𝑐𝑖
𝑛,𝑘) ≥ 1(𝑖 = 1,2, … ,8)  and strong edges and clutter are 𝑚𝑖𝑛

𝑖
(𝑐𝑖

𝑛,𝑘) ≤ 1(𝑖 =

1,2, … ,8). 

Therefore, object enhancement and background suppression can be performed using the 

grayscale contrast of the object neighborhood at different scales to ensure that the actual object can 

be maintained up to the deeper layers of the network and the decoder side. This study implemented 

this mathematical theory into a network structure to introduce a multi-scale object enhancement 

module. The object and neighborhood grayscale contrast is defined as follows: 

𝐶𝑛 = 𝑚𝑎𝑥
𝑘

(𝑚𝑖𝑛
𝑖

(𝐶𝑖,𝑘
𝑛 )) ,                                      (3) 

2.1.2. Global context module 

Inspired by nonlocal mean filtering, the global context (GC) block structure [25] shown in 

Figure 2 breaks the fixed sense field limitation of the convolution module by calculating the 

correlation between pixels in the feature map, capturing the long-distance dependency between 

pixels, and responding to the actual object after aggregating the contextual information. This paper 
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refers to the GC block as the global object corresponding module. As seen in Figure 2, The GC block 

structure mainly comprises three parts: 1) A global attention structure for context modeling, 2) a 

bottleneck transform structure for capturing channel dependencies and 3) a fusion structure for 

feature fusion after broadcasting operations on pixel values. The specific operation can be expressed 

as follows: 

𝑧𝑖 = 𝑥𝑖 + 𝑊𝑣2𝑅 𝑒 𝑙 𝑢 (𝐿𝑁 (𝑊𝑣1 ∑
𝑒

𝑊𝑘𝑥𝑗

∑ 𝑒𝑊𝑘𝑥𝑚
𝑁𝑝
𝑚=1

𝑥𝑗
𝑁𝑝

𝑗=1
)) ,                  (4) 

where 𝑥𝑖, xj and 𝑥𝑚 are the 𝑖th, 𝑗th and 𝑚th(1 ≤ 𝑖, 𝑗, 𝑚 ≤ 𝑁𝑝) pixels of the input feature map, 

respectively; 𝑧𝑖 is the output pixel of the output feature map at the position corresponding to 𝑥𝑖; 𝑁𝑝 

is the total number of pixels of the feature map; 
𝑒

𝑊𝑘𝑥𝑗

∑ 𝑒𝑊𝑘𝑥𝑚
𝑁𝑝
𝑚=1

 is the attention weight after global 

pooling; 𝑊𝑣2𝑅 𝑒 𝑙 𝑢 .𝐿𝑁(𝑊𝑣1(𝑔))/ is the bottleneck transform structure; 𝑊𝑘, 𝑊𝑣1, and 𝑊𝑣2 are 

the nonlinearly varying convolutional kernel parameters; 𝐿𝑁(𝑔), 𝑅𝑒𝑙𝑢(𝑔)  is the normalization 

operation and activation function. A normalization layer is added to the bottleneck transform structure 

to simplify the optimization and act as a regularizer to enhance the network‟s generalization ability. 

In summary, Section 1.1 can use the differences between actual objects and their neighborhood 

background to enhance the object and prevent object loss in the feature extraction stage. This paper 

converts this mathematical model into a network structure for model construction and enhances the 

object in a multi-scale range. The GC block structure can compute the interpixel correlation to 

capture the long-distance dependency. This paper introduces this network structure to enhance the 

image with contextual information aggregation to make the actual object responsive and solve the 

problem of a limited sensory field. 

 

Figure 2. GC block. 

2.1.3 Datasets for single frame infrared small target (SIRST) detection 

Currently, there is a significant scarcity of publicly available datasets for detecting infrared 

dim and small targets on the internet. Some researchers have published datasets they used in their 

papers [17,19,20], such as Wang et al. [19], who constructed a detection dataset with 10,000 frames 
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of images. They created this dataset by cropping high-resolution images to form backgrounds, then 

superimposed real targets or synthetic objects onto these backgrounds. However, the synthetic 

nature of the dataset results in noticeable artifacts, and the annotations are only partially accurate.  

Dai et al. [17] created a dataset with real captured detection images comprising 427 frames. While 

this dataset contained true data, it was relatively small and might not meet the training 

requirements of neural networks. Li et al. [20] constructed a synthetic-detection dataset with 1327 

frames. Compared to the synthetic dataset in [19], it featured more realistic and subdued targets, 

smoother boundaries, and more lifelike generated images. However, this dataset had fewer frames, 

particularly for multiple target images, and might not adequately satisfy the training and 

generalization needs of detection models. 

This paper employs an approach that combines augmentation and semi-simulation to create a 

dataset of infrared dim and small targets with varying quantities, sizes, backgrounds, and precise 

annotations, while requiring relatively less manpower and resources. A detailed description of the 

dataset is presented in Section 3.1. 

2.2. The proposed method 

In this section, the overall structure of the network is first introduced, then the multi-scale object 

enhancement (MTE) module, global object response (GTR) module, channel attention (Ch_atte) 

module, multilayer feature fusion (MFF) module, and multiple loss constraint (MLC) module are 

introduced. 

2.2.1. Overall network architecture 

Given an infrared source image, the input image is classified pixel-by-pixel by a fully 

convolutional network to segment the actual infrared weak object, and the final output is a detection 

result image of the same size as the input image, which is thresholded to obtain the actual object. The 

network structure proposed in this paper is shown in Figure 3. 

