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Abstract: Protein functions are closely related to their subcellular locations. At present, the prediction
of protein subcellular locations is one of the most important problems in protein science. The evident
defects of traditional methods make it urgent to design methods with high efficiency and low costs. To
date, lots of computational methods have been proposed. However, this problem is far from being
completely solved. Recently, some multi-label classifiers have been proposed to identify subcellular
locations of human, animal, Gram-negative bacterial and eukaryotic proteins. These classifiers adopted
the protein features derived from gene ontology information. Although they provided good
performance, they can be further improved by adopting more powerful machine learning algorithms.
In this study, four improved multi-label classifiers were set up for identification of subcellular locations
of the above four protein types. The random k-labelsets (RAKEL) algorithm was used to tackle
proteins with multiple locations, and random forest was used as the basic prediction engine. All
classifiers were tested by jackknife test, indicating their high performance. Comparisons with previous
classifiers further confirmed the superiority of the proposed classifiers.

Keywords: protein subcellular localization; multi-label classification; random k-labelsets algorithm;
random forest; gene ontology; jackknife test

1. Introduction

Proteins, as the material basis of life, play an important role in participating in various forms of
life activities. Generally, the locations where these protein molecules reside in compartments or
organelles are called “subcellular locations” [1]. It has been found that there is a close relationship
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between the functions of proteins and their subcellular locations in cells. Thus, correct prediction of
protein subcellular locations is helpful to uncover their functions. Determination of protein subcellular
locations is one of the most important and essential problems in protein science.

The traditional methods for identifying protein subcellular location include fluorescence
microscopy, electron microscopy, cell fractionation, etc. [2]. Although these experimental approaches
can output assured results, there still exists a great gap between the number of proteins with known
subcellular locations and those without determined subcellular locations [3,4] because many new
proteins have been generated or found. Evidently, the above traditional methods cannot timely
determine the subcellular locations of new proteins. In recent years, with the rapid development of
computer science, computational methods are an important alternative way to determine protein
subcellular locations, especially the machine learning based methods.

During the last two decades, plenty of efforts have been made to design computational methods
for determining protein subcellular locations. As mentioned above, most of them are machine learning
based methods. As most machine learning algorithms need numeric values as input, the main step to
design machine learning based methods is to encode proteins into several features. According to the
current research progress, the machine learning based methods can be roughly divided into the following
four groups. The first group consists of sequence-based methods, which extract protein features from
their sequences, such as amino acid composition [5,6], pseudo amino acid composition [7—11], position
specific score matrix (PSSM) [12—15], etc. As sequence is the widely used form to represent proteins,
this method always had wide applications. However, some essential properties of proteins cannot be
extracted from their sequences, which affected the efficiency of this method. The second group consists
of annotation-based methods. This group of methods uses annotation information of proteins for
extracting essential protein features. Gene ontology (GO) [16—22] information is widely used in this
group. Other information includes functional domain [23-26], Swiss-Prot keywords, PubMed abstracts,
etc. The efficiency of this method is quite high because the annotation information contains several
essential properties of proteins. However, for a newly designed protein, this method cannot always
output the result, as its annotation information is not available. The third group consists of network-
based methods. Protein-protein interaction (PPI) networks have wide applications for tackling protein-
related problems, including the prediction of protein subcellular locations. Such methods use the
features derived from one or more PPI networks, which are fed into downstream classification
algorithms [27-30]. Although such methods also provide high performance, their application to newly
designed proteins is a problem, as their locations in PPI networks are unknown. The last group consists
of the recently proposed image-based methods. These methods adopt the features derived from protein
images [31-33] and always employ deep learning algorithms to make predictions. The performance of
such methods is very high. However, their interpretability is quite poor. In this study, we focused on
annotation-based methods. In previous studies [16—19], Cheng et al. proposed a novel scheme to
extract features from GO information of proteins, on which efficient multi-label classifiers were built.
These features had low dimensions and further contained the label information of training samples.
However, they adopted a weak prediction engine, which did not contain a strict learning procedure,
thereby leaving great spaces for improvement. This study continued their work by employing a set of
powerful machine learning algorithms.

In this study, four multi-label classifiers were set up for predicting subcellular locations of human,
animal, Gram-negative bacterial and eukaryotic proteins, respectively. These proteins were directly
retrieved from four previous studies [16—19]. Each protein was represented by compact features
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derived from its GO information. To fully learn these features, a powerful multi-label algorithm,
random k-labelsets (RAKEL) [34], with random forest (RF) [35] as the basic prediction engine, was
adopted to construct the classifiers. The jackknife test results of the classifiers on corresponding protein
datasets indicated their quite high performance to predict protein subcellular locations. The full
comparisons confirmed that the proposed classifiers were superior to several previous classifiers.

2. Materials and methods
2.1. Benchmark datasets

In this study, four protein types and their subcellular locations were investigated, including human,
animal, Gram-negative bacterial and eukaryotic proteins. This information was directly collected from
four previous studies [16—19]. Accordingly, four protein datasets were obtained, each of which
consisted of proteins in one above-mentioned protein type. For easy description, the four protein
datasets were called human, animal, Gram-negative bacterial and eukaryotic datasets, respectively.
Some information of these four datasets is listed in Table 1. Their brief descriptions are as follows.

