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Abstract: To guide the more reasonable and fair allocation of medical resources, to solve the problem 
of fee prices negotiated by various subjects in the medical and health system and patient payment, and 
to solve the problem of how to ensure the privacy, accuracy, consistency and traceability of data in the 
process of collecting patient information in each hospital, according to the operation process of a 
remote consultation service, a decentralized remote intelligent consultation blockchain model is 
proposed. The model uses the improved ant colony algorithm under a smart contract and studies the 
practicality of the improved ant colony algorithm on the multi-node remote consultation service 
simulation platform. According to the experimental analysis results, the improved ant colony algorithm 
can automatically execute and effectively match the target population under the smart contract. 
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1. Introduction 

Blockchain is a novel decentralized database technology that serves as the underlying technology 
of Bitcoin. It is characterized by non-changeability, complete record-keeping, universal maintenance 
and transparency to all users, making it a promising technology for various applications. Dwivedi et al. [1] 
have proposed a naive blockchain and watermarking-based social media framework to control the 
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propagation of fake news and have postulated a new blockchain model to address existing challenges. 
Similarly, Srivastava et al. [2] have presented the advantages and practical challenges of blockchain-based 
security approaches for remote patient monitoring using Internet of Things (IoT) devices. 

Remote consultation is a medical service modality that facilitates online examination, case 
discussion and guidance between healthcare providers and patients, leveraging computers, auxiliary 
equipment and network communication technologies [3]. A remote consultation platform constitutes a 
business system that enables remote medical diagnosis and consultation services, being a multifarious, 
multi-agent and multi-interactive medical enterprise system. Through a remote consultation platform, 
multimedia information sharing, including textual data, images, audio and video, is achievable among 
medical institutions. The platform further endows patients in underprivileged regions with high-quality 
medical services over long distances, enabling primary care providers to administer nursing and 
treatment, guided by medical specialists [4]. This concomitantly enhances the quality of medical 
services offered to patients, while driving innovation in the medical service domain. 

While the remote consultation platform instituted by hospitals has positive connotations, it also 
engenders novel challenges. Notably, the exorbitant costs of construction, the sustainment of 
uninterrupted financial support and the achievement of information exchange among medical 
institutions to form business alliances pose significant quandaries. Furthermore, inconsistent pricing 
and payment modalities adopted by patients present further complications [5]. Otherwise, the remote 
consultation service transaction system is based on a typical centralized transaction model. The data 
information is in the hands of a single institution, and there are credit problems such as opacity, tamper 
susceptibility and repudiation of service transaction data information [6]. In addition, the remote 
consultation service transaction system lacks intelligent contracts with multiple transaction modes, and 
the transaction operation process lacks automation, intelligence and parallelism. 

Moreover, the dispersion of hospital population flow and the rational and equitable allocation of 
medical resources have emerged as crucial aspects of promoting the intelligentization of medical 
services. Remote consultation constitutes a pivotal component of an intelligent medical system. The 
swarm intelligence ant colony algorithm, coupled with blockchain and smart contract technology, is 
applied to the remote consultation service platform, with the ultimate objective of allocating and 
matching medical resources and medical groups. Such a development is of immense significance for 
the application and exploration of the medical service industry and blockchain technology. 

The contributions made by this study are as follows: 
1) A service transaction ant colony intelligent contract model based on blockchain is proposed to 

ensure the integrity of the data during transmission and the non-repudiation of the sender. 
2) A new improved ant colony algorithm based on bacterial foraging, the bacterial foraging ant 

colony algorithm, is proposed. It improves the efficiency of matching between the two sides of 
consultation and reduces more complicated manual operations. 

3) The improved ant colony algorithm is integrated with smart contracts in remote consultation 
service transactions, which improves the multi-objective transaction matching and has a high success 
rate in building smart contracts. 

The remaining sections of this paper are organized as follows. Section 2 reviews works related to 
remote consultation, blockchain and swarm intelligence technology. Section 3 provides a brief introduction 
to the construction of the remote consultation service platform under smart contracts. Section 4 presents 
all of the components of the proposed model. Section 5 shows the experimental results and analysis of 
improved ant colony algorithm. The application of improved algorithm is shown in Section 6, followed 
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by the conclusions of this study in Section 7. 

2. Related works 

The application of blockchain in the intelligent medical technology field has been researched 
by scholars. Fan et al. [7] proposed an efficient and secure medical data sharing scheme based on 
medical blockchain and presented a trusted cloud medical data sharing example. Liu et al. [8] explored 
a privacy-protected sharing mode of electronic medical records. Zhang [9] proposed a blockchain-
based electronic medical record-sharing model that leverages the distributed and tamper-proof 
properties of blockchain technology. The work of Griggs et al. [10] represents an attempt to integrate 
smart contracts with blockchain technology to achieve remote automatic monitoring of patients, 
thereby contributing to the reduction of electronic medical record costs. Similarly, Shae and Tsai [11] 
have designed a blockchain platform aimed at facilitating clinical trials and precision medicine, while 
also outlining the challenges encountered in utilizing blockchain technology. Meanwhile, Christidis 
and Devetsikiotis [12] have constructed a blockchain and smart contract model in the context of 
the IoT, which represents a novel approach to exploring the integration of blockchain and big data. 
Moosavi et al. [13] introduced the application of blockchain in supply chain management. 
Alshudukhi et al. [14] have introduced blockchain security managers, based on microservice 
technology, for federated cloud systems in an IoT environment. Liao et al. [15] proposed a novel 
remote medical service model by integrating remote real-time interactive functions with electronic 
medical records containing the patient’s pertinent examination materials. Zhou et al. [16] analyzed the 
communication technologies used in telemedicine systems and restructured corresponding module 
functions in multimedia, providing an effective solution to enhance communication efficiency and 
bandwidth utilization. Moreover, Chen et al. [17] expounded on the potential benefits of telemedicine 
in enhancing medical and healthcare service capabilities. The preservation of patient data privacy, 
accuracy, consistency and traceability during the collection process is crucial to ensure efficient 
information exchange in telemedicine [5], which subsequently impacts the quality of remote 
consultation. To address this, Mao and Zhang [18] designed an intelligent remote medical system 
tailored for households and communities through the integration of IoT platforms, big data and cloud 
computing technologies. In the aspect of intelligent service transactions, Bachrach [19] proposed a 
framework based on deep compensation learning to find the maximum win-win situation for 
negotiating teams. In [20] and [21], different heuristic methods are also applied to automatic 
negotiation in various ways to find a win-win negotiation result. 

