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Abstract: With the development of Internet technology, social media has gradually become an 
important platform where users can express opinions about hot events. Research on the mechanism of 
public opinion evolution is beneficial to guide the trend of opinions, making users’ opinions change in 
a positive direction or reach a consensus among controversial crowds. To design effective strategies 
for public opinion management, we propose a dynamic opinion network susceptible-forwarding-
immune model considering environmental factors (NET-OE-SFI), which divides the forwarding nodes 
into two types: support and opposition based on the real data of users. The NET-OE-SFI model 
introduces environmental factors from infectious diseases into the study of network information 
transmission, which aims to explore the evolution law of users’ opinions affected by the environment. 
We attempt to combine the complex media environmental factors in social networks with users’ 
opinion information to study the influence of environmental factors on the evolution of public opinion. 
Data fitting of real information transmission data fully demonstrates the validity of this model. We 
have also made a variety of sensitivity analysis experiments to study the influence of model parameters, 
contributing to the design of reasonable and effective strategies for public opinion guidance. 
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1. Introduction  

Social media in the Internet age has gathered more users than ever before and is a major channel 
for sharing public opinions. Especially during the COVID-19 pandemic, social media use has reached 
unprecedented scales and the Internet is awash with information on a wide range of opinions due to 
government control for traveling. Generally speaking, opinion polarity can be divided into two 
categories: support and opposition. Take opposition as an example, users tend to express their opinions 
on social media after a controversial topic is published by mainstream media. When the number of 
opposing opinions increases, it will inevitably lead to the large-scale spread of polarized emotions 
among users. It is easy to form a negative emotional atmosphere on the Internet platform. If the 
government and relevant departments find out the opinion trend of the Internet platform in time, they 
can control the relevant public opinion situation, which is conducive to the construction of a positive 
network environment. Therefore, it is of great significance to study the dissemination of opinions in 
the process of network information propagation. 

Figure 1 shows the opinion dissemination process involving environmental factors on social 
media networks. In the information transmission network of a single platform, nodes of different colors 
represent users with different transmission states, in which forwarding user nodes and environment 
effect nodes are both divided into supporting or opposing opinion nodes based on their forwarding text 
content. When users forward information on a certain platform, they are likely to be influenced by 
public opinion information on some environmental factors outside this social platform. For instance, 
when the users who have already forwarded information on Chinese Sina Microblog browse a similar 
topic on TV, newspaper, Instagram or other media platforms again, their ability to influence and spread 
the information to susceptible users will be enhanced. If a forwarding node is affected by the 
environment of multi-platform information transmission, it will be transformed into the environment 
effect node, besides, an indirect transmission path will be generated in the information transmission 
net, to promote the effect of information dissemination. 

 

Figure 1. Opinion dissemination process involving environmental factors in social media networks. 
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The dissemination of public opinion is often accompanied by the information content and the 
public diffuses the publisher’s information through forwarding behavior. For some controversial topics, 
forwarding users often derive two polarizing opinions: support and opposition. At the same time, there 
are various kinds of information communication media. Therefore, active users on one platform may 
coincide with active users on the mass media of the dissemination environment. This also leads to 
more complex information dissemination processes on social networks. Thus, the research of 
information dissemination in a sophisticated media environment is becoming quite important. 
Therefore, this paper constructs an opinion network dynamic model using real data and studies the 
public opinion’s direct transmission process on the complex network and the indirect transmission 
process affected by the sophisticated media environment, which is conducive to the research of opinion 
evolution direction affected by environmental factors in social media network. 

2. Related work 

Since the Internet age and the massive growth of information, the infectious disease model has 
been widely applied to information dissemination based on social networks successfully by many 
scholars [1–3], promoting the flourishing development of research on the dynamics of information 
dissemination. Many studies have shown that social networks can be regarded as complex networks 
with features of small-world and scale-free [4,5]. There are some limitations in analyzing the process 
of information dissemination using the traditional mixed homogeneous dynamic models [6,7], while 
the dynamic models of complex networks can reveal the mechanism of information dissemination more 
effectively. Therefore, more and more scholars have begun to simulate the process of network information 
transmission from the perspective of a BA scale-free network or small-world network [8–11]. 