Table 1. Information of four protein datasets.

Dataset Number of proteins Number of subcellular locations
Human dataset 3106 14

Animal dataset 3919 20

Gram-negative bacterial dataset 1392 8

Eukaryotic dataset 7766 22

The human dataset consisted of 3106 human proteins reported in [16,36,37]. The sequence identity
of any two proteins in this dataset was less than 25%. Fourteen subcellular locations were involved with
these proteins, as shown in Figure 1(A). According to the subcellular locations of these proteins, all 3106
proteins were classified into fourteen classes. The number of proteins in each class is also shown in
Figure 1(A). By simple calculation, the sum of protein numbers in all classes was 3681, which was larger
than the number of different proteins (3016), indicating that some proteins belonged to more than one
class. The average number of locations for proteins in this dataset was 1.185. It was a multi-label
classification problem to assign the above fourteen subcellular locations to the given proteins.

In the animal dataset, 3919 proteins were contained, which were retrieved from [17,38]. Any
protein had a sequence identity of less than 40% with any other protein in this dataset. The above
proteins had 20 subcellular locations, which are listed in Figure 1(B). Accordingly, these proteins were
divided into 20 classes. The number of proteins in each class is listed in Figure 1(B). Likewise, the
sum of protein numbers in all classes was 6519, also larger than the number of different animal
proteins. Each animal protein, on average, 1.669 subcellular locations. Thus, it was also a multi-label
classification problem.

As for the third dataset, the Gram-negative bacterial dataset, 1392 proteins were included. These
proteins were collected from [18,39,40]. The sequence identity of any two proteins in this dataset
was less than 25%. Eight subcellular locations were assigned to these proteins, which are shown in
Figure 1(C). Accordingly, 1392 proteins were classified into eight classes. The size of each class is also
listed in Figure 1(C). Similar to the above two datasets, the sum of protein numbers in all classes (1456)
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was larger than the number of different Gram-negative bacterial proteins (1392), and the average
number of locations that a protein was assigned in this dataset was 1.046. Assigning eight subcellular
locations to the given proteins was also a multi-label classification problem.

The last dataset, the eukaryotic dataset, was sourced from [19,24]. Overall, 7766 proteins were
contained in this dataset, which were classified into 22 subcellular locations, as shown in Figure 1(D).
The number of proteins in each class is also listed in Figure 1(D). The sequence identity of any two
proteins in this dataset was less than 25%. Similarly, some proteins can belong to more than one
class, as the sum of protein numbers in all classes (8897) was larger than the number of different
proteins (7766). The average number of locations that a protein was assigned was 1.146. A multi-label
classifier should be built to assign these subcellular locations to any eukaryotic protein.
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Figure 1. Bar charts to show the number of proteins in each subcellular location class for
four datasets. (A) Human dataset; (B) Animal dataset; (C) Gram-negative bacterial dataset;
(D) Eukaryotic dataset.
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2.2. Protein representation

It is an essential step to encode each sample into a series of numeric values, which can be
processed by most computer algorithms. These numeric values should contain essential properties of
samples as much as possible. For proteins, GO is an important type of annotation information, which
labels the essential functions of proteins. At first, the one-hot scheme was adopted for the GO annotation
information of proteins, generating a high-dimensional binary feature vector for each protein. The
classification models built on such representation were always of low efficiency. It is necessary to refine
such information to tackle this problem. Here, we directly adopted the scheme reported in [16-19] to
encode proteins for easy comparisons. This scheme not only reduced the dimensions of the final
representation but also included the label information of training samples, which was deemed to be
helpful for improving the classification performance. A brief description of such scheme is as follows.

Given a training dataset S with N proteins, denoted by p;,p2, ***, pn, and L labels, denoted by
li,15,--+,1;, let C; be a subset of S consisting of proteins with label [;. In this case, S = C; U C, U

-+ U C;. In this study, as some proteins may have more than one label, common proteins may exist for
two subsets. Furthermore, the GO terms of protein p, in S constitute the set GO(p,). The feature
vector of each training and test protein p is finally formulated by

U(p) = [61'52"“16L]Ta (1)

where L is the number of labels. Each component §; in this vector indicates the relationship between
p and proteins in C;, which can be determined in the following manner:

Step 1: Determine the GO information of p. If such information is not available, find the protein in the
Swiss-Prot database with the highest pairwise sequence identity to p whose GO information is
available. Use this GO information to represent p. For formulation, the GO information of p thus
obtained is denoted by GO(p) = {GOl, GOﬁ, e GO;‘}, where k denotes the number of GO terms
annotated to p or its most similar protein.

Step 2: For each GO GOj 1<j< k) count the number of proteins in the training dataset that are

annotated by GOJ,denotedby N(GO ) ie. N(GO ) = |{pa|pa € Sand GOJ € GO(pa)}| In addition,

count the number of proteins in C; which are also annotated by GOJ, indicated by N (GOJ 1), 1.e.,
N(GOJ )
N(GO))
Step 3: Take the maximum value among R(GO}, i), R(GOZ, 1), -,R(GOK,i) and set it as &;, i.e.,
8; = max {R(GO},i),R(GOZ,i),---,R(GOK,i)}.