 

Figure 3. Overall network structure. 
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First, the infrared source image is fed into the MTE module for feature extraction and object 

enhancement; The GTR module calculates the global response of the object features in the feature 

map and establishes the long distance dependence between the object pixels, the Ch_atte module 

assigns different weights to the deep semantic features of the network to pay attention to the useful 

information while ignoring the useless information, the MFF module fuses the feature information of 

different levels. It decodes the object information, and the MFF module fuses the feature information 

of different levels and decodes the object information. The MLC module combines the multiclass 

loss to effectively constrain the output results and obtain more accurate object location and pixel 

classification. 

2.2.2. Multi-scale object enhancement module 

As mentioned in Section 1, the reasonable use of prior knowledge can effectively enhance weak 

infrared objects and improve object detection accuracy and network module interpretability. 

However, because the network model in this paper is an end-to-end fully convolutional network, the 

constructed mathematical model needs to be transformed into a neural network structure to meet the 

model‟s end-to-end learning requirements. The MTE module constructed in this paper is depicted in 

Figure 4. 

 

Figure 4. Multi-scale object enhancement module. 
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A. Object enhancement 

Let the input feature map be 𝑋 ∈ 𝑅𝐻×𝑊×𝐶. To reduce the amount of parameter computation, use 

the 1×1 convolution operation to reduce the number of feature map channels to one to obtain the 

reduced dimensionality of feature map 𝑋′. First, to compute the grayscale contrast between the 

object region and the neighborhood background region, carry out the mean pooling operation on 𝑋′ 

to obtain the pooled feature map 𝑋𝑠
″, with a pooling diameter of 𝑠(𝑠 = 3,5,7,9). The step length of 

one does not change the size of the feature map, and the pooling operation corresponds to Eq (1) to 

find the sliding mean value of each cell in the window. Next, the cyclic shift operation is performed 

on 𝑋𝑠
″, and the operation process is shown in Figure 6, with shift direction 𝜃(𝜃 = 0,

𝜋

4
,

𝜋

2
, … ,

7𝜋

4
) 

and shift distance 𝑣(𝑣 = 3,5,7,9) , to obtain the shifted feature map 𝑋𝜃,𝑣
″ . Different pooling 

diameters and shift distances are used to compute the contrast between the actual object region and 

the local neighborhood background at different scales. The contrast feature map group obtained by 

the same shift distance is subjected to a channel minimum pooling operation to obtain the weight 

feature map corresponding to this shift distance P, as shown in Eq (5). 

𝑉𝑠 = 𝑚𝑖𝑛
𝜃

(
𝑋𝑠

‴

𝑋𝜃,𝑣
‴ +𝛼

) ;    𝑠 = 𝑣, 𝜃 = 0,
𝜋

4
, … ,

3𝜋

2
,

7𝜋

4
 ,            (5) 

where the ratio of pooled-to-shifted feature maps corresponds to comparing the gray mean of the 

object region with its neighbors in different directions via Eq (2); 𝛼 is a very small positive value 

used to avoid zero divisors. 

B. Feature extractions 

The input feature map 𝑋  is subjected to ResBlock for feature extraction, in which the 

convolution kernel is selected to be 3 × 3 in size, with a step size of one. The padding method is 

selected as “same pixel padding at the edges” so that the output feature map maintains the same size 

as the input feature map. The activation function is Leaky_rectified linear unit (Leaky_ReLU), which 

transforms the linear mapping into a nonlinear transformation to fit a more realistic data distribution, 

and the batch normalization (BN) layer represents the data normalized layer, which improves the 

training speed of the network to learn the data distribution and enhances the generalization ability of 

the network. The short join operation avoids the vanishing gradient problem caused by too deep a 

network. In the infrared source image, the size of the weak object is 2 × 2–9 × 9. Given the feature 

extraction process, downsampling easily leads to the loss of the weak object. This paper‟s fully 

convolutional network without downsampling uses only the convolution operation to extract fixed 

sensory field features. The sensory field is limited to the problem that will be solved in Section 3.3. 

The feature extraction process can be expressed as follows: 

𝑋‵ = 𝐹𝑒(𝐹𝑒(𝑋))                               (6) 

𝐹𝑒(𝑋) = 𝑋 + 𝐵𝑁(𝜎(𝑊2𝜎(𝑊1𝑋))) ,                      (7) 

where 𝑊1, 𝑊2 , 𝜎, and BN are the first and second layer convolution kernel parameters, i.e., the 

activation function Leaky_ReLU and the data normalized operation, respectively; 𝐹𝑒() is the 

feature extraction operation; and 𝑋‵ is the intermediate features extracted after the ResBlock. 

Perform channel maximum pooling and channel expansion operations on the weight feature 

map 𝑉𝑆 = *𝑉3,  𝑉5, 𝑉7,  𝑉9+ ∈ 𝑅𝐻×𝑊×4 with the expansion multiplier 𝐶. The point multiplication 

operation is with 𝑋‵, then perform the 𝑐𝑜𝑛𝑐𝑎𝑡 operation with 𝑋‵ to obtain the output of MTE_X 
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from the MTE module. The MTE object enhancement module performs object enhancement and 

background suppression according to the grayscale comparison between the actual object and the 

neighborhood to speed up the training speed of the model and improve the MTE_X network‟s 

detection performance. The following equation describes the calculation process: 

𝑀𝑇𝐸_𝑋 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋‵, (𝑚𝑎𝑥
𝑠

(𝑉𝑠))𝐶 ⊙ 𝑋‵),                      (8) 

where the superscript 𝐶 is the channel expansion by a factor of 𝐶; ⊙ is the matrix multiplication 

operation pixel by pixel; 𝑐𝑜𝑛𝑐𝑎𝑡(𝑔) is the channel merge operation; MTE_X is the output of the 

MTE module. 