Through the above research, it is found that there are few studies on the theoretical research and 
application results of applying blockchain to a remote consultation service model and the establishment 
of doctor-patient relationships between patients and experts. How blockchain technology provides a 
non-central service model in the field of telemedicine, how to establish a remote consultation service 
platform based on blockchain, and how to apply intelligent contracts and swarm intelligence algorithm 
in the process of establishing doctor-patient relationships still need to be solved urgently. To fill the 
aforementioned gaps, this paper proposes an improved ant colony algorithm for improving the doctor-
patient relationships matching module in the remote intelligent consultation platform. In the matching 
mode of patients and experts, the traditional cumbersome online application management and 
consultation management are abandoned, and the improved ant colony algorithm is used to 
automatically match patients with experts. 
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3. Remote consultation and contract model 

In the current era of swift progress in the service industry, the relative proportion of this sector in 
overall economic development is on the rise. As a result, the quality of medical services has emerged 
as a crucial element of competitive advantage for major hospitals. The advent of remote consultation 
services has facilitated multi-objective interaction by means of information sharing, thereby 
transcending the spatial constraints of medical services and enabling a larger segment of the population 
to avail themselves of top-notch medical care. In this section, we will introduce the traditional 
centralized model of remote consultation service and propose a conceptual model of smart contracts 
for remote consultation. 

3.1. Traditional centralized model of remote consultation service 

The remote consultation service center realizes the informatization of the remote consultation 
center system through modern information technology and IoT technology and puts forward the 
traditional model of remote consultation. However, the traditional model of remote consultation 
service is based on a centralized model, and there are some problems such as credit problems and lack 
of automation, intelligence and parallelism in transaction operation. The traditional model of remote 
consultation is shown in Figure 1. 

 

Figure 1. Traditional conceptual model of remote consultation service platform. 

The conventional mode of remote consultation typically comprises four distinct stages: 
1) Information processing-The remote consultation center disseminates the patient application 

information and expert database information. The platform allows patients and consultation experts to 
conduct bidirectional queries based on the information posted. 
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2) Consultation stage-The management center receives the consultation request and consultation 
data sent by the patient, preliminarily screens the eligible patients, synchronizes the information with the 
experts of the higher hospital and coordinates the consultation time. During the consensus period, experts 
consult patients remotely through multimedia to determine the treatment plan. 

3) Payment stage-The final treatment plan is determined by the patient and attending doctor in 
conjunction with the treatment opinions of the consultation experts, and the patient receives treatment 
after paying the cost. 

4) Service completion and feedback stage-The management center records the entire treatment 
process and data of the patients and classifies them to provide a reference for other similar cases. 

3.2. Conceptual model of smart contract for remote consultation 

Drawing on an analysis of the demand for remote intelligent consultation services, this study 
proposes a remote consultation service platform underpinned by a smart contract, wherein the 
functions of the remote consultation management center are decentralized, and the information 
processing and negotiation stage are incorporated into the smart contract. The conceptual model of 
remote consultation service smart contract is shown in Figure 2. 

 

Figure 2. Conceptual model of remote consultation service smart contract. 

The execution steps of the proposed model are as follows: 
1) Participants in remote consultation formulate smart contracts according to relevant standards 

and requirements, including patients and doctors, both consultation experts in higher hospitals and 
attending doctors in lower hospitals. 

2) The blockchain network receives the information generated after the execution of smart 
contracts and synchronizes the information to each block after the execution. 
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3) Upon completion of the consultation service process, the patient pays the fee as per the fee 
standard established by the contract. The remote consultation management center no longer serves as 
the coordination center in the entire process and only automatically records the logs of each link. 

4. Remote consultation and algorithm improvement based on smart contract 

4.1. Encryption and verification algorithm for remote consultation service 

In the context of remote intelligent consultation services, the blockchain network adopts an 
effective big data outlier detection algorithm based on distributed density for data encryption and 
digital signature to ensure the consistency, accuracy and non-repudiation of data transmission. The 
detailed steps involved are illustrated in Figure 3 [22]. 

 

Figure 3. Digital signature flow chart. 
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4.2. Overview of smart contracts under blockchain 

In contrast to traditional contract methods, modern smart contract technology can independently 
complete the transaction process without requiring the supervision or intervention of a third party. 
Once formulated, the smart contract cannot be revoked or modified and is automatically executed upon 
being placed into the blockchain. The immutability of the blockchain and the openness and 
transparency of the information facilitates multi-party transaction subjects to perform transactions 
without the need for a centralized trust mechanism. A smart contract is a digital form of computer 
protocol code that can run within a computer system and is triggered to execute automatically 
when specific conditions are met [23]. Its operating principle shown in Figure 4 can be summarized 
as follows: 

1) Establishment of contracts: Multiple parties involved in the contract reach a mutual agreement 
based on their respective requirements, and the contract is digitized, expressed in computer code to 
convey its complete meaning and executed automatically based on the predetermined conditions. The 
involved parties sign the digital signature using their private keys to validate the contract. 

2) Storage of contracts: The compiled electronic contract is transmitted to the blockchain, and 
each node of the blockchain synchronizes the contract information to verify the status of the contract 
and store it. 

3) Implementation of the contract: Before the execution of the contract, the status of the 
predetermined trigger condition and the response rule is verified, and the transactions that meet the 
response condition are queued for verification. After the digital signature validation, the blockchain 
reaches a consensus, and the contract is executed. 

 

Figure 4. Smart contract model under blockchain. 

4.3. Remote intelligent consultation transaction model under blockchain 

Based on the conventional remote consultation service and in conjunction with the conceptual 
model of smart contracts for a remote consultation service, the integration of swarm intelligence 
algorithm and blockchain technology into the central link of the remote consultation service leads to 
the construction of a centerless intelligent trading platform. Consequently, a decentralized remote 
consultation service contract model under blockchain is proposed as shown in Figure 5. 
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Figure 5. Blockchain decentralized remote consultation contract model. 