To understand the above procedures, an example is given. Consider a protein p annotated by three
GO terms, say, GO1, GO2 and GO3. The numbers of training proteins annotated by these three GO
terms are first counted (e.g., 120 for GO1, 150 for GO2 and 200 for GO3). Then, the numbers of
training proteins in the first category (for label [,) that are also annotated by GO1, GO2 and GO3 are

counted (e.g., 60 for GOl 10 for GO2 and 20 for GO3). The maximum is picked from {120 11500 22000}

N(GOJ,1) = [{palpa € C: and GO} € GO(p,)}|- Then, calculate R(GOJ, i) =

as 0p, thatis, §; = 0= = 0.5. §,,63,+, 6, can be obtained in a similar way.

With the above operatlon, L features were generated to represent a protein. These features
contained not only the GO information of the encoded protein but also the statistical information of
GO terms of proteins in the training dataset. The number of features was greatly reduced compared to
the one-hot scheme.
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Four datasets were investigated in this study. With the above scheme, proteins in the human,
animal, Gram-negative bacterial and eukaryotic datasets were represented by 14, 20, 8 and 22 features.
Based on these features, efficient multi-label classifiers can be built.

2.3. Random k-labelsets algorithm

As mentioned in the section “Benchmark datasets,” some proteins in each dataset had more than
one subcellular location, suggesting we should construct a multi-label classifier for each dataset for
assigning subcellular locations to proteins. Generally, there are two ways to construct multi-label
classifiers [41]. The first one is problem transformation, which creates some single-label problems
from the original multi-label problem, builds a single-label classifier for each single-label problem and
integrates the results yielded by the single-label classifiers as the output. The second way is algorithm
adaption, which generalizes the single-label classifiers such that they can process samples with
multiple labels. To our knowledge, problem transformation methods are more popular than algorithm
adaption methods when constructing multi-label classifiers. In fact, a multi-label classifier built by a certain
problem transformation method is a combination of single-label classifiers. At present, lots of single-label
classification algorithms have been proposed, providing abundant sources for building such multi-label
classifiers. The pure multi-label classification algorithms are much fewer than single-label classification
algorithms, resulting in much fewer choices to build multi-label classifiers through algorithm adaption
methods. In the previous studies [16—19], a multi-label Gaussian kernel regression (ML-GKR) classifier
was built on each dataset, and it was an algorithm adaption method. Here, we employed a more powerful
problem transformation method, RAKEL [34], to build the multi-label classifiers.

RAKEL can be deemed as an improved version of the label powerset (LP) [42] method. Given a
training dataset containing L labels, LP uses members in the power set of the label set as new labels
and assigns them to all samples. For example, if a sample has two labels, say [; and l3, {l;, 3} will
be treated as a new label and be assigned to this sample. After this operation, all samples have exactly
one label. A single-label classifier can be built on the dataset with new assigned labels based on a
certain single-label classification algorithm. The LP method has an evident defect. A large number of
labels results in a label disaster. So many new labels are involved, and the number of samples for some
labels may small, decreasing the learning results. In view of this, RAKEL was proposed. It randomly
constructs m label subsets with size k (1 <k < L). For each label subset, a single-label classifier is built
using the LP method, called the LP classifier. RAKEL integrates m LP classifiers as the final multi-
label classifier. For a test sample, each LP classifier gives its predictions (binary predictions for labels
involved in this LP classifier). Then, among the LP classifiers related to one label, count the proportion
of classifiers that give positive prediction on this label. If such proportion is larger than the predefined
threshold, which is generally set to 0.5, RAKEL assigns this label to the test sample. In recent years,
RAKEL has been used to construct lots of multi-label classifiers in bioinformatics [43—50].

The present study directly adopted the tool “RAKEL” in Meka (http://waikato.github.io/meka/) [51]
to implement the above RAKEL method. Various values of & were tried to build the optimal classifier.

2.4. Random forest

When using RAKEL to construct multi-label classifiers, we need to select a base single-label
classification algorithm. A proper selection may greatly improve the performance of the final classifier.
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In this study, the classic classification algorithm, RF [35], was used.

RF is an ensemble learning algorithm containing several decision trees [35]. When constructing
a decision tree, the same number of samples in the training dataset was randomly selected with
replacement (i.e., some samples may be selected more than once), and a small proportion of features
are also randomly selected. Given a test sample, each decision tree generates its prediction. RF
integrates these predictions with majority voting. Although decision tree is the basis of RF, and it is
deemed to be a weak algorithm, RF is much more powerful. Accordingly, it has been widely used in
the field of bioinformatics [52—59].

The above RF algorithm was also implemented in Meka (http://waikato.github.io/meka/) [51] by
a tool “RandomForest,” which was directly used in this study. Default parameters were used, where
the number of decision trees was 100.