Considering the characteristics and related influencing factors of rumor propagation in the real 
world, Sun et al. [12] proposed a rumor propagation model with a non-uniform propagation rate to 
describe different propagation rates of different nodes. For complex networks in the real world, it is 
necessary to develop the traditional susceptible-infected-recovered (SIR) model by considering the 
dependence of rumor spread rate on weight-based connection strength between different nodes. 
Therefore, Singh et al. [13] studied the effect of degree-degree correlation on rumor propagation and 
the effectiveness of dissemination strategies in real social networks. Nian et al. [14] developed a new 
SSIR information propagation model by dividing the susceptible state into two parts, thus constructing 
a dynamic BA scale-free network to study the evolution of node impact based on secondary 
propagation experiments. Since the fact that online information in complex networks has played a 
more and more significant impact on real society, Zhang et al. [15] established a modified network 
public opinion dissemination model under public crisis. The model uses mean field theory based on 
BA scale-free network, updating the traditional susceptible-exposed-infected-recovered (SEIR) 
infectious disease model from a novel perspective. Regarding the dissemination of behavior-related 
information as the influencing medium, Dang et al. [16] constructed a behavior propagation and 
confrontation competition model based on the energy of information and carried out the simulation in 
a small-world network. To investigate the impact of dimension on the process of information 
dissemination more conveniently, Wang et al. [17] defined an effective model with a higher 
dimensional small-world network and characterized the dependence of structural properties of the 
network on dimension. Currently, the online public opinion environment is complex and ever-changing 
and the self-organizing network information dissemination of social platforms is universal. However, 
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the existing dynamic research based on complex networks mostly starts from the perspective of 
network topology. There is little work using real data from social platforms to study the information 
dissemination mode in complex networks, and so much simulation research instead. 

In order to explore the opinion evolution of social groups, opinion dynamic is being developed. 
According to different view descriptions, opinion dynamic models can be divided into discrete 
models [18,19] and continuous models [20,21]. In recent years, many scholars have paid close 
attention to using infectious disease models in the research of social network dissemination, including 
opinion dynamics [22,23]. Liang et al. [24] proposed an absorption law and the modified trust 
propagation method to describe the opinion evolution process between the three types of people in 
social networks, based on the infectious disease transmission model. Considering the significant effect 
of people’s subjective communication tendencies on the propagation of different opinions, Wang [25] 
proposed a SIDR compartment model, which divided the public into four types: susceptible individuals, 
irrational individuals, doubters and rational individuals. Mitsutsuji et al. [26] developed a new model 
of public opinion dynamics to describe the phenomenon that citizen agents have dual attitudes, 
specifically in terms of attitudes toward war. In addition, some scholars have studied the key role of 
opinion leaders in opinion evolution. Based on the limited confidence model, Chen et al. [27] analyzed 
the influence of competitive opinion leaders on attracting followers of social groups from the four 
characteristics of reputation, stubbornness, attractiveness, and extreme. Zhao et al. [28] divided 
individuals in the social network into opinion leaders and their followers and established a new 
dynamic model based on bounded confidence to simulate the opinion evolution between the groups. 
Research on the evolution of opinions on social networks is conducive to the promotion of positive 
opinions and the supervision of negative opinions by governments and enterprises. However, the equal 
possibility of all individual contacts in the uniformly mixed network ignores the influence of the 
individual contact process and group mixing mode. Using real data to construct an opinion 
dynamic model based on the complex network is helpful to master the evolution law of opinions 
in social platforms. 

With the deep development of the research on infectious disease models in recent years, some 
scholars have further studied the process of indirect transmission of pathogens in a polluted 
environment [29,30]. Richard et al. [31] considered that the main transmission mode of infectious 
diseases is indirect and mediated by contact with a polluted reservoir. Based on previous works on the 
research of cholera dynamics, they developed a group of reservoir-mediated SIR models with the 
infection threshold for pathogen density. Shuai et al. [32] established a general compartmental model 
for cholera, which incorporated the two ways of transmission, namely direct and indirect in the 
condition of polluted water. Shu et al. [33] promoted global dynamics from a mathematical perspective, 
namely, constructing a class of mathematical epidemiological models formulated by systems of 
differential equations. David et al. [34] considered that susceptible individuals would become infected 
at some rate whenever they contact with infectious pathogens (indirect transmission), studying the 
transmission of infectious diseases by constructing and analyzing a class of coupled partial and 
ordinary differential equations (PDE-ODE). In the dynamics of information transmission, there have 
been relatively mature studies on the direct transmission model of infectious diseases, but few studies 
on indirect transmission related to environmental factors. The information transmission mechanism of 
the new social network is complex, facing many problems such as a large number of social platforms, 
high mobility of social users and wide spread of social information. Therefore, studying the indirect 
transmission mechanism of network information in the complex media environment is conducive to 
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improving the current network information ecology. 