2.2.3. Global object response module 

In the network proposed in this paper, no downsampling operation is performed in the encoding 

stage to prevent object loss, so each pixel in the feature map MTE_X can only aggregate features 

with limited sensory fields. However for intensive detection tasks such as weak object detection in 

infrared images, relying on local information alone cannot accurately classify the object and the 

background pixels, so it is necessary to aggregate global contextual features to each pixel to provide 

a long-range dependency and then judge the pixel category based on the global information. 

Therefore, this paper introduces the GC block model to complete the aggregation of context 

information. The input feature map of this module is MTE_X and the output is the global object 

response feature map GTR_X. 

2.3. Ch_atte module 

Multiple cascaded MTE modules convert shallow detail features of infrared source images into 

deep semantic features, and it is easy to classify the actual object in multichannel high-dimensional 

data with a large difference between the actual object and clutter background features. However, the 

output of the convolution layer in the feature extraction process of the MTE module does not consider 

the dependence on each channel. The features of each channel are independent of each other or even 

mutually exclusive in the multichannel deep semantic features, so it is necessary to let the network 

selectively enhance the informative features and suppress the useless features to facilitate the 

subsequent fusion of the useful features for the decoding of the object. Therefore, this paper introduces 

the channel attention mechanism [26,27] as the Ch_atte module to selectively extract the data of each 

channel, where the input feature map is MTE_X and the output feature map is ChAtte_X. Notably, this 

study uses L2 regularization to enhance the sparsity of the semantic feature maps after the fully 

connected layer of the channel attention mechanism, which not only speeds up the training speed of the 

model but also makes the network pay more attention to useful features. 

2.4. Multilayer feature fusion module 

In the object decoding stage, this study adopts the multilayer feature fusion module to effectively 

fuse the deep semantic features and shallow detail features, to achieve progressive interaction between 

high-level features and low-level features, to make good use of the contextual information of the small 

objects through repeated fusion and enhancement, to ensure that the weak objects always remain in the 

feature layer and to achieve the purpose of accurate classification of the object and background pixels. 
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We adopt the residual-in-residual dense block network (RDBNet) [28] as a multilayer feature fusion 

module, whose infrastructure consists of dense nested networks to achieve redundancy in combining 

multilayer information. The input feature map of this module comprises ChAtte_X and GTR_X, 

representing deep semantic features (local features) and shallow detail features (global object response 

features), respectively. These two feature layers are augmented by the channel attention and spatial 

attention structures, respectively, so both ensure that the actual object is not lost, the weights of their 

input feature maps are 0.5 and 0.5, respectively, and MFF_X is the module‟s output feature map. 

2.5. Multi-loss constraint module 

The following problems exist in the loss calculation in the infrared weak object detection 

network: Problem 1. The number of infrared weak object pixels accounts for a small percentage of 

the infrared source image, and there is a serious imbalance between positive and negative ratios in 

the loss calculation. The loss value is mainly composed of the loss of negative samples. Hence, the 

network mainly considers the correctness of the classification of the background pixels in the 

training, which leads to a low accuracy rate of the object detection results. 

Problem 2. Since the grayscale of infrared weak objects conforms to a Gaussian distribution, the 

grayscale of the actual object edge pixels is close to that of the background pixels in the 

neighborhood, and the grayscale of the background strong edges, corners, and strong noise is close to 

the grayscale of the actual object center. The detection network can easily classify these types of 

pixels incorrectly, which leads to poor network profile description performance and a high false 

alarm rate. 

To address the above two problems, this paper constructs the MLC module to combine multiple 

loss functions to effectively constrain the network output, as shown in Figure 5, where the loss 

functions are selected as 𝑆𝑜𝑓𝑡𝐼𝑜𝑈_𝐿𝑜𝑠𝑠 and 𝐹𝑜𝑐𝑎𝑙_𝐿𝑜𝑠𝑠 [29,30]. 

 

Figure 5. MLC module. 

𝑆𝑜𝑓𝑡𝐼𝑜𝑈_𝐿𝑜𝑠𝑠 is calculated as follows: 

    𝐿𝑠𝑓 = 1 −
𝑦×𝑦′

𝑦+𝑦′−𝑦×𝑦′ ,                          (9) 

where 𝑦′ is the labeled image, 𝑦 is the network output image, 𝑦 × 𝑦′ is the intersection of the 

labeled image and the output segmented image, 𝑦 + 𝑦′ − 𝑦 × 𝑦′ is the concatenation of the labeled 
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image and the output segmented image. The 𝑆𝑜𝑓𝑡𝐼𝑜𝑈_𝐿𝑜𝑠𝑠loss value reacts to the network model‟s 

ability to segment the contour of the actual object, and a larger value represents that the network 

output object is closer to the actual object in terms of shape and contour. 

𝐹𝑜𝑐𝑎𝑙_𝐿𝑜𝑠𝑠 is derived via Eq (10): 

= −𝑦𝛼(1 − 𝑦′)𝛾 𝑙𝑜𝑔 𝑦′ − (1 − 𝑦)(1 − 𝛼)𝑦′𝛾 𝑙𝑜𝑔(1 − 𝑦′) 

     = {
−𝛼(1 − 𝑦′)𝛾 𝑙𝑜𝑔 𝑦′ ,             𝑦 = 1

−(1 − 𝛼)𝑦′𝛾 𝑙𝑜𝑔(1 − 𝑦′) ,    𝑦 = 0
                      (10) 

where 𝑦′ is the label, with values of zero and one representing the background and object pixels, 

respectively; 𝑦 is the network output located within [0,1] range; 𝛼 is the balancing factor, which 

balances the importance of the positive and negative samples and is generally taken to be 0.25 to 

solve the above problem; 𝛾 is the adjustment factor for the weights of simple and easy-to-classify 

samples; 𝛾 > 0 reduces the loss of easy-to-classify samples so that the network focuses on the 

difficult and wrongly classified samples and is generally taken to have a value of two to solve the 

above problem. 