In the blockchain network, the public and private keys obtained by the superior and subordinate 
hospitals, remote consultation management centers and patients upon registration of accounts on the 
blockchain are employed for encryption and decryption, and the public key is utilized to address 
customers on the blockchain. The superior and subordinate hospitals as well as the remote consultation 
management center participate in the development of a contract. The multi-party contract is signed 
with the key to render the contract effective, thereby improving the contract’s anti-interference 
capability during execution. The contract is compiled into a computer-recognized language and 
imported into the blockchain through a peer-to-peer network. Each block implements a consensus 
mechanism and stores the contract. Additionally, the patient customers and superior hospital experts 
are matched via the group intelligent algorithm integrated into the contract. All transaction processes 
are devoid of central institutions, and the parties involved in the transaction do not require mutual trust. 
The entire process is irreversible to ensure information consistency and transparency. The blockchain 
structure used for contract execution is as follows: 

In the data layer of the blockchain network, all blocks are encapsulated with their hash values, 
the hash value of the previous block and a consensus time record. The contract layer encapsulates each 
authenticated contract in a decentralized remote intelligent consultation model, which enables both 
parties to engage in flexible two-way selection and negotiate to formulate contracts. Preference value 
expresses the fit degree of time matching between patients and experts. In the context of remote 
consultation services, n represents the number of free times of patients, m represents the number of free 
times of experts in higher hospitals, I = {i|i = 1,2,..., n} represents the set of patients, J = {j|j = 1,2,..., m} 
represents the set of superior hospital experts, Sk = {(i,j)|i ∈ I, j ∈ J} represents a successful match 
between patients and experts, and S = {s1,s2,...,sk} represents the set of all successful matches between 
patients and experts. X = (x1,x2,...,xn) represents the idle time vector of each patient, Y = (y1,y2,...yn) 
represents the idle time vector of experts in the superior hospital, xi represents a certain idle time of 
the patient, yi represents the idle time of a certain expert, Xmin represents the minimum idle time of a 
certain patient, Xmax represents the maximum idle time of a certain patient, Ymin represents the 
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minimum idle time of the expert, and the idle time format is yyyyy-mm-dd hh: mm: ss. wi and wj 
represent the weight values of the degree of mutual demand between patients and superior hospital 
experts, respectively. cij represents the number of patients matched with experts in a consultation, and 
Tij represents the time of consultation. A mathematical model is constructed based on these variables: 
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The constraints of the proposed model are as follows: 
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The preceding equations denote various aspects of the mathematical model, where Eq (1) and Eq (2) 
represent the time preference functions of the patient and the expert from the superior hospital, 
respectively. Equations (3) and (4) represent the satisfaction degree of the patient following the 
matching process with the expert from the superior hospital. Equation (5) denotes the overall 
preference value of the patient post-matching with the expert from the superior hospital. Equation (6) 
limits the value range of the weight values, wi and wj. Equations (7) and (8) indicate that the sum of 
the time weights of the patient and the expert from the superior hospital is equal to 1. Equation (9) 
stipulates the value range of the preference values, Ui and Uj. 

4.4. Classical ant colony algorithm 

Ant colony optimization (ACO) is a bionic stochastic search algorithm proposed to find an 
optimal path, based on the summary and analysis of the foraging behavior of ants in nature, with the 
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characteristics of positive feedback, self-organization, parallel search, strong robustness and easy 
combination with other algorithms. In the process of searching for food, ants will always release a kind 
of pheromone on the path they pass through and can sense the pheromones released by other ants. As 
more ants pass through a certain path, the concentration of pheromone released by ants on the path 
will increase. In a unit of time, as more and more ants leave pheromones on shorter paths, and ants are 
more inclined to move to the path with the high pheromone concentration, the chance that later ants 
will choose that path increases, and eventually the colony will find the shortest path. The ant colony 
algorithm solves combinatorial optimization problems through search mechanism, updating 
mechanism and coordination mechanism. 

1) Search mechanism 
Suppose there are n nodes and m ants, ( )ij t  is the pheromone concentration between node i and 

node j at time t, and the initial pheromone concentration ( )ij t  of each path is the same. The ant 

decides to visit the node according to the pheromone concentration, and the probability of ant k 
transferring from node i to node j is 
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where 1

d( , )ij i j
   is the heuristic information. d( , )i j  means the distance between nodes.  kJ i  

denotes the set of all superior hospital experts as the tabu list. α and β indicate the weight of pheromone 
concentration and heuristic information. The larger α and β are, the faster the algorithm converges, but 
the randomness of the search is weakened, and it is easy to fall into a local optimum. 

2) Pheromone update 
Due to the positive feedback effect of the ant colony algorithm, after all ants complete a cycle, in 

order to prevent the pheromone content on the path from being too high, the pheromone concentration 
on the path needs to be updated. The pheromone concentration updating mechanism is as follows: 
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where ρ represents the global volatilization factor of the pheromone, ρ ∈ (0,1). The greater ρ is, the 
stronger the positive feedback effect of pheromone and the faster the convergence speed, but the 
randomness of the algorithm search is weakened, and it is easy to fall into a local optimum. ( , )k i j  

represents the pheromone concentration released by the kth ant on the path between node i and node j. 
Q is the total pheromone released by ants in a cycle, and the size of Q has an influence on the 
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convergence speed of the algorithm. The larger Q is, the stronger the positive feedback mechanism is 
and the faster the convergence speed of the algorithm is, but the randomness of the search is weakened, 
and it is easy to fall into a local optimum. kL  is the path length of the kth ant. 

4.5. Bacterial foraging ant colony optimization (BFACO) 

In this paper, to solve the problem that the algorithm can easily fall into a local optimum, and the 
search speed is always slow, we improved the classical ACO algorithm. 

1) Improvement of the search mechanism 
The heuristic information of the search mechanism is dynamically introduced to improve the 

efficiency of the ant colony algorithm in effectively matching patients and experts. A patient is selected 
randomly as the initial point for the search process aimed at identifying a suitable match. Supposing 
that ant k selects patient i as the starting point for its search, the heuristic information that impacts 
patients and experts is represented by a new η (i,j): 

    1
,

2 i ji j z z      (14) 

zi and zj represent the satisfaction degree of the patient following the matching process with the expert 
from the superior hospital from Eqs (3) and (4). 