3. Model description 

This paper constructs an opinion network dynamic model, which combines various environmental 
factors and opinion dynamics on information transmission in the social network. Based on the 
traditional SFI model [35] developed from the SIR model, we introduce our net-opinion-environment 
susceptible-forwarding-immune model (NET-OE-SFI), in order to describe the evolution of 
forwarding quantities of two opinions affected by environmental factors, as shown in Figure 2. 
Compared with the traditional information transmission dynamic model, the NET-OE-SFI model 
researches the propagation rules of information on user nodes with different degrees based on 
genuine data. The model also divides users into forwarding groups with different opinions and 
studies the direct information transmission on the single platform and the indirect information 
transmission in the environment. 

 

Figure 2. A schematic illustration of information dissemination of different opinions in the 
network under the multiplatform environment. 

We assume that individuals participate in the information dissemination and opinion evolution in 
a closed and uneven mixed complex social network, where individuals can be represented by vertices, 
connections between individuals can be represented by edges, and the total number of nodes is 𝑁 (𝑁 
remains unchanged). According to the degree 𝑘 of nodes, the 𝑁 individuals in the complex social 
network can be divided into four states: 
 susceptible state (𝑆 ): individuals have not yet been exposed to information and may be affected 

by it 
 opposing forwarding state (𝐹 ): individuals have forwarded the information with opposing 

opinion and have the ability to influence other susceptible individuals to forward the 
information 

 supporting forwarding state (𝐹 ): individuals have forwarded the information with supportive 
opinion and have the ability to influence other susceptible individuals to forward the information 

 immune state (𝐼 ): individuals in the susceptible state or forwarding state (including opposing and 
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supporting forwarding states) have read or forwarded the information, but no longer forward the 
information even if receive it again 
Therefore, we define 𝐹  as the forwarding state, including the opposing (𝐹 ) and supporting 

(𝐹 ) forwarding states. The node degree 𝑘 represents the number of nodes that an individual can 
contact per unit of time in the social network and the max degree is 𝐾. After spreading information 
on the Chinese Sina Microblog platform, some individuals may browse related information from other 
social media platforms, resulting in generating individuals (𝐸) in the environment, in which the users 
have the ability to influence the information propagation. 

To sum up, 𝑆 𝑡 , 𝐹 𝑡 , 𝐹 𝑡 , 𝐼 𝑡  and 𝐸 𝑡  denote the numbers of users in respective 
states at time 𝑡. Thus, 𝑆 𝑡 𝐹 𝑡 𝐹 𝑡 𝐼 𝑡 𝐸 𝑡 𝑁 and 𝐹 𝑡 𝐹 𝑡 𝐹 𝑡 . 
Therefore, introducing the parameters in Table 1, our NET-OE-SFI model involving users in the above 
five states can be characterized by the following system of differential equations: 

𝑆 𝑡 𝑘𝑆 𝑡 𝜃 𝑡 𝛽𝑆 𝑡 𝐸 𝑡                      (1) 

𝐹 𝑡 𝑚 𝑘𝑆 𝑡 𝜃 𝑡 𝑛 𝛽𝑆 𝑡 𝐸 𝑡 𝛼 𝐹 𝑡              (2) 

𝐹 𝑡 𝑚 𝑘𝑆 𝑡 𝜃 𝑡 𝑛 𝛽𝑆 𝑡 𝐸 𝑡 𝛼 𝐹 𝑡               (3) 

𝐼 𝑡 1 𝑚 𝑚 𝑘𝑆 𝑡 𝜃 𝑡 1 𝑛 𝑛 𝛽𝑆 𝑡 𝐸 𝑡

𝛼 𝐹 𝑡 𝛼 𝐹 𝑡                                                  
          (4) 

𝐸 𝑡 𝛾 ∑ 𝐹 𝑡 𝛾 ∑ 𝐹 𝑡                      (5) 

where 𝜃 𝑡  represents the connection probability between a susceptible node of degree 𝑘 and the 
forwarding nodes 𝐹, which can be obtained from Eq (6). 