In the 𝐹𝑜𝑐𝑎𝑙_𝐿𝑜𝑠𝑠 loss function, the choice of the 𝛼 value determines the correctness of the 

network output in favor of which type of pixel classification: The closer the 𝛼 value is to one, the 

more attention the network pays to detecting the actual object, but it is easy to introduce false alarms 

such as corner points and strong edges, resulting in a high false alarm rate; the closer the 𝛼 value is 

to zero, the more attention the network pays to removing the background clutter, but it is easy to 

remove weak gray pixels in the actual object, resulting in a high leakage detection rate. Therefore, 

the 𝛼 value of 0.25 directly cannot achieve the best detection results for the A value of different 

selections of the network output caused by the impact of this paper to build a multi-loss constraint 

module MLC, in which for the MFF_X for the module‟s input feature map, the output results for the 

𝑌. Convolution operation on MFF_X to obtain the feature map ,𝐹𝐿_𝑋1, 𝐹𝐿_𝑋2- ∈ 𝑅𝐻×𝑊×2, in which 

the 𝐹𝐿_𝑋1 and 𝐹𝐿_𝑋2 , respectively, through the activation function 𝛿 and the labeled image 𝑌′ 
for the 𝐹𝑜𝑐𝑎𝑙_𝐿𝑜𝑠𝑠 loss function, the parameters are (𝛼 = 0.8, 𝛾 = 2) and (𝛼 = 0.2, 𝛾 = 2) to 

ensure that 𝐹𝐿_𝑋1  has a high detection rate and 𝐹𝐿_𝑋2  has a low false alarm rate. A 1×1 

convolution is used to fuse the features of 𝐹𝐿_𝑋1 and 𝐹𝐿_𝑋2 to integrate the advantages of the two 

feature maps effectively. The fusion result is 𝑌  after the activation function 𝛿 , and the 

𝑆𝑜𝑓𝑡𝐼𝑜𝑈_𝐿𝑜𝑠𝑠 loss function is calculated between 𝑌 and the labeled image 𝑌′. This ensures that 

the classification of individual pixels in the network output is correct. At the same time, the shape 

and contour of the whole object area are as close to the actual object as possible. 

In summary, the final loss function is defined as shown in Eq (11). 

𝐿𝑜𝑠𝑠 = 휀1 × 𝐿𝑓𝑙(𝛿(𝐹𝐿_𝑋1), 𝑌′, 𝛼 = 0.8, 𝛾 = 2) +  휀2 × 𝐿𝑓𝑙(𝛿(𝐹𝐿_𝑋2), 𝑌′, 𝛼 = 0.2, 𝛾 = 2) +

 휀3 × 𝐿𝑠𝑓(𝛿(𝑌), 𝑌′)    ,                               (11) 

where 𝛿 is the activation function 𝑡𝑎𝑛/ 2 + 0.5; 휀1, 휀2, 휀3 are the corresponding weights of each 

loss function, intending to adjust the values of each loss function to the same order of one, one, and 

1000, respectively; 𝐿𝑓𝑙(𝑔) and 𝐿𝑠𝑓(𝑔) are 𝐹𝑜𝑐𝑎𝑙_𝐿𝑜𝑠𝑠 and 𝑆𝑜𝑓𝑡𝐼𝑜𝑈_𝐿𝑜𝑠𝑠, respectively; 𝑌 and 

𝑌′ are the final outputs of the network and the labeled image, respectively. 
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3. Results 

3.1. Datasets 

In this study, the Nanjing university of aeronautics and astronautics-SIRST(NUAA-SIRST)  

dataset serves as the foundational dataset, which was created by Dai et al. using short-wave, mid-wave 

and long-wave infrared cameras. This dataset comprises 427 frames of images, each with a size of 300 

× 300 pixels and containing 480 infrared targets. Among these images, 55% of feature targets occupy 

only 0.02% of the image size, with dimensions approximately 3 × 3 pixels. This scenario necessitates 

detection models to capture more contextual information, and the models need to possess stronger 

feature extraction capabilities to deal with dim targets against cluttered backgrounds. Additionally, 10% 

of the images contain two or more infrared targets, breaking away from the single-target scenario 

where detection models can only detect the most sparse or prominent influences. In 35% of the images, 

the grayscale values of the targets are higher than those of the entire image, with most targets 

exhibiting minimal differences from the background. This aspect effectively enhances the model‟s 

ability to improve target saliency detection. 

Due to the limited number of frames in the NUAA-SIRST dataset, it can pose challenges for 

large-parameter network models, leading to issues such as unstable training, model convergence 

difficulties, and overfitting when dealing with a small amount of data. Therefore, it is necessary to 

augment the base data. Augmentation techniques employed include rotation, cropping, the addition 

of random noise, and introducing weak small targets following a Gaussian distribution. Through data 

augmentation, the dataset size is expanded to a total of 5000 images. 

To enhance the robustness of the network models, the authors augmented the NUAA-SIRST 

dataset by capturing real infrared scenes under different backgrounds using existing long-wave 

infrared cameras, thereby creating the north university of China-SIRST (NUC-SIRST) dataset. The 

infrared backgrounds in the NUC-SIRST dataset encompass various scenarios, including sky/cloud 

backgrounds, artificial architectural backgrounds, pedestrian interference backgrounds, and natural 

scenery backgrounds. 