2) Improvement of pheromone update 
Another pheromone increment is introduced into the pheromone updating formula of classical ant 

colony algorithm, which avoid the problem that ant colony algorithm falls into local optimization 
prematurely. The diffusion rate of pheromone is controlled by the coefficient of pheromone change, 
denoted as ρ, where ρ∈(0,1). The change values of pheromone released by ants k during the process of 
searching pairing on the successful pairing (i,j) are represented by ∆ τ (i,j). The number of current successful 
pairings is denoted as c, while C∈ [0,n] represents the pheromone left by a successful pairing (i,j), 
and ∆ τ* (i,j) is the pheromone increment introduced and decide by Eq (5). when a matching pheromone 
is too large, the next matching pheromone in the current position is fine-tuned, to avoid falling into local 
optimum. which changes according to the following formula: 
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3) Combination of improved ACO and bacterial foraging optimization (BFO) 
In an ant colony algorithm, the search for the optimal value is achieved through pheromone 

feedback, resulting in strong parallel searchability and robustness. However, the convergence speed 
and the ability to search for the global optimal solution require improvement, as reported in [24]. BFO, 
on the other hand, is a bionic algorithm that emulates the behavior of E. coli parasites in the intestine, 
which search for food using chemotaxis, reproduction and elimination and dispersal of bacteria [25]. 
BFO aims to find the optimal solution using these principles. 

To address the issues of slow convergence speed and the risk of falling into local optima inherent 
in the ant colony algorithm, this paper proposes a novel approach that combines the strengths of two 
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distinct algorithms. Specifically, the reproduction and chemotaxis operations of the bacterial foraging 
algorithm are integrated into the basic ant colony algorithm to enhance its performance. 

Integration of chemotaxis of bacteria-Let θi (j,r,l) denote the current location of bacterial individual i, 
where j represents the number of times that bacteria perform chemotaxis, r denotes the number of times 
that bacteria replicate, and l signifies the number of times that bacteria migrate. Moreover, C (i) represents 
the step size of each displacement of bacteria, while ∆ (i) indicates the direction of chemotaxis. The update 
of the location of bacteria i is governed by the following formula: 
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i i
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Integration of bacterial reproduction. 
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In the above formula, Ji
health represents a robust function of bacteria, while J (i,j,r,l) represents the 

fitness of bacteria. Here, r denotes the number of reproductions performed by bacteria, l denotes the 
number of elimination and dispersals undertaken by bacteria, and j signifies the number of chemotaxis 
operations carried out by bacteria. NC indicates the number of chemotaxis operations performed by 
bacteria. Furthermore, the bacterial population is pruned by eliminating half of the individuals with 
low robustness, while the remaining half of the individuals undergo reproduction operations to ensure 
that the total number of individuals remains unchanged. 

After the ant colony traverses all the nodes, each ant corresponds to a crawling trajectory, which 
is then mapped to the position of each bacterium. The robustness of the bacteria is inversely 
proportional to the sum of the trajectory length traversed by each ant. By discarding the ants with 
longer trajectories (corresponding to bacteria with lower robustness), the individuals with shorter 
trajectories are selected and replicated to expedite the convergence process. 

The following steps describe the execution of the improved algorithm and pseudo-code is 
presented in Algorithm 1: 

Step 1 Initialize the pheromone value τ (i,j) to 0 and the iteration number NC to 0, and randomly 
distribute m ants on n nodes. The ants calculate the probability of matching node j with the starting 
point i based on Eq (10) and select the endpoint accordingly. The trajectory is recorded in the tabu list 
Jk (i), and the process is repeated until all initial nodes are traversed. An ant individual corresponds to 
a bacterial individual. 

Step 2 By the proposed methodology, it is imperative to designate eligible patients and experts 
as Ski and Skj, respectively. Additionally, the path length of each ant is assigned a label of Lk, signifying 
the starting point of each bacterium. 

Step 3 Execute bacterial reproduction. 
Step 4 Subsequently, the bacterial chemotaxis action is carried out, and a comparison of the Lk 

value before and after the execution is conducted. If the Lk value decreases, the location is updated, 
and the resultant data is stored. 

Step 5 The subsequent step involves computing the pheromone concentration remaining on the 
trajectory as per Eq (15) to Eq (16). Save the current matching initial node i and the endpoint j, and 
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remove the matching node j in Jk (i). Subsequently, the cycle is resumed by returning to Step 2 until 
all nodes have been matched. 

Step 6 In the final step of the proposed methodology, if the number of iterations does not 
exceed the predetermined upper limit, the process proceeds to Step 3. However, if the maximum 
limit is reached, the process is halted, and the best matching node is outputted. 

The flowchart of the BFACO algorithm is presented in Figure 6. 

Start

Initialize all variables. 
Iterations NC=0. 

Set up tabu list Jk ( i ) and 
start searching.

NC = maximum limit?

No

Calculate the probability of ant k, 
select the next node j, and add j to 
tabu list Jk ( i ). The path length of 
each ant is assigned a label of Lk.

Perform bacterial reproduction; Kill 
m/2 bacterial with larger Lk and 

reproduce bacterial with smaller Lk.

Perform bacterial  
chemotaxis;

Yes
Get the best 

matching node and 
output

Finish

Lk is improved?

Store the new Lk

Update pheromone

Yes

No

Have all nodes been matched?

Yes

No

 

Figure 6. Flow chart of BFACO algorithm. 
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Algorithm 1 Bacterial Foraging-ACO 

Input: ant number m, iteration number maxlimit, idle time vector of each patient X, idle time vector of experts 

in the superior hospital Y 

Output: the best matching node 

1: Initialize the parameters of the algorithm; // iteration NC; pheromone value τ (i,j); tabu list Jk (i) 

2: Calculate the satisfaction degree of the patient iz by Eq (3), the satisfaction degree of the experts jz by Eq (4), 

overall preference value  .i jz by Eq (5); 

3: Randomly distribute m ants on n nodes, an ant individual corresponds to a bacterial individual; 

4: WHILE (NC < maxlimit) 

5:     WHILE (all nodes not matched) 

6:         FOR (every ant) 

7:           Calculate the heuristic information  ,i j  by Eq (14); 

8:           Calculate the matching probability of ant k by Eq (10), select the end node j; 

9:           Add j to Jk (i); 

10:           Calculate the path length Lk from i to j; 

11:       END 

12:       Perform bacterial reproduction: Sort bacteria (ant) in descending order of Lk, kill m/2 bacterial (ant) 

with Larger Lk and reproduce bacterial (ant) with smaller Lk. 