𝜃 𝑡 ∑ 𝑃 𝑙|𝑘 𝐹 𝑡 𝑁⁄ ∑ 𝑃 𝑙|𝑘 𝐹 𝑡 𝑁⁄                (6) 

𝑃 𝑙|𝑘 𝑙𝑝 𝑙 〈𝑘〉⁄                                (7) 

𝑝 𝑙 𝑁 /𝑁                                  (8) 

〈𝑘〉 ∑ 𝑘𝑝 𝑘                              (9) 

𝐹 𝑡  and 𝐹 𝑡  represent the numbers of supporting and opposing forwarding nodes with 
node degree 𝑙 , respectively. 𝑁  represents the total number of the nodes with degree 𝑙 . 𝑃 𝑙|𝑘  
represents the conditional probability of the connection between the node with degree 𝑘 and the node 
with degree 𝑙. According to the degree distribution characteristics of network nodes, the degree-degree 
correlations can be written as Eq (7), where 𝑝 𝑙  is the probability of nodes with degree 𝑙 in the 
network structure and 〈𝑘〉 is the average degree of the complex network. 𝑝 𝑙  can be expressed as 
the ratio of the total number 𝑁  of nodes with degree 𝑙  to the total number 𝑁 of nodes in the 
complex network, while 〈𝑘〉 can be calculated by Eq (9). Then, 𝜃 𝑡 ∑ 𝑃 𝑙|𝑘 𝐹 𝑡 𝑁⁄  and 
𝜃 𝑡 ∑ 𝑃 𝑙|𝑘 𝐹 𝑡 𝑁⁄  represent the probabilities of connection between a susceptible node 
of degree 𝑘 and the supporting or opposing forwarding nodes at time 𝑡, respectively. Moreover, 
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𝜃 𝑡 , 𝜃 𝑡  and 𝜃 𝑡  can also be represented by Eqs (10)–(12) respectively, which are obtained 
from Eqs (6), (7) and (9). 

𝜃 𝑡 ∑ 𝐹 𝑡 𝐹 𝑡 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄               (10) 

𝜃 𝑡 ∑ 𝐹 𝑡 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄                       (11) 

𝜃 𝑡 ∑ 𝐹 𝑡 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄                       (12) 

Table 1. NET-OE-SFI model parameters interpretation. 

Parameter Interpretation 

𝑘 
The degree of a node, which indicates the number of connections between a node 
and other nodes in the complex network. 

𝑚  
The opposing forwarding rate under the precondition that the susceptible node 
contact the forwarding nodes, 𝑚 ∈ 0,1 . 

𝑚  
The supporting forwarding rate under the precondition that the susceptible node 
contact the forwarding nodes, 𝑚 ∈ 0,1 . 

𝑛  
The opposing forwarding rate under the precondition that the susceptible node 
contact the effect nodes of the environment, 𝑛 ∈ 0,1 . 

𝑛  
The supporting forwarding rate under the precondition that the susceptible node 
contact the effect nodes of the environment, 𝑛 ∈ 0,1 . 

𝛼  

The average immune rate of opposing forwarding users, i.e., the average rate that 

an opposing forwarding user becomes inactive after influencing other users, 

∈ 0,48ℎ . 

𝛼  

The average immune rate of supporting forwarding users, i.e., the average rate 

that a supporting forwarding user becomes inactive after influencing other users, 

∈ 0,48ℎ . 

𝛽 
The average exposure rate that a susceptible node can expose to the effect nodes 
of the environment, 𝛽 ∈ 0,1 . 

𝛾 
The ratio of forwarding nodes with environmental impact capability, which can 
be used to measure the complexity of the environment in the current propagation 
situation, 𝛾 ∈ 0,1 . 