The targets in the NUC-SIRST dataset are manually added virtual targets, and the target 

generation function is as follows: 

2 2

0 0

2 2

( ) ( )1
( , ) exp( ( ))

2 2 2

x x y y
f x y

  

 
    ,                       (12) 

where   represents the variance, which is set to one, and x and y are the pixel coordinates within 

the target image, while 
0x  and 

0y  denote the coordinates of the target image‟s center point. Since

( , )f x y  takes values in the range of 0–1, they are scaled to the range of 0–255 to conform to the 

distribution of grayscale values in infrared weak small targets. The scaling formula is as follows: 

max

( , ) ( , ) set
G

f x y f x y
G

   ,                              (13) 

where ( , )f x y  is the grayscale value at coordinates x and y within the target image, 
set

G  is the 

average grayscale value of the background image with the addition of a random value between 20 

and 40 and 
maxG  is the maximum value in the entire target image. Finally, the three-dimensional 

grayscale distribution map of the target and the actual image are generated, as shown in Figure 6. 
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(a) 4x6 sized target 

 

(b) 4x8 sized target 

 

(c) 8x6 sized target 

Figure 6. Three-dimensional grayscale distribution and actual images of targets at 

different scales. 

To achieve a smoother transition between the targets and the background, generating a more 

realistic dataset, this paper introduced an Alpha channel for the generated targets, representing the 

image‟s transparency. In this setup, the targets have lower transparency at their central positions and 

higher transparency at their edges. This approach makes integrating targets into the background 

image more reasonable and lifelike. The final NUC-SIRST dataset is constructed to encompass 

various infrared weak small targets against different complex backgrounds, with target sizes ranging 

from 2 × 2 to 9 × 9 pixels and signal-to-noise ratios (SNR) below 5.0. The distribution of the 

NUC-SIRST dataset is as presented in the table below: 
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Table 1. The number of image frames in this paper‟s dataset varies depending on 

different backgrounds and the number of targets. 

Image background 

Number of 

images with 2 

targets 

Number of 

images with 3 

targets 

Number of 

images with 4 

targets 

Number of 

images with 5 

targets 

Number of 

images with 6 

targets 

Sky/cloudy background 250 250 250 250 250 

Artificial architectural 

background 
250 250 250 250 250 

Pedestrian interference 

background 
250 250 250 250 250 

Natural scenery 

background 
250 250 250 250 250 

The merging of these two datasets caters to the training and testing of DL networks, making 

them suitable for research in areas such as feature extraction and detection of weak infrared small 

targets. Therefore, the combined dataset utilized in this paper consists of a total of 10,000 images. 

The dataset is partitioned into training, validation and test sets, with proportions of 70, 20, and 10%, 

respectively. To enhance the network‟s operational efficiency, all images in the dataset have been 

resized to 128 × 128 pixels. 

To validate the fairness and representativeness of the dataset proposed in this paper, a 

comparative analysis is conducted with the NUAA-SIRST, Nanjing university of science and 

technology-SIRST (NUST-SIRST) and national university of defense technology-SIRST 

(NUDT-SIRST) datasets, as illustrated in the detailed comparisons presented in Table 2. Additionally, 

in the comparative analysis process, three metrics are employed for evaluation: Target quantity, target 

size, and target brightness ranking, as depicted in Figure 7. 

Table 2. The primary characteristics of various popular SIRST datasets. 

Datasets Image type Background scene #Image Label type Target type 

NUAA-SIRST Real Cloud/city/sea 427 
Manual coarse 

label 

Point/spot/ 

extended 

NUST-SIRST Synthetic Cloud/city/river/road 10000 
Manual coarse 

label 
Point/spot 

NUDT-SIRST Synthetic 
Could/city/sea/field/ 

highlight 
1327 Ground truth 

Point/spot/ 

extended 

Ours Real+Synthetic 
Cloud/city/sea/filed/ 

person/noise 
10000 Ground truth 

Point/spot/ 

extended 
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(a) the number of targets            (b) target size              (c) target brightness 

Figure 7. Comparison of existing public SIRST datasets. 

According to Figure 7, concerning the comparison of target quantities, this paper‟s dataset 

comprises 50% of its data with no fewer than two infrared weak small targets, and 30% of the data 

features four or more infrared weak small targets, representing a higher number of targets compared 

to other datasets. Regarding the comparison of target sizes, 97% of the dataset‟s data have targets 

smaller than 0.15% of the image area, with most targets aligning with the definition of infrared weak 

small targets (i.e., targets smaller than 0.15% of the whole image area). They are larger than those in 

other datasets. Regarding target brightness ranking, 74% of the dataset‟s targets exhibit very low 

brightness, posing greater challenges for detection methods. 

3.2. Experimental design 

This study used the NUAA-SIRST dataset (with 427 sheets) as the base dataset for model 

training. For network models with many parameters, a small number of datasets can easily lead to 

problems such as unstable network training, failure of the model to converge, and overfitting, so it 

was necessary to expand the base data. Expansion methods included rotating, cropping, adding 

random noise, adding weak objects conforming to Gaussian distribution, etc. By expanding the base 

data, the amount of base data was increased to 5000 sheets. 