2.5. Jackknife test

Cross-validation methods are widely used and accepted to evaluate the performance of classifiers.
The jackknife test [60] is one of the commonly used cross-validation methods and has been used to
evaluate many previous classifiers, including classifiers in pLoc and iLoc series [16—-19,36,38,40,61].
To give a fair comparison with previous classifiers, we also adopted the jackknife test to examine all
constructed multi-label classifiers. In such test, each sample is singled out as a test sample one by one,
while the rest of the samples constitute a dataset to train the classifier. Evidently, such procedures are
completely open, that is, the test and training samples are assured in each round. This makes the
evaluation results more reliable and objective. Furthermore, such a test can always output a unique result
in most cases. Thus, it has wide applications in testing the qualities of various classifiers [43,44,62—65].

2.6. Measurements for multi-label classifiers

To evaluate the performance of multi-label classifiers, several measurements have been proposed.
In this study, we adopted the same measurements used in [16—19] for easy comparisons. These
measurements included absolute true, absolute false, accuracy, aiming and coverage. Given a dataset
with N samples and L labels, let D; denote the set of true labels for the ith sample and D;* denote the
set of predicted labels for the ith sample. The above five measurements can be computed as

( absolute true = %Zlivzl A(D;, D))

1 D;uD; |- |D;nD;
absolute false = ~ %, (w)

|Di”Df|)

—_ 1ynN
accuracy = ﬁzl‘=1

) [D:0D]] 2)
PR Y |DinD;{|
1 D;ND;
L coverage = 52?’:1 (||D—1I|)
where A is defined as below:
«~ _ (1, if D; =D/
ADy, D7) = {O, otherwise )
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According to these definitions, the higher the values of absolute true, accuracy and aiming, coverage
are, the higher the performance of the classifier. As for absolute false, the relationship is the opposite.
A low absolute false value indicates high performance. Among these measurements, we selected
absolute true as the key measurement as used in [16—19] for optimizing parameters.

Also, some local measurements on each class were also employed, including sensitivity (SN),
specificity (SP), overall accuracy (ACC) and Matthews correlation coefficient (MCC). For the j-th
class, these measurements can be computed by

(4)

TP+ TN+FP+FN
TPXTN—FPXFN

J(TN+FN)X(TN+FP)x(TP+FN)x(TP+FP)

where TP denotes the total number of correctly classified samples that belong to the j-th class; TN
denotes the number of correctly classified samples that do not belong to the j-th class; FP denotes
the number of samples that do not belong to the j-th class but are misclassified to the j-th class; FN
denotes the number of samples that belong to the j-th label and are misclassified to other classes. The
higher the above measurements are, the higher the performance of the classifiers.

3. Results and discussion

In this study, a set of multi-label classifiers was proposed to identify subcellular locations of four
protein types. The entire procedures are illustrated in Figure 2. This section gives the detailed
evaluation results for these classifiers and compares their performance with previous classifiers. For
convenience, we named the four multi-label classifiers as PMPSL-GRAKEL-Hum (on the human
dataset), PMPSL-GRAKEL-Anim (on the animal dataset), PMPSL-GRAKEL-Geng (on Gram-
negative bacterial dataset) and PMPSL-GRAKEL-Euk (on the eukaryotic dataset), respectively.

Protein subcellular Multi-label classifiers Performance assessment
localization datasets
e Random k-labELsets Jackknife test
GO database algorithm ¢
uman dataset - . _— Overall ot
14 localizations G Randon forest measurements measurements
3919 proteins : [ Accuracy ] { Sensitivity ]
Animal dataset | o Protein features . -
20 localizations [ PMPSL-GRAKEL-Hum J [ Absolute rue J Specificity
Sram-negative | 1392 proteins PMPSL-GRAKEL-Anim Overall
2 8l ] aceuracy
ocalization I -
- : PMPST-GRAKTI -Geng Matthews
Fukaryotic 7766 proleins correlation
- PMPSL-GRAKTL-Cuk Absolute fals ~oelTici
dataset 22 localizations u solute false coellicient

Figure 2. Entire procedures for constructing and testing multi-label classifiers on four
datasets. Four protein subcellular localization datasets are retrieved from previous studies.
Each protein is represented by features extracted from its gene ontology (GO) information.
The Random k-labelsets (RAKEL) algorithm with random forest is adopted to build the
classifier on each dataset, which is finally tested by jackknife test. The test results are as
assessed with overall and local measurements.
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3.1. Parameter optimization

RAKEL was adopted to build classifiers in this study. There are two main parameters, m and £,
which can be tuned to optimize the classifier. The parameter m determines the number of LP classifiers.
We used its default value (10) in Meka. As for the parameter £, it determines the number of labels for
building each LP classifier. Here, we tried all possible values between two and the number of labels in
each dataset. All classifiers under different & values were set up and tested by the jackknife test. In
multi-label classification, accuracy and absolute true are main measurements to evaluate the quality of
prediction results. Relatively, absolute true is stricter than accuracy because the sample is deemed to
be correctly predicted if and only if the predicted labels are identical to true labels. If the predicted
labels are partly correct, they cannot give positive contributions to absolute true, whereas they can
provide this contribution to accuracy. Meanwhile, the previous studies [16—19] also selected absolute
true to optimize parameters. Thus, absolute true was selected as the key measurement to optimize
parameter k.