In our model, a susceptible user can contact an average of 𝑘 users per unit of time, and the ratio 
that a susceptible user can contact active forwarding users is 𝜃 𝑡 . Thus, a susceptible user will contact 
𝑘𝜃 𝑡  forwarding users per unit time. In particular, this paper creatively divides forwarding users into 
two different opinion types according to their text content. Therefore, susceptible users will have two 
different forwarding directions after accessing to information. After 𝑘𝑆 𝑡 𝜃 𝑡  susceptible users 
being exposed to messages, 𝑚 𝑘𝑆 𝑡 𝜃 𝑡  susceptible users will choose to forward the information 
with an opposing opinion, while 𝑚 𝑘𝑆 𝑡 𝜃 𝑡  susceptible users will choose to forward the 
information with a supporting opinion. Similarly, 𝛽𝑆 𝑡 𝐸 𝑡  susceptible users are exposed to the 
multiplatform environmental individuals 𝐸 𝑡  at the same time, so that 𝑛 𝛽𝑆 𝑡 𝐸 𝑡  susceptible 
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users will choose to forward the information with an opposing opinion and 𝑛 𝛽𝑆 𝑡 𝐸 𝑡  susceptible 
users will choose to forward the information with a supporting opinion. Meanwhile, 1 𝑚
𝑚 𝑘𝑆 𝑡 𝜃 𝑡  and 1 𝑛 𝑛 𝛽𝑆 𝑡 𝐸 𝑡  susceptible users will no longer forward the 
information, hence becoming immune users, namely transferring from the  𝑆  state to the 𝐼  state 
after accessing to the information. Besides, 𝛼 𝐹 𝑡  opposing forwarding users and 𝛼 𝐹 𝑡  
supporting forwarding users will become immune users when being out of active time, transferring 
from the 𝐹  state to the 𝐼  state. 

We develop the variable ℜ , which denotes the average number of individuals infected by a 
patient during the average infection period in the epidemic model [2], namely the basic information 
propagation reproduction ratio, to judge public opinion will erupt. When 𝑑𝐹 0 /𝑑𝑡 0, namely, the 
growth rate of the forwarding users at the initial time is less than 0, the public opinion will never burst. 
Based on this fact, we can obtain the mathematical derivation process of the public opinion 
reproduction ratio ℜ . Combining Eqs (2) and (3) with 𝐹 𝑡 𝐹 𝑡 𝐹 𝑡 , we can obtain: 

𝐹 𝑡 𝑚 𝑚 𝑘𝑆 𝑡 𝜃 𝑡 𝑛 𝑛 𝛽𝑆 𝑡 𝐸 𝑡 𝛼 𝐹 𝑡 𝛼 𝐹 𝑡   (13) 

Then, multiplying Eq (13) with 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄ , we can obtain: 

𝑘𝑝 𝑘 〈𝑘〉𝑁⁄ 𝑚 𝑚 𝑘𝑆 𝑡 𝜃 𝑡 𝑛 𝑛 𝛽𝑆 𝑡 𝐸 𝑡

                       𝛼 𝐹 𝑡 𝛼 𝐹 𝑡 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄
     (14) 

Sum over 𝑘 on both sides of Eq (14) to obtain: 

∑ 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄ ∑ 𝑚 𝑚 𝑘𝑆 𝑡 𝜃 𝑡 𝑛 𝑛 𝛽𝑆 𝑡 𝐸 𝑡

                      𝛼 𝐹 𝑡 𝛼 𝐹 𝑡 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄
  (15) 

So that we can conclude Eq (16) from Eqs (2), (3), (10) and (15): 

∑ 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄ 𝜃 𝑡                    (16) 

Because ∑ 𝑘 𝑝 𝑘 〈𝑘 〉, ∑ 𝑘𝑝 𝑘 〈k〉, we can get Eq (17) from Eq (15): 

𝜃 𝑡 𝜃 𝑡 ∑ 𝛽 ∑

                        𝛼 ∑ 𝐹 𝑡 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄ 𝛼 ∑ 𝐹 𝑡 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄
      (17) 

Substitute Eqs (11) and (12) into Eq (17): 

𝜃 𝑡 𝜃 𝑡 ∑ 𝛽 ∑

𝛼 𝜃 𝑡 𝛼 𝜃 𝑡                                                    
         (18) 

Only when 𝐹 0 𝐹 𝑡 | 0 , can the public opinion will burst in social network. 

Because 𝑘𝑝 𝑘 〈𝑘〉𝑁⁄ 0, we can educe that 𝜃 𝑡 | 0 according to Eq (16). When 𝑡
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0 , 𝑆 𝑆 0 𝑁 . Defining 𝜃 𝜃 𝑡 | , 𝐸 𝐸 𝑡 | , 𝜃 𝜃 𝑡 |  and 𝜃
𝜃 𝑡 | , we obtain: 

〈 〉
𝑛 𝑛 𝛽𝐸 𝛼 𝜃 𝛼 𝜃                (19) 

Divide 𝛼 𝜃 𝛼 𝜃  both sides of Eq (19) simultaneously: 

〈 〉
1                          (20) 

Therefore, we define the left side of Eq (20) as the public opinion reproduction ratio ℜ : 

ℜ
〈 〉

                    (21) 

When ℜ 1, the number of forwarding users will increase exponentially and only in this case 
can public opinion burst in the network. Apparently, the larger the value of ℜ  is, the faster the speed 
of the outbreak will be. 