Aiming to strengthen the robustness of the network model, infrared long-wave cameras were used 

to capture actual infrared scenes in different backgrounds. Next, we constructed the NUC-SIRST 

dataset to expand the NUAA-SIRST dataset, which had 5000 sheets, with the background of actual 

infrared backgrounds (including the background of the sky and clouds, the background of the 

man-made buildings, the background of the pedestrian interference, and the background of the natural 

scenery), and the objects were manually added. The virtual object‟s random number varied from one to 

three; the object position conformed to a uniform distribution, the object grayscale conformed to a 2D 

Gaussian distribution, the grayscale maximum value was 180~255, the SNR ratio ranged from 2.0 to 

5.0 and the object size varied from 2 × 2 to 9 × 9). Therefore, the dataset used in this paper contained 

10,000 images, of which the training set, validation set, and test set accounted for 70, 20, and 10%, 

respectively, and the image size was 128 × 128. 

In this study, six evaluation indices, namely, signal-clutter ratio gain (SCRG), background 

suppression factor (BSF), intersection of union (IoU), precision (Pr), recall (Recall, Re) and Fmeasure, 

were used to evaluate the detection results of different methods. Among them, SCRG was used to 

evaluate the enhancement degree of the method to the object, BSF to evaluate the ability of the 

method to suppress the background, and IoU to assess the ability of the method to describe the 
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contour of the actual object. Meanwhile, Pr and Re parameters were used to evaluate the ability of 

the method to remove false alarms and omission of detection, respectively. Finally, Fmeasure reflected 

the combined performance of Pr and Re via Eq (14): 

𝐹measure=
2×𝑃𝑟×𝑅𝑒

𝑃𝑟+𝑅𝑒
 ,                              (14) 

Larger values of the six indices indicated methods with stronger detection capability. In addition, 

this study used a receiver operating characteristic (ROC) curve to validate the proposed method‟s 

feasibility. The ROC curves were plotted with the false positive rate (FPR) as the horizontal axis and 

the true positive rate (TPR) as the vertical axis. The closer the ROC curve of the particular method to 

the upper left corner, the better the method‟s performance. 

To test the effectiveness of the proposed infrared small object detection method, this study used 

a large amount of actual and simulated data containing small objects for experimental verification. 

All codes in this study were run on an Ubuntu server with a Tesla M40 graphics card and 12 GB of 

video memory, using PyCharm 2019.3 as the test software. The numbers of network training, 

validation, and test data points were 7000, 2000, and 1000, respectively, with an image size of 128 × 

128 and a total number of training epochs of 20. The learning rate was initialized at 0.001 and 

decreased by 30% every five epochs, the optimization function was selected as the Adam optimizer 

and the network framework was TensorFlow 2.4. 

3.3. Comparative numerical tests 

3.3.1. Qualitative comparative experiment and analysis 

To verify the effectiveness of the proposed method, nine representative infrared weak object 

detection methods were selected as reference methods, including LEF [31], TLLCM (tri-layer local 

contrast measure) [32], SRWS, MDvsFA-CGAN, ACM, LSPM, DNANet, AGPC and FC3Net. 

Notably, the choice of different backbone networks in DNANet can significantly impact detection 

performance. To ensure a fairer and more representative comparison, we selected the DNANet 

detection method with the best performance for comparison, which incorporates the ResNet-18 

backbone. Figure 8 shows the experimental results, in which the infrared source image was selected 

from the dataset with an obvious contrast effect, and the actual object area is shown with a red 

rectangular box. The detection results of the proposed and reference methods are visualized via a 3D 

salient map. The detection results of the methods on the actual object are shown in the rectangular 

box calibration part of the detection salient map, and the elliptical box indicates the detection of false 

alarms. If there is no rectangular box calibration, the actual object remains undetected or was hidden 

in the background clutter and could not be segmented accurately. 
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(a) Cloud background, weak object image detection results 

 

(b) Natural scene background image detection results 

 

(c) Artificial building background image detection results 

 

(d) Results of background image detection for the Haitian connection 

 

(e) Strong noise background, large-scale object image detection results 

Figure 8. Infrared small object detection with different methods against various complex 

backgrounds. 

As seen in Figure 8, for infrared source images with different types of complex backgrounds, the 

network proposed in this paper detected the obvious object of the salient map, located the object 

accurately, and the contour segmentation was close to the actual object. The reference methods used 
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in this study had the following drawbacks: 

1) The HVS class methods lead to a high leakage rate when the weak object and the 

neighborhood background have low contrast, such as in Figure 8(a), where the complex cloud layer 

is close to the gray level of the weak object, and the object is hidden in the cloud layer, resulting in a 

low gray level contrast, which is not easy to detect. 

2) The paradigm-constrained optimization class methods lead to a high false alarm rate due to 

the sparse characteristics of the corner and the strong edges of the background, such as in Figure 8(c), 

where the network detects the strong edge of an artificial building and corner points. The strong 

edges and corner points of the artificial building in Figure 8(c) are mistakenly detected as objects. 

3) The comparative DL methods do not perform object enhancement, so the weaker objects are 

easily lost in the feature extraction process. The loss function does not consider the grayscale 

distribution of the difficult-to-classify pixels (object edge pixels, corner points, strong edge pixels, 

etc.), so there is still room for improvement in the performance of the method‟s silhouette description, 

such as the method complexity. As shown in Figure 6(b),(d),(e), the background is interfered with by 

natural scenery, marine clutter, and strong noise; it is not easy to distinguish the actual object from 

the interfering objects, and the enhancement of the actual object does not result in false alarms and 

missed detection. 

In contrast to the above reference methods, the proposed method ensured object enhancement in 

the process of feature extraction so that the actual object could be maintained in the deep layer of the 

network, and at the same time, the output layer of the network used the multi-loss constraint module 

to fully integrate the feature maps of low false alarms and low leakage detection, effectively 

extracting the object while reducing the impact of false alarms so that it could effectively detect 

multi-scale weak objects in all kinds of actual scenes, and the method was more robust. 