85.00% 1 82.55% 82.52% 82.74% 8§2.61% 82.45% 82.81% 82.84% g 970, 82.29% 82.84% 82.36% 82.65%
L 2

80.00% -
8 75.00% 1
=
3 70.00% 1
=
S 65.00% -
O
< 60.00% A
55.00% 453.09%
50.00%

2 3 4 5 6 7 8 9 10 11 12 13 14

Parameter k

Figure 3. A curve to show the performance (absolute true) of PMPSL-GRAKEL-Hum
under different values of parameter k. When k is set to nine, the classifier provides the best
performance. The red dot in the curve indicates the highest absolute true.

For the classifier PMPSL-GRAKEL-Hum on the human dataset, its performance on different &
values is shown in Figure 3. It can be observed that when k = 2, the classifier provided quite low
performance. As k determines the number of selected features for constructing LP classifiers, they may
not cover all labels when £ is small, inducing low performance on some labels. This fact further
decreases the overall performance of classifiers. When & > 2, the performances of the classifiers were
almost at the same level. Relatively speaking, when k£ = 9 and 12, the classifier provided the highest
performance, with absolute true of 82.84%. Considering that the complexity of the classifier follows an
increasing trend with the increasing of k&, we finally determine 4 as nine for PMPSL-GRAKEL-Hum.

For the classifier PMPSL-GRAKEL-Anim on the animal dataset, a curve was also plotted, as
shown in Figure 4, to indicate its performance under different £ values. When k£ was small (<3), the
performance was also low, which was same as that illustrated in Figure 3. It was caused by the same
reason. When k > 3, the performance was quite stable. The highest absolute true was 81.86%, when &
was set to eight. Thus, PMPSL-GRAKEL-Anim was built with £ = 8.
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Figure 4. A curve to show the performance (absolute true) of PMPSL-GRAKEL-Anim
under different values of parameter k. When k is set to eight, the classifier provides the
best performance. The red dot in the curve indicates the highest absolute true.

For the classifier PMPSL-GRAKEL-Geng on the Gram-negative bacterial dataset, we also plotted
a curve to illustrate its performance with different £ values, as shown in Figure 5. It can be observed that
all classifiers with different & values provided high performance, with absolute true higher than 94%.
When k = 6, the highest absolute true of 95.40% was achieved. Accordingly, the PMPSL-GRAKEL-
Geng using k£ = 6 was set up.

95.50%
95.40%
., 95.30% A
£ 95.20%
©95.10%
= 95.00%
2 94.90%
94.80% -
94.70% -
94.60%
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94.90%

2 3 4 5 6 7 8
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Figure 5. A curve to show the performance (absolute true) of PMPSL-GRAKEL-Geng
under different values of parameter k. When k is set to six, the classifier provides the best
performance. The red dot in the curve indicates the highest absolute true.

As for the last classifier, PMPSL-GRAKEL-Euk on the eukaryotic dataset, its performance under
different k values is shown in Figure 6. Similar to Figures 3 and 4, the classifiers with small values still
provided low performance, which was caused by the same reason elaborated above. Likewise, classifiers
with large k values provided almost equal performance. When & was set to eight, the classifier yielded
the highest absolute true of 82.22%. Accordingly, the PMPSL-GRAKEL-Euk with & = 8 was built.
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Figure 6. A curve to show the performance (absolute true) of PMPSL-GRAKEL-Euk
under different values of parameter k. When k is set to eight, the classifier provides the
best performance. The red dot in the curve indicates the highest absolute true.

3.2. Performance of the multi-label classifiers

In the section “Parameter optimization,” the optimal k& value was determined for each multi-
label classifier. The detailed performances of these optimal classifiers are given in this section. Their
overall performances, including aiming, coverage, accuracy, absolute true and absolute false, are

listed in Table 2.

Table 2. Overall performances of the multi-label classifiers on four different datasets.

Absolute Absolut
Classifier Dataset Aiming Coverage Accuracy bsolute -~ Absolute
true false
PMPSL-GRAKEL-
Hums G Human dataset ~ 90.73% 92.36%  88.60%  82.84%  1.78%
PMPSL-GRAKEL-
Anims G Animal dataset ~ 93.00% 95.21%  90.42%  81.86%  1.31%
PMPSL-GRAKEL- “negati
Gengs G Sarj;lnﬁiztg:et 97.11% 97.99%  96.83%  95.40%  0.82%
PMPSL-GRAKEL- Eukaryoti
Euks G d;tazzom 89.92% 92.36%  88.15%  82.22%  1.06%

For PMPSL-GRAKEL-Hum, the jackknife test results indicated aiming of 90.73%, coverage
of 92.36%, accuracy of 88.60%, absolute true of 82.84% and absolute false of 1.78% (Table 2). The
aiming and coverage exceeded 90%, whereas accuracy and absolute true exceeded 80%, indicating the
high performance of PMPSL-GRAKEL-Hum.

For PMPSL-GRAKEL-Anim on the animal dataset, it yielded the aiming of 93.00%, coverage
of 95.21%, accuracy of 90.42%, absolute true of 81.86% and absolute false of 1.31% (Table 2). This
classifier provided a little higher performance than PMPSL-GRAKEL-Hum, also suggesting the
excellent performance of PMPSL-GRAKEL-Anim.
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For PMPSL-GRAKEL-Geng on the Gram-negative bacterial dataset, its aiming, coverage,
accuracy, absolute true and absolute false were 97.11%, 97.99%, 96.83%, 95.40% and 0.82%
(Table 2), respectively. The first four measurements all exceeded 95%, and absolute false reduced to
lower than 1%. If only considering such performance, it outperformed the above two classifiers.