4. Numerical implementation 

In order to analyze the effectiveness and rationality of the net-opinion-environment susceptible-
forwarding-immune model of this paper, we select the genuine data as a research case in this section. 
The model parameters are estimated and fitted with genuine data to verify the model performance. We 
selected the information dissemination process of “Chinese Union Medical College Hospital has found 
that skipping dinner is good for metabolic health” on Chinese Sina Microblog as the case of this paper 
and we obtained users’ forwarding time data and text content (shown in Figure 3) from application 
program interface (API), aiming to estimate the model parameters, the initial susceptible population 
𝑆  and the initial cross-platform population of the environment 𝐸 . 

This is a message posted by state media on Sina Microblog at 10:31 on March 13, 2022. Analyzing 
the collected data, we found that the information did not cause a wide range of transmission within 12 
hours after the release. And up to 22:26 of the day, the cumulative number of forwarding is only 303 
times. Subsequently, the microblog broke out with more than 200 forwarding times every ten minutes 
and rapidly became a trending topic on the Chinese Sina Microblog. This information has aroused 
intense discussion among users of social platforms and the polarization of users’ opinions was severe. 
Many users believe that there is a saying in Buddhism that “no food after noon” and they argue that 
eating before going to bed is not conducive to digestion, so they hold supporting opinions. However, 
some users believe that not eating on time is not conducive to their health. Therefore, the spread of this 
information has the polarization characteristics of users’ views. Furthermore, after 22:00 every night, 
people have sufficient time to contact this information on other social platforms, which is highly likely 
to lead to a cross-platform population in the environment of the information propagation. To 
summarize, this event is suitable for the NET-OE-SFI model in this paper. 
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Figure 3. The forwarding structure and the genuine information example on the Chinese 
Sina Microblog. 

Table 2. The cumulative numbers of forwarding users with different opinions in the case. 

𝒕 𝟏𝟎 𝒎𝒊𝒏  0 1 2 3 4 5 6 7 8 9 

𝑪𝑶𝒑𝒑 79 112 172 257 347 416 502 562 624 676 

𝑪𝑺𝒖𝒑 224 322 467 670 894 1083 1277 1475 1637 1770 

𝒕 𝟏𝟎 𝒎𝒊𝒏  10 11 12 13 14 15 16 17 18 19 

𝑪𝑶𝒑𝒑 723 768 794 826 850 871 881 891 903 912 

𝑪𝑺𝒖𝒑 1889 2006 2139 2221 2305 2389 2448 2486 2515 2549 

𝒕 𝟏𝟎 𝒎𝒊𝒏  20 21 22 23 24 25 26 27 28 29 

𝑪𝑶𝒑𝒑 917 923 927 933 939 943 947 951 956 959 

𝑪𝑺𝒖𝒑 2573 2588 2604 2622 2635 2649 2658 2672 2687 2693 

𝒕 𝟏𝟎 𝒎𝒊𝒏  30 31 32 33 34 35 36 37 38 39 

𝑪𝑶𝒑𝒑 959 960 960 962 964 964 965 965 968 968 

𝑪𝑺𝒖𝒑 2701 2708 2712 2717 2722 2727 2731 2736 2738 2740 

𝒕 𝟏𝟎 𝒎𝒊𝒏  40 41 42 43 44      

𝑪𝑶𝒑𝒑 970 973 973 974 974      

𝑪𝑺𝒖𝒑 2742 2743 2743 2743 2743      

For this incident, we collected the forwarding text content and forwarding time from Chinese Sina 
Microblog as shown in Figure 3. According to the opinion information of the forwarding text, we 
divided the data into opposing and supporting opinions. Because of the particularity of the outbreak 
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time of this event, we don’t have to filter the raw data to avoid the interference from information 
stagnation period due to physiological needs. After these pretreatment processes, we obtained the 
accurate forwarding time and corresponding copywriting of the supporting message and opposing 
message. The above results were used to calculate the cumulative numbers of forwarding users 
(𝐶 𝑡 , 𝐶 𝑡 ) as shown in Table 2. Here, we set the beginning time to 0 and the sampling 
interval to ten minutes. 