13:       Perform bacterial chemotaxis; 

14:       If the path length is improved 

15:         Update Lk; 

16:       Pheromone update by Eq (12), Eq (13), Eq (15) and Eq (16); 

17:       Update Jk (i) using current matching node j; 

18:    END 

19:    NC+1; 

20: END 

21: Return Jk (i) with the best matching node; 

4.6. Process of smart contract algorithm for remote consultation based on improved ant colony 
algorithm 

Based on the decentralized remote consultation contract model of blockchain and the swarm 
intelligence algorithm, this paper proposes a multi-party smart contract algorithm for remote 
consultation. The algorithm can be executed under the condition that patients and experts conform to 
the terms and obligations stipulated in the consultation service. Figure 7 illustrates the implementation 
process of the algorithm. 

1) Information dissemination: The Management Center engages in the dissemination of 
information by publishing expert information that has been subjected to an audit on the remote 
consultation platform. 

2) Consultation application: The proposed consultation application entails the submission of 
pertinent medical information by patients, which subsequently awaits platform review. To elaborate, 
patients will provide relevant health data via the application interface, after which the platform will 
conduct a thorough assessment of the submitted information. 



16900 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 16886–16912. 

3) Consultation matching: The process of consultation matching involves the utilization of an 
improved ant colony algorithm to match patients and experts who have passed the information audit on the 
platform. Specifically, the algorithm is applied to match the relevant medical expertise of the available 
experts with the specific health needs of the patients, based on the information provided by both parties. 

4) Contract establishment: Upon the successful matching of a patient with an expert, a contract is 
automatically established. As part of this process, the patient is required to prepay the consultation fee 
to the designated contract address. Subsequently, the consultation expert is obliged to fulfill the 
contractual requirements by delivering the service as stipulated. Finally, the two parties are expected 
to utilize the digital signature key to ensure the authenticity and security of the transaction. 

5) Implementation and preservation of the contract: The implementation and preservation of the 
contract entail the completion of consensus and testing of each block, which automatically triggers the 
execution of the contract. Upon completion of the consultation service, the cost of the service is cleared 
as per the terms of the contract. 

Start

Remote consultation 
management Center 

releases medical 
information

Patients submit personal 
and relevant medical 

information

Agree to a consultation match?

Finish

Yes

According to the matching 
information, the contract is generated, 
and the matching parties digitally sign

The contract is stored in 
the blockchain for

 automatic execution

Contract settlement

No Match again

 

Figure 7. Flow chart of remote consultation smart contract algorithm based on improved 
ant colony algorithm. 
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5. Experiments and analysis of improved ant colony algorithm 

This paper aims to verify the performance and effectiveness of the BFACO through an 
optimization simulation that examines two aspects of the problem: the Traveling Salesman Problem 
(TSP) and function optimization. 

5.1. Solution and result analysis of TSP 

The TSP is a widely recognized and classical combinatorial optimization problem [26]. The 
problem involves determining the shortest path for a traveler who visits n cities and returns to the 
origin, subject to the condition that each city can only be visited once. The model of the TSP problem 
can be simply described: Given an undirected graph G = (V,E), in which each edge is e∈E, and there 
is a non-negative weight d(i,j) representing the distance between nodes, find the loop that traverses all 
nodes in the graph G and has the minimum total weight. In this study, to solve the discrete problem, 
the position P of each bacterial (ant) individual corresponds to a path sequence. Path coding is employed 
to encode the problem [27], that is, each bacterial (ant) individual represents a path sequence, the 
dimensions are consistent with the number of cities, and the numerical value of each dimension represents 
the city number of the position. Let N = {1,2,...,n} represent the set of all site numbers, and the code of 
each bacterial (ant) individual is a random arrangement of elements in set N, P = (p1,p2,... pn). 

To evaluate the efficacy of the bacterial foraging ant colony algorithm in addressing the TSP, this 
study employed the TSPLIB standard library to simulate seven classical datasets (Eli51, Eli76, Rat99, 
Berlin52, St70, D657 and Nrw1379) using Matlab 2016b. The optimization outcomes obtained through 
Chaos Ant Colony Optimization (CACO) [28], Simulated Annealing Ant Colony Optimization 
(SAACO) [29] and Levy flight Ant Colony Optimization (Levy-ACO) [30] were compared and analyzed 
alongside those obtained through the ACO and BFACO. 

During the testing phase, we established the maximum iteration number NCmax as 200, while 
setting the ant colony size m as 1.5n. The algorithm parameters were selected based on the guidance 
provided in [31]. Specifically, we set the pheromone importance factor α to 1, the heuristic function 
importance factor β to 5, the global pheromone evaporation factor ρ to 0.5 and the total pheromone 
release Q to 100. 

Table 1. Experimental setup. 

Parameter Value 

Maximum number of iterations, NCmax 200 

Scale, m 1.5n 

Pheromone importance factor, α 1 

Heuristic function importance factor, β 5 

Pheromone global volatilization factor, ρ 0.5 

Total pheromone release, Q 100 

1) Algorithm optimization ability 
The algorithm’s optimization ability was evaluated based on two metrics: the test optimal value 

and the average value. To conduct this evaluation, we solved the TSP for seven classical datasets, 
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including Eli51, Eli76, Berlin52, St70, Rat99, D657 and Nrw1379, using the ACO, CACO, SAACO, 
Levy-ACO and BFACO algorithms. This process was repeated for 20 consecutive runs. The optimal 
solution is known and was obtained from the TSPLIB standard database. Meanwhile, the test optimal 
solution is the shortest path length out of the 20 obtained solutions, while the average value is the 
average path length across all 20 solutions. The results are presented in Tables 2 and 3. 