As for PMPSL-GRAKEL-Euk on the eukaryotic dataset, the five measurements calculated by Eq (2)
were 89.92%, 92.36%, 88.15%, 82.22% and 1.06% (Table 2). Such performance was almost equal to
PMPSL-GRAKEL-Hum and PMPSL-GRAKEL-Anim and slightly lower than PMPSL-GRAKEL-Geng.

In addition to the above measurements to assess the overall performance of the four multi-label
classifiers, four measurements (Eq (4)) for each subcellular location were also computed. The
performances of the four classifiers for each subcellular location are listed in Tables S1-S4. It can be
observed that most measurements were quite high, consistent with their overall performances
mentioned above. In detail, the SP and ACC values were all higher than 90.00%. As for SN and
MCC, those yielded by PMPSL-GRAKEL-Geng were also very high (Table S3), and most of them
generated by the other three classifiers were also high. However, some SN and MCC values for a
few locations generated by PMPSL-GRAKEL-Hum, PMPSL-GRAKEL-Anim and PMPSL-
GRAKEL-Euk were quite low. For example, these include those for “Endosome” in the human
dataset (12.50% for SN and 27.16% for MCC) (Table S1), “Microsome” in the animal dataset (20.00%
for SN and 44.68% for MCC) (Table S2), “Endosome,” “Microsome” and “Acrosome” in the
eukaryotic dataset (7.32%, 7.69%, 21.43% for SN and 20.83%, 27.71%, 46.26% for MCC) (Table S4),
etc. By observing Figure 1, we can find that the sizes of these subcellular locations were quite small,
inducing the low performance with them. Their performances can be improved if some techniques can
be applied to the datasets for solving the imbalanced problem.

3.3. Comparison with classifiers using other base prediction engines

Table 3. Performances of classifiers using different base classification algorithms.

Base classification .. Absolute  Absolute
Dataset . Aiming Coverage Accuracy
algorithm true false
Decision tree 63.80% 61.89% 60.99% 57.28% 3.58%
H It t
d;ZZ? rSnl;Iz:I}):i)nevec or 90.90%  88.82%  86.94%  81.23%  2.04%
Random forest 90.73% 92.36% 88.60% 82.84% 1.78%
Decision tree 72.91% 76.25% 66.91% 50.34% 4.15%
Animal rt vect
d;:;; Z‘;ii‘i’nevec or 90.87%  94.8% 88.01%  76.98%  1.64%
Random forest 93.00% 95.21% 90.42% 81.86% 1.31%
Gram- Decision tree 80.75% 80.89% 79.96% 78.23% 3.20%

negative Support vector

) ) 97.09% 95.51% 95.47% 93.82% 1.13%
bacterial machine

dataset Random forest 97.11% 97.99% 96.83% 95.40% 0.82%
Decision tree 6279%  74.07%  61.52%  48.65%  3.34%
Euk t1 S 1t t
uRaryotie support vector 86.83%  90.71%  84.88%  77.08%  1.35%
dataset machine
Random forest 89.92%  9236%  88.15%  82.22%  1.06%
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This study adopted the problem transformation method RAKEL to build the multi-label
classifiers. A certain base single-label classification algorithm is necessary for RAKEL. Here, we
selected RF. To indicate this selection was reasonable, two other classic classification algorithms,
decision tree (DT) [66] and support vector machine (SVM) [67], were attempted. Likewise, the
parameter k in RAKEL was tuned for DT and SVM. The best performances, measured by absolute true
on the four datasets, are listed in Table 3. For easy comparisons, the performances of our classifiers
(using RF as base prediction engine) are also listed in this table. It was found that the classifiers with
RF were evidently superior to those with DT and also slightly better than those with SVM. These
results suggested that the selection of RF was proper.

3.4. Comparison with previous classifiers

In this study, a multi-label classifier with high performance was constructed on each of four
datasets. Some previous classifiers have also been proposed for the same datasets. Here, comparisons
are conducted to show the superiority of the proposed four classifiers.

On the human dataset, pLoc-mHum [16] and iLoc-Hum [36] have been proposed to identify
protein subcellular locations. Table 4 lists their overall performances, including aiming, coverage,
accuracy, absolute true and absolute false. The performances of these two classifiers were also
evaluated by jackknife test on the same human dataset. For pLoc-mHum, its measurements were
directly retrieved from [16]. As for iLoc-Hum, the coverage and absolute true were reported in [36],
which were also collected in [16]. The other three measurements (aiming, accuracy and absolute false)
were not provided in [36]. For easy comparison, the overall performance of PMPSL-GRAKEL-Hum
is also provided in Table 4. It can be observed that PMPSL-GRAKEL-Hum provided the best
performance, followed by pLoc-mHum and iLoc-Hum. In detail, PMPSL-GRAKEL-Hum yielded the
highest aiming, coverage, accuracy and absolute true, whereas the absolute false was inferior to that
of pLoc-mHum. For the two most important measurements, accuracy and absolute true, PMPSL-
GRAKEL-Hum improved about 4.2% and 3.7% compared with those of pLoc-mHum. As for the
performance of PMPSL-GRAKEL-Hum and pLoc-mHum on 14 subcellular locations, a box plot was
drawn for each of SN, SP, ACC and MCC, as shown in Figure 7, from which we can see that the main
parts of the boxes for PMPSL-GRAKEL-Hum were always higher than those of pLoc-mHum on the
basis of each measurement. This implied that for most subcellular locations, PMPSL-GRAKEL-Hum
provided better performance than pLoc-mHum.