In order to fit our model with the real data collected from the Chinese Sina Microblog, we use the 
LS method to estimate the model parameters, the initial susceptible population 𝑆 , and the initial cross-
platform population of the environment 𝐸 . The parameter vector can be set as Θ
𝛼 , 𝛼 , 𝑚 , 𝑚 , 𝑆 , 𝑁, 𝐾, 𝑛 , 𝑛 , 𝛾, 𝛽, 𝐸  and according to the parameter vector, the corresponding 

numerical calculation for 𝐶 𝑡  and 𝐶 𝑡  are denoted by 𝑓 𝑖, Θ  and 𝑓 𝑖, Θ , 

respectively. 
The LS error function 

𝐿𝑆 ∑ 𝑓 𝑖, Θ 𝐶 _ ∑ 𝑓 𝑖, Θ 𝐶 _         (22) 

is used in our calculation, where 𝐶 _  and 𝐶 _  denote the actual cumulative numbers of the 
forwarding users with opposing and supporting opinion given in Table 2 and 𝑖 0, 1, 2, … 𝑇 is the 
sampling time. To discover the optimal data fitting, Θ is set to minimize the Eq (22). 

As shown in Figure 4, we perform data fitting of the genuine data given in Table 2 and the 
fitting curve is approximately consistent with the actual value. We use curves of different shapes to 
display the actual cumulative forwarding quantities and the predicted cumulative forwarding quantities 
by the model, which consists of opposing and supporting opinions. As we can see in Figure 4, users 
with supporting opinions play a key role in the information propagation of this case, including that 
the initial propagation speed of supporting opinions is faster than opposing opinion, and the outbreak 
of the supporting messages lasts for a longer time. In contrast, the cumulative number of forwarding 
users with opposing opinions goes to a steady state earlier. The fitting curves of the two opinions in 
Figure 4 closely coincide with the actual values, which fully verifies the feasibility and accuracy of 
our NET-OE-SFI model. 

Table 3 has shown the estimated results of our NET-OE-SFI model parameters. We can conclude 
from the table that the average immune rate of opposing forwarding users 𝛼  is greater than that of 
supporting forwarding users 𝛼 . In other words, more users change from the opposing forwarding 
state 𝐹  into the immune state 𝐼 . The supporting forwarding rate under the precondition that the 
susceptible node contact the forwarding nodes 𝑚  and the supporting forwarding rate under the 
precondition that the susceptible node contact the effect nodes of environment 𝑛  are both greater 
than those of opposing forwarding rates, which indicates that more users change from the susceptible 
state 𝑆  into the supporting forwarding state 𝐹 . This is also consistent with the trends of the 
cumulative numbers of forwarding users shown in Figure 4. 



16877 

Mathematical Biosciences and Engineering  Volume 21, Issue 9, 16866–16885. 

 

Figure 4. Numerical data fitting results of the case. 

Table 3. The estimated results of our NET-OE-SFI model parameters in the case. 

𝜶𝑶 𝜶𝑺 𝒎𝑶 𝒎𝑺 𝑺𝟎 𝑵 

0.09843 0.09516 0.10256 0.23662 9266 21,510 

𝑲 𝒏𝑶 𝒏𝑺 𝜸 𝜷 𝑬𝟎 

51 0.07790 0.40157 0.00249 0.00142 154 

 

Figure 5. The change results of users with different states in the case. 

Figure 5(a),(b) shows the change process of the total number of people in the event, in which 
𝐹 , 𝐹 , 𝐼, 𝐸 and 𝑆 are represented by different curves. Here, the people of the same 
order of magnitude are shown in Figure 5(a). Both the two types of forwarding curves show an overall 
upward trend at the beginning of the outbreak of public opinion. When public opinion tends to be 
gentle, the number of forwarding individuals newly added gradually decreases. Therefore, the changes 
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of the two curves in Figure 5(a) both show a bell shape. The difference is, 𝐹  plays a more 
important role in the information dissemination process of the event: “Skipping dinner is good for your 
metabolic health.” Considering that all groups will be gradually immune to the event, the curve of 
overall immune groups always shows an upward trend. Accordingly, the curve of the total number of 
susceptible groups shows a downward trend as a whole. 