The results of the optimization simulation are presented in Tables 2 and 3, which demonstrate the 
algorithm’s optimization ability in terms of test optimal value and average value. The tables show the 
outcomes of solving Eli51, Eli76, Berlin52, St70, Rat99, D657 and Nrw1379 with ACO, CACO, 
SAACO, Levy-ACO and BFACO over 20 consecutive runs. The known optimal value provided in the 
TSPLIB standard database serves as the benchmark for the optimal solution. The test optimal solution 
represents the shortest path length among 20 solutions, while the average value represents the average 
path length of the 20 solutions. 

Tables 2 and 3 reveal that under the same basic parameter settings, BFACO consistently 
outperforms ACO and the three improved ant colony algorithms in terms of optimal solution, worst 
solution and average value. For instance, in Eli51, BFACO yields a test optimal solution and average 
value that are 4.9 and 5.8 less than ACO, respectively. Similarly, in Eli76, BFACO produces a test 
optimal solution and average values that are 1.9 and 4.1 less than ACO, respectively. In Rat99, BFACO 
yields a test optimal solution and average value that are 8.687 and 15.4 less than ACO, respectively. 
For St70, BFACO achieves a test optimal solution and average value that are 10.4 and 16.7 less than 
ACO, respectively. For Berlin52, BFACO achieves a test optimal solution and average value that 
are 117.6 and 104.3 less than ACO, respectively. However, for large-scale problems such as D657 and 
Nrw1379, the gap between the test optimal solution and the known optimal solution is considerable. 
Specifically, in D657, the test optimal solution and average value obtained by BFACO are 1023.9 
and 1114.5 less than ACO, respectively. In Nrw1379, BFACO yields a test optimal solution and 
average value that are 2019.5 and 2405.4 less than ACO, respectively. This finding suggests that the 
bacterial foraging ant colony algorithm exhibits a weaker optimization ability for large-scale problems. 

In summary, the bacterial foraging ant colony algorithm surpasses ACO and three improved ant 
colony algorithms in terms of optimization ability, as evidenced by the better optimal solution, worst 
solution and average value. Additionally, the algorithm can escape local optima, making it more 
effective. However, for large-scale problems, the optimization performance of the bacterial foraging 
ant colony algorithm is relatively poor. 

Table 2. Experimental results of TSP (optimal solution). 

TSP Optimal solution 
Test the optimal solution 
ACO CACO SAACO Levy-ACO BFACO 

Eli51 426 446.156 443.268 442.512 442.532 441.253 

Eli76 538 568.639 567.325 566.993 566.854 566.775 

St70 675 699.565 694.315 691.346 690.733 689.179 

Berlin52 7542 7663.585 7596.356 7559.431 7553.221 7548.993 

Rat99 1211 1300.896 1296.489 1294.378 1293.344 1292.299 

D657 48912 56627.013 56007.121 55987.911 55704.633 55603.046 

Nrw1379 56638 66960.642 65589.369 65121.461 650345,764 64941.148 
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Table 3. Experimental results of TSP (mean value). 

TSP Optimal solution 
Mean value 
ACO CACO SAACO Levy-ACO BFACO 

Eli51 426 449.711 445.272 445.052 444.076 443.867 
Eli76 538 571.933 569.311 568.521 568.342 567.869 
St70 675 712.321 702.698 697.883 695.833 695.633 
Berlin52 7542 7707.768 7619.458 7597.981 7587.822 7603.512 
Rat99 1211 1316.707 1308.357 1305.731 1303.662 1301.334 
D657 48912 57142.719 56592.082 56397.364 56239.348 56028.209 
Nrw1379 56638 68093.165 66162.813 66231.551 65778.672 65687.724 

2) Algorithm reliability and convergence speed 
In terms of evaluating the reliability and convergence speed of the algorithm, success rate and 

mean convergence generations are used as indicators. The success rate represents the ratio of the 
number of times the algorithm reaches the critical value to the total number of runs based on a preset 
critical value. Tables 4 and 5 present the comparison results of the reliability and convergence rate 
obtained by ACO, CACO, SAACO, Levy-ACO and BFACO for 20 consecutive solutions to Eli51, 
Eli76, Rat99, Berlin52, St70, D657 and Nrw1379. As shown in Table 4, BFACO demonstrates 
superior reliability, with a 100% success rate for solving the seven test data sets. This performance 
is significantly better than that of ACO and also superior to those of CACO, SAACO and Levy-
ACO. Moreover, as shown in Table 5, the mean convergence generations of the BFACO algorithm 
are smaller than those of ACO and also smaller than those of CACO, SAACO and Levy-ACO in 
terms of convergence rate. Therefore, it can be concluded that the bacterial foraging ant colony 
algorithm outperforms the basic ant colony algorithm, chaotic ant colony algorithm, simulated 
annealing ant colony algorithm and Levy flight ant colony algorithm in terms of reliability and 
convergence speed. 

Table 4. Comparison results of reliability and convergence rate (success rate). 

TSP 
 Success rate / % 
ACO CACO SAACO Levy-ACO BFACO 

Eli51 40 75 80 85 100 

Eli76 35 55 70 90 100 

St70 10 55 70 85 100 

Berlin52 45 65 75 90 100 

Rat99 20 60 70 85 100 

D657 35 70 85 5 100 

Nrw1379 10 75 80 10 100 
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Table 5. Comparison results of reliability and convergence rate (mean convergence generations). 

TSP 
Mean convergence generations 
ACO CACO SAACO Levy-ACO BFACO 

Eli51 117.1 75.3 69.5 64.9 64 

Eli76 109.2 61.5 55.3 42.0 45.9 

St70 107.5 85.2 86.5 84.2 83.8 

Berlin52 90.1 60.4 58.0 51.0 54.0 

Rat99 107.3 86.3 78.1 75.9 74.8 

D657 120.5 84.2 85.3 82.7 82.5 

Nrw1379 136.2 102.4 100.5 101.9 97.3 

3) Algorithm stability 
The stability of an algorithm is typically evaluated by its standard deviation, which measures the 

degree of variation of each solution. To assess the stability of ACO, CACO, SAACO, Levy-ACO and 
BFACO, Table 6 presents the standard deviation comparison results obtained from solving Eli51, Eli76, 
Rat99, Berlin52, St70, D657 and Nrw1379 after 20 consecutive runs. 