3.3.2. Quantitative comparison experimental results and analysis 

The metrics (indices) introduced in subsection 3.3.2 were selected to compare the performances 

of the proposed and reference methods, in which the test data was chosen to be 1,000 test sets of 

infrared source images with different types of complex backgrounds, different scales of objects, and 

different numbers of objects. To ensure that the metrics of all types of methods were assessed fairly, 

the DL methods were retrained using the dataset of this paper, while the mathematical modeling 

methods were tested using the best parameters designed in the original paper. 

Table 3. Comparison of different methods‟ indices for small object detection results 

using various infrared images with complex backgrounds. 

Index LEF TLLCM SRWS CGAN ACM LSPM DNANet OURS 

SCRG 128.861 128.117 734.878
**

 17.320 34.010 69.857 107.034 1167.166
*
 

BSF 23.191 22.548 196.904
**

 1.121 24.697 44.976 182.056
*
 63.233 

IoU 0.303 0.334 0.191 0.117 0.382 0.356 0.584
**

 0.647
*
 

Pr 0.829 0.855
**

 0.886
*
 0.123 0.556 0.436 0.680 0.719 

Re 0.367 0.370 0.192 0.872
**

 0.590 0.718 0.634 0.895
*
 

Fmeasure 0.426 0.459 0.298 0.192 0.572 0.493 0.688
**

 0.766
*
 

Note: * is the optimal value for each row, and ** is the suboptimal value for each row. 
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In compliance with [33], the respective ROC curves were plotted in Figure 9. 

     

(a) cloud background detection             (b) natural scene background detection 

   
(c) man-made buildings background detection  (d) Haitian connection background detection  

 

(e) strong noise background detection 

Figure 9. ROC curves of detection results of different complex background types. 

According to the data analysis of Table 1, the proposed method performed optimally in IoU, 

SCRG, Re, and Fmeasure metrics, However, it poorly performed in BSF and Pr metrics. This can be 

attributed to the following reasons: The BSF value is related to the standard deviation of the 

background of the detected image. The SRWS method is based on optimizing the paradigm 

constraints and solves for the center of mass position of the actual object directly, with the position of 

the center of mass being defined as one and the background region suppressed as zero. The center of 

mass position was defined as one, and the background region was suppressed to zero. Therefore, this 

method achieved the highest BSF value, while the rest had a slightly lower BSF value because the 

background could not be completely suppressed. 

Meanwhile, the Re and Pr metrics of the DL-based methods were lower than those of the 

mathematical modeling-based methods because the latter were more biased toward detection, i.e., 
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they focused on obtaining the center-of-mass coordinates of the actual object and, therefore, had a 

higher value of Pr and stronger defalse-alarm ability. In contrast, the DL-based methods were more 

biased toward segmentation, i.e., they classified the object background category for each pixel. The 

BSF value was slightly lower for each pixel to classify the object background category; thus, they 

had higher Re values and better defalse alarm ability. Although the Pr index of the proposed method 

was lower than that of the mathematical modeling method, it had the best performance among the 

DL methods, outperforming all reference methods by Re index and implying its defalse-alarm and 

deleakage-detection abilities. IoU and Fmeasure are the key indices for infrared weak object detection 

methods. The proposed method achieved the optimal performance in these two indices, where IoU 

measures the degree of similarity between the network output and the actual object. Larger IoU 

values indicate that the method learns the data distribution of infrared images better, improving the 

segmentation capability of the actual object contour. Fmeasure is a comprehensive combination of Pr 

and Re indicators, which measures the detection accuracy of the method, and the larger the value, the 

easier it is to discriminate the actual object from the background clutter. Compared with the reference 

methods, the proposed one improved the IoU and Fmeasure metrics by 10.8 and 11.3%, respectively. 

Therefore, combining the above six metrics and their significance, this method had better detection 

performance than the baseline one. 

From the data analysis in Figure 9, it can be seen that the detection performance of this method 

is better than that of the comparison method under different complex background interferences. The 

detection rate can be higher simultaneously with the lower false alarm rate, and the detection rate is 

the first to reach the peak. In contrast, the comparison method reaches a certain threshold in the false 

alarm rate before the detection rate reaches the peak, so it can be seen that the method of this paper 

has a higher localization ability for the actual object and detects the location accurately. 

3.4. Ablation numerical tests 

This section describes the ablation tests conducted on the MTE module, the GTR module, and 

the MLC module to assess their effectiveness. The ResNet-18 module replaced the MTE module, the 

direct connection module replaced the GTR module and the MLC module 𝐹𝑜𝑐𝑎𝑙_𝐿𝑜𝑠𝑠 was directly 

applied to the network output layer with the parameter selection (𝛼 = 0.25, 𝛾 = 2). The controlled 

variable method was used to conduct the above tests. 

Table 4. Index comparison of test results of different module combinations. 

Module SCRG BSF IoU Pr Re F-measure 

No 214.050 31.128 0.507 0.588 0.855 0.643 

MTE 351.168 68.591
*
 0.550 0.670 0.827 0.683 

GTR 263.462 57.404 0.512 0.647 0.790 0.647 

MLC 358.131 23.406 0.563 0.642 0.880 0.699 

MTE+GTR 277.260 32.559 0.570 0.658 0.866 0.703 

MTE+MLC 384.784 29.147 0.596
**

 0.673 0.895
*
 0.726

**
 

GTR+MLC 568.131** 43.762 0.592 0.680
**

 0.871 0.722 

MTE+GTR+MLC 1167.166
*
 63.233

**
 0.647

*
 0.719

*
 0.895

**
 0.766

*
 

Note: * is the optimal value for each row, and ** is the suboptimal value for each row. 