On the animal dataset, pLoc-mAnimal [17] and iLoc-Animal [38] were two previous classifiers
that were also constructed on such dataset and evaluated by jackknife test. Their performances are
listed in Table 4, in which the overall performance of PMPSL-GRAKEL-Anim is also provided. In
this table, the measurements for pLoc-mAnimal were directly sourced from [17]. As for iLoc-Animal,
its original performance was assessed on a similar dataset, which contained proteins with sequence
identity no less than 40% in some locations. Its measurements listed in Table 4 are also obtained
from [17], and they were produced by re-executing iLoc-Animal on the same animal dataset. It can
be observed from Table 4 that PMPSL-GRAKEL-Anim provided the highest performance on the basis
of all measurements, whereas pLoc-mAnimal yielded the second highest performance, and iloc-
Animal generated the lowest performance. For accuracy and absolute true, PMPSL-GRAKEL-Anim
increased about 5.7% and 8.7%, which were great improvements. Likewise, a box plot was drawn for
each measurement on 22 subcellular locations yielded by PMPSL-GRAKEL-Anim and pLoc-
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mAnimal, as shown in Figure 8. It can be concluded that PMPSL-GRAKEL-Anim outperformed pLoc-
mAnimal on most locations no matter which measurements were adopted.

Table 4. Overall performances of the proposed and previous classifiers.

Dataset  Classifier Aiming Coverage Accuracy Absolute true Absolute false
(rank) (rank) (rank) (rank) (rank)
gﬁ?&L 90.73%  92.36%  88.60%  82.84% 1.78%
Hum (1) (D (1) (D (2)
Human
dataset pLoc-mHum 90.57%  82.75% 84.39% 79.14% 1.20%
[16] (2) (2) (2) 2 (1)
) N/A 76.31% N/A 68.19% N/A
1Loc-Hum [36
) G) 0 G) 0
gﬁ?&L 93.00% 9521%  90.42%  81.86% 1.31%
Anim (1) (D (1) (D (1)
Animal
dataset pLoc-mAnimal 87.96%  85.33% 84.64% 73.11% 1.65%
[17] (2) (2) (2) (2 (2)
iLoc-Animal 72.45%  34.18% 42.76% 35.93% 6.33%
[38] (3) 3) (€)) 3) 3)
gﬁ?&L 97.11%  97.99%  96.83%  95.40% 0.82%
Geng (1) (D (1) (D (2)
Sera:tli've ploc-mGeng  96.61%  95.81%  96.05%  94.68% 0.36%
8] @) @) @) 2) ()
dataset iLoc-Gneg N/A 91.40% N/A 89.90% N/A
[40] () 3) () 3) )
Gneg-mPLoc  N/A 85.70% N/A N/A N/A
[39] () “4) () () )
PMPSL- 89.92%  92.36% 88.15% 82.22% 1.06%
GRAKEL-Euk (1) (1) (1) (D) (2)
Eukaryot pLoc-mEuk 88.31% 85.06% 84.34% 78.78% 0.07%
ic dataset [19] (2) (2) (2) (2) (1)
N/A 79.06% N/A 71.27% N/A
iLoc-Euk [61
el () 0 G) 0

On the Gram-negative bacterial dataset, three previous classifiers have been proposed, including
pLoc-mGeng [18], iLoc-Gneg [40] and Gneg-mPLoc [39]. Their overall performances are listed in
Table 4. Such performances of three classifiers were obtained by jackknife test on the same Gram-
negative bacterial dataset. The measurements for pLoc-mGeng were directly picked up from [18]. As
for iLoc-Gneg and Gneg-mPLoc, only some measurements (coverage and absolute true for iLoc-Gneg,
coverage for Gneg-mPLoc) were reported in their original studies, which were also collected in [18].
The overall performance of PMPSL-GRAKEL-Geng is also listed in Table 4 for easy comparisons.
Again, PMPSL-GRAKEL-Geng provided highest performance on four measurements, indicating this
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classifier was superior to previous classifiers. The pLoc-mGeng gave the performance only inferior to
PMPSL-GRAKEL-Geng. However, the superiority of PMPSL-GRAKEL-Geng was not very evident.
The accuracy and absolute true were only 0.8% and 0.7% higher. According to their performances (SN,
SP, ACC and MCC) on 8 subcellular locations (Figure 9), we can also conclude that PMPSL-
GRAKEL-Geng was slightly better than pLoc-mGeng.
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Figure 7. Box plot to show the performance of PMPSL-GRAKEL-Hum and pLoc-mHum
on 14 subcellular locations. (A) Sensitivity; (B) Specificity; (C) Accuracy; (D) Matthews
Correlation Coefficient. The performance of PMPSL-GRAKEL-Hum on 14 subcellular
locations is generally better than that of pLoc-mHum.