Table 6 presents the standard deviation comparison results calculated by ACO, CACO, SAACO, 
Levy-ACO and BFACO after 20 consecutive solutions to Eli51, Eli76, Rat99, Berlin52, St70, D657 
and Nrw1379. The analysis reveals that the standard deviation of BFACO for solving the seven test 
data sets is smaller than that of ACO, and it is also superior to those of CACO, SAACO and Levy-
ACO. These results demonstrate that the bacterial foraging ant colony algorithm exhibits superior 
stability compared to the basic ant colony algorithm, chaotic ant colony algorithm, simulated annealing 
ant colony algorithm and Levy flight ant colony algorithm. 

Table 6: Comparison of stabilities. 

Algorithm 
Standard deviation 
Eli51 Eli76 Rat99 St70 Berlin52 D657 Nrw1379 

ACO 3.85 1.90 7.81 4.31 51.49 310.83 586.65 

CACO 3.12 1.15 6.81 3.48 31.23 159.62 329.36 

SAACO 2.96 1.02 6.79 3.51 27.61 163.46 338.25 

Levy-ACO 2.87 0.97 6.72 3.32 25.90 157.33 327.24 

BFACO 2.83 0.95 6.72 3.14 25.54 141.85 306.94 

5.2. Test and result analysis of function optimization problem 

To evaluate the effectiveness of the bacterial foraging ant colony algorithm in solving function 
optimization problems, two commonly used test functions, the Rastrigin function and the Schaffer 
function, were selected and solved [32]. The expressions of these test functions are presented below. 

 
2 2

1
10 cos(2 ) 10]( ) [ ii ii

minf x x x


     (19) 
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Equation (19) represents the Rastrigin function, where xi is bounded within the range of 
[−5.12,5.12]. Equation (20) represents the Schaffer function, where x1 and x2 are bounded within the 
range of [−10,10]. 

The algorithm parameters are configured as follows: NCmax, the maximum iteration number, is 
set to 100; m, the ant colony scale, is set to 100; α, the pheromone importance factor, is set to 1; β, the 
heuristic function importance factor, is set to 5; ρ, the global pheromone volatilization factor, is set to 0.5; 
and Q, the total pheromone release, is set to 100. 

To optimize the Rastrigin function and Schaffer function, the basic ant colony algorithm and 
bacterial foraging ant colony algorithm were utilized for 20 iterations. The outcomes of these iterations 
are presented in Table 7. 

Table 7. Test results of function optimization. 

Test function 
Optimal solution Average solution Standard deviation 
ACO BFACO ACO BFACO ACO BFACO 

Rastrigin 0.00689 0.00000 0.09505 0.00216 0.14800 0.00261 
Schaffer 0.00016 0.00000 0.00412 0.00015 0.04660 0.00018 

From Table 7, it is apparent that the optimal solution and average solution values obtained by the 
bacterial foraging ant colony algorithm for both the Rastrigin function and the Schaffer function are less 
than those obtained by the basic ant colony algorithm. Furthermore, the standard deviation computed by 
the bacterial foraging ant colony algorithm is smaller than that of the basic ant colony algorithm. These 
results indicate that the bacterial foraging ant colony algorithm exhibits better optimization ability and 
stability than the basic ant colony algorithm for function optimization problems. 

Figure 8 illustrates the comparison of optimization convergence between the basic ant colony 
algorithm and bacterial foraging ant colony algorithm for the Rastrigin function, while Figure 9 
presents the optimization convergence comparison between the basic ant colony algorithm and the 
bacterial foraging ant colony algorithm for the Schaffer function. 

 

Figure 8. Comparison of optimal convergence process (Rastrigin). 
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Figure 9. Comparison of optimal convergence process (Schaffer). 

Based on Figures 8 and 9, it is apparent that the Bacterial Foraging Ant Colony Algorithm exhibits 
superior optimization ability and convergence efficiency compared to the basic ant colony algorithm 
when addressing function optimization problems. 

6. Application of improved ant colony algorithm 

In this study, the feasibility of the enhanced ant colony algorithm is investigated using a multi-
node remote consultation service simulation platform. The Solidity programming language is 
employed to develop the computer protocol code, and the resulting smart contracts are tested on the 
Ethereum platform to assess their efficacy. 

In the context of the Ethernet virtual machine, the value assigned to the number of ants Nm is 20, with 
a density parameter of ρ = 0.8 and an iterative upper limit of 200. Tables 9 and 10 present statistical 
information concerning 10 patients seeking remote consultation services (Y1,Y2,...,Y10) and 10 expert 
consultants affiliated with superior hospitals (X1,X2,...,X10). The relevant indicator information includes 
the blockchain-based addresses of patients and consultation experts in the higher hospital, the cost of 
consultation (Bp/eth), the duration of consultation (Bt/h) and the number of consultations (Bq/person). 
Bp and Bt are parameters of particular interest to patients, and their corresponding weights have been 
assigned as wi = (0.50,0.50). On the other hand, Bp, Bt and Bq are three indicators of concern to 
consultation experts, with respective weights of wj = (0.6,0.15,0.25). The simulation parameters table 
and the statistical results about the willingness of patients to be matched with consultation experts are 
presented in the following Table 8: 

Table 8. Simulation parameters. 

Parameter Value 
Number of ants, Nm 20 
Pheromone global volatilization factor, ρ 0.8 
Iteration limit 200 
Patient’s demand weight, wi (0.50,0.50) 
Expert’s demand weight, wj (0.6,0.15,0.25) 
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Table 9. Statistical table of patients’ matching intention tendency. 

Ba Bp/eth Bt/h Bq/person 
Y1 0xb005804a49e73acb17dle7645dfd0a33dde6eb0e 0.62580–0.81355 3 10 
Y2 0x7d577a597b2742b498cb5cf0c26cdcd726d39e6e 1.37677–1.62709 4 13 
Y3 0xc4b1bd9a0bb5a7ddd3e8eeb6d50b411804de70c7 2.06520–2.37810 3 18 
Y4 0xc8bd569f5bea0ad73d6c72ed21c84aa16a55be8c8 1.75225–1.87741 3 15 
Y5 0xbd54e8da7ad5b83b8a3b1a865bd3e8bbd5e4dc92 2.50320–2.81610 2 15 
Y6 0x2cce1a0c40e3505abb67d4e96db3d78c9eb7e52c 2.87870–3.12900 4 20 
Y7 0x5b1d0d0bc4e520c0e720ee102b1bd9bbe25ad445 1.56451–1.87741 2 12 
Y8 0x9de3ccb9d8bb7dd07ca8ec083e9a3e0c4a2b838f 0.87613–1.06387 3 8 
Y9 0x0db8eca9ba2e90ce305a8c6a33cd00d4eaa634a9 1.12645–1.37677 3 5 
Y10 0xa436d480ea4ebe9e71eae7b3703ac3c3a3dd338a 1.31419–1.81483 4 10 

Table 10. Statistical table of the matching willingness of consultation experts. 