The results including the key indices IoU and Fmeasure for various combinations of MTE, GTR, and 
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MLC modules and those excluding some of these are listed in Table 4. Their analysis proved that the 

GTR, MTE and MLC modules enhanced the detection performance of the network. Comparing the 

MTE, GTR and MLC module combinations, it can be seen that the importance of the GTR, MTE and 

MLC modules for detecting weak IR objects increases in turn. Comparing the MTE, GTR and MLC 

module combinations with the MTE + GTR, MTE + MLC and GTR + MLC module combinations, 

there was no conflict among the modules. The importance of the GTR, MTE, and MLC modules for 

infrared weak object detection increased. Their combination can further improve the performance of 

the network. An effective combination of the three modules can make the network model achieve the 

best detection effect, which also proves the practicality of the three network modules.  

3.5. Network model interpretability tests 

 

(a) Outputs based on the modules of the sky background 

 

(b) Outputs based on the modules of the sky background 

Figure 10. Output of different modules of the proposed network. 

To verify the interpretability of the network proposed in this paper, infrared source images with 

different backgrounds were subjected to weak object detection. The outputs of each module of the 

network were converted and displayed in pseudo-color, and the actual objects were labeled using 

white rectangular boxes, as shown in Figure 9, where the left side of the dotted line is the source 

image and the corresponding labeled image. The right side of the dotted line, from left to right and 

from top to bottom: The image of the object enhancement using the mathematical model, the output 

of the shallow MTE module of the network, the output of the deep MTE module of the network, the 
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output of the deep GTR module of the network, the output of the deep MFF module of the network, 

the output of the MLC module of the network 𝐹𝐿_𝑋1and 𝐹𝐿_𝑋2 and the final output of the network. 

Comparing the object enhancement and source images, the mathematical model constructed in 

this study could enhance the object and suppress the background, proving that the mathematical 

model was effective and had interpretability. Comparing the object enhancement image and the 

shallow MTE_X and deep MTE_X images, it can be seen that the MTE module effectively enhanced 

the actual object. It was maintained from the shallow to the deep layer in extracting the image 

features, proving that the interpretation of the MTE module in subsection 2.2 was correct, and 

possessed interpretability. According to the GTR_X image, the object pixels considered the global 

information and established the long distance dependence between objects, and the actual object was 

responded to, proving that the GTR module was correctly explained in Section 2.3 and possessed 

interpretability. Comparing the deep MTE_X, GTR_X and MFF_X images, it can be seen that the 

MFF module fully integrated the features of MTE_X and GTR_X, decoded the actual object, and 

suppressed the background, proving that the explanation of the MFF module in subsection 2.4 was 

correct, and the module had interpretability. Comparing 𝐹𝐿_𝑋1 and 𝐹𝐿_𝑋2 of the MLC module and 

the final output image of the network, it can be seen that 𝐹𝐿_𝑋1focused on the correct classification 

of object pixels, while 𝐹𝐿_𝑋2 focused on the correct classification of background pixels. The final 

output of the network incorporated the characteristics of the two feature maps mentioned above. It 

effectively constrained the object contour using 𝑆𝑜𝑓𝑡𝐼𝑜𝑈_𝐿𝑜𝑠𝑠, proving that the MLC module was 

correctly explained in subsection 2.5 and had interpretability. 

In summary, the actual output of each network module was consistent with the theoretical 

design, and all of them had interpretability. When all the submodules of the network model can be 

interpreted, the whole multi-scale infrared weak object detection network formed by the combination 

of the modules is also interpretable. 

3.6. Calculation of the complexity of detection methods 

For the method proposed in this paper, we calculated its complexity, which mainly includes 

floating point operations (FLOPs), a measure of the computational complexity of neural networks 

and a measure of the number of model parameters. We compared it with other DL methods, as shown 

in Table 5. 

Table 5. Complexity computation for different deep learning methods. 

Index MDvsFA LSPM DNANet AGPC FC3Net This study 

Parameter 3.9M 16.9M 4.7M 12.4M 7.0M 5M 

FLOPs 61.7G 15.4G 3.51G 10.8G 648.7M 2.5G 

From the experimental results, it can be seen that the method proposed in this paper is slightly 

higher than the DNANet and MDvsFA algorithms in terms of the number of parameters, but lower 

than other algorithms in terms of the FLOPs index. After testing, the detection frame rate of the 

algorithm proposed in this paper is about 20 frames, satisfying real-time demand. 

4. Conclusions 

This study proposed an interpretable multi-scale infrared weak object detection network design 
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method for mitigating the problem of inaccurate object localization and contour segmentation in 

infrared weak object detection in a complex background. The proposed network model first 

performed object enhancement and shallow detail feature extraction on the input infrared source 

image and obtained high-level semantic features after cascading processing of multiple multi-scale 

object enhancement modules. Next, the low-level detail features and high-level semantic features 

were fused repetitively after calculating the global object response and completing the pixel 

classification of the actual object and the background noise in high-dimensional data. Finally, 

multiple loss joint constraint network outputs completed the pixel classification of the actual object 

and the background noise to make it close to the actual object distribution. Numerous comparative 

and ablation tests were conducted, proving the robustness of the proposed method and the 

effectiveness of each network module. For various types of infrared weak object detection in 

different types of complex backgrounds, the proposed method exhibited strong object detection and 

object contour description performances, and the designed detection system had high reliability. The 

follow-up study will focus on the infrared weak object detection method under the dual-drive mode, 

aiming at improving the coupling degree of the mathematical modeling method and DL method and 

enhancing the object detection capability of the refined method. 
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