On the eukaryotic dataset, two classifiers (pLoc-mEuk [19] and iLoc-Euk [61]) have been
previously reported. Their overall performances are listed in Table 4. This performance was also
obtained by jackknife test on the same eukaryotic dataset. The measurements for pLoc-mEuk were
directly collected from [19]. For iLoc-Euk, its original study only reported its coverage and absolute
true [61], which were also used in [19]. By comparing the performance of PMPSL-GRAKEL-Euk,
also listed in Table 4, it was easy to find that on four measurements, PMPSL-GRAKEL-Euk provided
the best performance. Again, PMPSL-GRAKEL-Euk yielded a higher absolute false than pLoc-mEuk.
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On accuracy and absolute true, the improvement of PMPSL-GRAKEL-Euk was about 3.8% and 3.4%,
respectively, which was quite similar to those on the human dataset. As for the performance of PMPSL-
GRAKEL-Euk and pLoc-mEuk on 22 subcellular locations, a box plot was drawn for each
measurement, as shown in Figure 10. It can be observed that for SN, ACC and MCC, the boxes of
PMPSL-GRAKEL-Euk were at a higher level than those of pLoc-mEuk. For SP, the two boxes were
almost at the same level. These suggested that PMPSL-GRAKEL-Euk can yield higher performance
than pLoc-mEuk for most locations.
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Figure 8. Box plot to show the performances of PMPSL-GRAKEL-Anim and pLoc-
mAnimal on 20 subcellular locations. (A) Sensitivity; (B) Specificity; (C) Accuracy; (D)
Matthews Correlation Coefficient. The performance of PMPSL-GRAKEL-Anim on 20
subcellular locations is generally better than that of pLoc-mAnimal.

With the above arguments, the proposed classifiers (PMPSL-GRAKEL-Hum, PMPSL-
GRAKEL-Anim, PMPSL-GRAKEL-Geng, and PMPSL-GRAKEL-Euk) were superior to previous
classifiers (pLoc-mHum, pLoc-mAnimal, pLoc-mGen and pLoc-mEuk), respectively. These previous
classifiers adopted ML-GKR as the prediction engine. As ML-GKR is not a strict machine learning
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algorithm, which directly makes decisions according to the distribution of data, it cannot mine hidden
key patterns to identify different subcellular locations. In this study, the basic prediction engine was
RF, which is one of the most classic and powerful machine learning algorithms. On basis of RF,
correct patterns for different subcellular locations can be extracted, thereby improving the quality of
the classifiers.

Sensitivity Specificity
1.00+ =y -1 100+ —
0.984
0.964
0.994
0.944
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Figure 9. Box plot to show the performances of PMPSL-GRAKEL-Geng and pLoc-
mGeng on 8§ subcellular locations. (A) Sensitivity; (B) Specificity; (C) Accuracy; (D)
Matthews Correlation Coefficient. The performance of PMPSL-GRAKEL-Geng on 8
subcellular locations is slightly better than that of pLoc-mGeng.
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Figure 10. Box plot to show the performances of PMPSL-GRAKEL-Euk and pLoc-mEuk
on 22 subcellular locations. (A) Sensitivity; (B) Specificity; (C) Accuracy; (D) Matthews
Correlation Coefficient. The performance of PMPSL-GRAKEL-Euk on 22 subcellular
locations is generally better than that of pLoc-mEuk.

3.5. Limitations of the classifiers

Although the proposed classifiers provided good performances to identify subcellular locations
of proteins of four different types, they still had some weaknesses. The first weakness was the absolute
false. The proposed classifiers yielded higher absolute false on three datasets compared with the
previous classifiers. The second weakness was the low performance for some subcellular locations.
The SN values for some subcellular locations were lower than 10%. Such results may be caused by
the imbalanced problem. The proposed classifier was quite sensitive to the sizes of classes.

The above weaknesses may be caused by the limitations of the classifiers. First, for the base
prediction engine, RF, in RAKEL, the default parameters were adopted. By tuning its main parameter,
number of decision trees, the performances of the four classifiers can be improved. Second, according
to Figure 1, the class sizes in the four datasets were not balanced. We did not consider this problem
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when constructing the classifiers. Some imbalanced data processing methods can be added to tackle
this problem, thereby enhancing the performances of the four classifiers. In the future, we will continue
this work to deal with these limitations and build more efficient classifiers.

4. Conclusions

In this study, four multi-label classifiers were built to identify subcellular locations of human,
animal, Gram-negative bacterial and eukaryotic proteins. These classifiers adopted the features
extracted from GO information of proteins, which also included the label information in the training
dataset. Furthermore, a powerful multi-label algorithm, RAKEL, with RF as the basic prediction
engine was employed to construct the classifiers. These classifiers yielded quite high performance and
were superior to some previous classifiers. We believe that these classifiers can be efficient tools to
determine  protein  subcellular  locations. Code and datasets are available at
https://github.com/SummerXinTong/PMPSL-GRAKEL.
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