Ba Bp/eth Bt/h Bq/ person 
X1 0x62b1746767522b36f6421e630fa0198151d72964 0.71967–0.93871 2–3 8–12 
X2 0x115ced3f8b7ea92d324902e3a3a421a07540eb2b 1.50193–1.87741 2–4 10–15 
X3 0x6a248b2dd2ecdabbc25ccc507558ddebde7adcda 2.56580–2.94130 2–3 17–25 
X4 0x65c26319c9b34418aeb6ee13a8b8ea40eed82ec4 1.56451–1.87741 2–3 13–18 
X5 0xdadcc96e78b9bec5891dba90aab5aa7510ee200d 1.25161–1.62709 2–4 10–17 
X6 0x82a978b3f5962a5b0957d9ee9eef472ee55b42f1 1.00129–1.43935 2–4 8–13 
X7 0x4b1334c2b9daba17341d3e1bba0d7dc062b3abed 1.75225–2.25290 2–5 9–15 
X8 0xe0c026aeb8c8e10d11ac93a21cc3b0ecd07cc376 2.75350–3.25420 2–3 20–27 
X9 0xb0cac9c060aa6a5de1b633415a50b9b8dd8a1ead 2.12770–2.44060 2–3 17–24 
X10 0x6dce02b24cdc2e7e6c4dc1acda5c0b6d82d4dc65 1.50193–1.75225 2–6 10–18 

The utilization of the enhanced ant colony algorithm enabled matching on the virtual machine, 
yielding the results and overall preference values presented in Table 11. The data indicate a high level 
of satisfaction among both patients and experts upon completion of the matching process. Following 
this outcome, the algorithm initiates contract execution automatically. 

Table 11. Matching results and overall preference values. 

Matching results Overall preference value 
Y1–X1 0.103 
Y1–X1 0.263 
Y1–X1 0.164 
Y1–X1 0.220 
Y1–X1 0.428 
Y1–X1 0.176 
Y1–X1 0.219 
Y1–X1 0.158 
Y1–X1 0.182 
Y1–X1 0.339 
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Through iterative tests on the simulation platform, the performances of the classical ant colony 
algorithm, improved ant colony algorithm, basic particle swarm optimization (PSO) [33] and parallel 
dynamic weigh niches artificial fish swarm (PDN-AFS) [34] algorithm are compared and analyzed, 
without altering the initial parameters. 

Based on the comparison results presented in Figure 10, under the same parameters, the curve of 
the improved ant colony algorithm fluctuates smoothly with the increasing number of iterations, and 
it tends to be stable earlier than the other three algorithms. Therefore, the improved ant colony 
algorithm has better performance than the other three algorithms and is more stable. 

 

Figure 10. Performance comparison chart of four algorithms. 

Figure 11 shows the change curves of the global optimal mean of three objective functions, 
Eqs (3)–(5), under the comparative experiments of improved ant colony algorithm, classical ACO, 
PSO and PDN-AFS algorithm. As can be seen from Figure 11, the global optimal mean of the three 
objective functions of the improved ant colony algorithm has a decreasing trend compared with the 
calculation results of the classical ant colony algorithm. The classical ant colony algorithm and the PSO 
have unstable fluctuations compared with the improved ant colony algorithm in the process of finding the 
optimal solution from the change curve, and the iterative effect of the PDN-AFS algorithm in the early 
stage is not very ideal. Therefore, the improved ant colony algorithm obtains the better global optimal 
average value of three objective functions, and the iterative process is more stable, which can prove that 
the improved ant colony algorithm keeps finding effective global optimal solutions in the iterative process. 

 

Figure 11. Variation curves of the global optimal mean of the three objectives. 
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The smart contract algorithm introduced in this study was implemented in a peer-to-peer network, and 
the execution of contracts within a seven-day timeframe was analyzed. The results in Table 12 showed a 
contract scrap proportion of only 0.96% and a matching success rate of 99.02% in the contracts that were 
established. Furthermore, the efficiency of the service execution was substantially enhanced. 

Table 12. Smart contract signing status. 

Date Patients Experts 
Number of successful 

match contract signings 

Number of unsuccessful 

matches 

Number of expired 

contracts 

2023-04-03 10 10 10 0 0 

2023-04-04 100 150 94 6 4 

2023-04-05 302 208 306 2 6 

2023-04-06 727 716 716 11 5 

2023-04-07 529 458 529 0 8 

2023-04-08 635 648 630 5 2 

2023-04-09 859 782 846 13 5 

Total 3162 2972 3131 37 30 

7. Conclusions 

With the maturity of telemedicine service, more and more transactions will be carried out through 
the intelligent platform of network information. The integration of blockchain and artificial 
intelligence provides a new development direction for telemedicine services. In this paper, based on 
blockchain and swarm intelligence technology, an improved ACO algorithm based on bacterial 
foraging is used to combine the conditional attributes of the patient and the consultation experts in the 
superior hospital, so as to obtain a high degree of fit between the two parties and realize the automatic 
management of consultation services. According to the experimental results, the ACO algorithm based 
on bacterial foraging is effective in dealing with multi-objective matching problems.  

However, the proposed model was limited by the fields of smart contracts and blockchain, and it 
is still in the initial stage of exploration. The performance and efficiency of the transaction matching 
algorithm can be further improved by integrating it with other heuristic algorithms. In addition, this 
paper only solves the common problems such as decentralization and intelligence of remote 
consultation, but in the distributed, dynamic and open big data environment with increasing transaction 
data of remote consultation, how to solve the problem of massive storage for blockchain is the focus 
of future research. 
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