E groups represent some individuals who will browse the related information from other social 
platforms and have an environmental impact. At the beginning of the outbreak of public opinion, the 
initial number of E groups E  stands for the potential individuals in the susceptible state who will 
browse other platforms at the same time. We can draw from Table 3 that the value of E  is 154, which 
is much less than S 9266. However, with the spread of information, more and more forwarding 
users begin to browse the relevant information on other platforms after forwarding the information. 
The individuals in forwarding states are transformed into E individuals in proportion γ 0.00249, 
so the individuals with spatial overlap in the Sina Microblog social network will further promote the 
dissemination of information. 

5. Sensitivity analysis and discussion 

To further analyze how the different parameters of our NET-OE-SFI model play a role in the 
information propagation process, we conduct parameter sensitivity analysis using the partial rank 
correlation coefficients (PRCCs) method. PRCCs is a significant method for the comprehensive analysis 
of parameter sensitivity, which carries out repetitive experiments within the parameter boundary range 
through 1000 groups of samples and finally gives the average parameter sensitivity results. 

Figure 6 shows how the values of ℜ , 𝐹  and 𝐹  are affected by the model 
parameters. According to the PRCCs histogram, the forwarding rates ( 𝑚  and 𝑚 ) under the 
precondition that the susceptible node contact the forwarding nodes, the initial value of the susceptible 
users 𝑆 , the max value of degree 𝐾, the opposing forwarding rate 𝑛  under the precondition that 
the susceptible node contact the effect nodes of environment, the proportion 𝛾 of forwarding nodes 
with environment information dissemination capability, the average exposure rate 𝛽, the initial value 
𝐸  of 𝐸 groups have a positive effect on ℜ , in which 𝑚 , 𝑚 , 𝐾 have a strong influence and 𝑆 , 
𝐾, 𝑛 , 𝛾, 𝛽, 𝐸  have a weak influence. As for the average immune rates (𝛼  and 𝛼 ) with different 
opinions have a strong negative effect on ℜ . Thus, it can be seen that, increasing the immune rate in 
the process of information dissemination, that is to say, accelerating transformation from the 
forwarding state to the immune state will help suppress the outbreak of public opinion. 

In order to better study the differences of opinions in the information dissemination process, we 
research the influence of model parameters on the maximum number of current forwarding users 𝐹  
with different opinions (𝐹 , 𝐹 ). In Figure 6, the parameter 𝛼  has a strong negative 
effect on 𝐹 , while 𝛼  has a weak negative effect on it. The corresponding is 𝛼  has a strong 
negative influence on 𝐹 , while 𝛼  has a weak negative influence on it. The same conclusion 
can be applied to 𝑚  and 𝑚 . For example, 𝑚  has a strong positive effect on 𝐹 , while 

𝛼  has a weak positive effect on it. For the maximum number of current forwarding users 𝐹 , the 
parameters of the same opinion have greater influence than those of the opposite opinion. 
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Figure 6. PRCC results and PRCC scatter plots with the model parameters of ℜ , 
𝐹 , 𝐹 . 

Considering the effects of 𝑛 , 𝑛 , 𝛾 , 𝛽  and 𝐸  are not obvious compared with other 

parameters in Figure 6, we conduct analysis on them by group separately. Figures 7–10 show the 

effects of five parameters on values of the maximum numbers of current forwarding users with 

different opinions 𝐹 , 𝐹  and the stable numbers of the cumulative forwarding users 

with different opinions 𝐶 , 𝐶  respectively. The four figures show that, on one hand, the 

conclusions of the maximum current and stable cumulative numbers of forwarding users are highly 

similar. On the other hand, there are also specific patterns of conclusions between information with 

different opinions. 

As can be seen from Figure 7, the increase of 𝛾 is always going to obviously promote 𝐹 , 

𝐹 . The increase of 𝑛  will obviously promote 𝐹  and the increase of 𝑛  has little 

impact on 𝐹 . However, the impacts on 𝐹  are contrary. In Figure 9, as 𝛽 increases 

within 0,0.2 , 𝐹  will increase gradually but 𝐸  has little influence on it. On the contrary, 

𝐹  will decrease in the same range. In response to the stable numbers of cumulative forwarding 

users, the conclusions of parameter sensitivity analysis are similar to the corresponding maximum 

numbers of current forwarding users, as shown in Figures 8 and 10. For example, the conclusions of 

𝐶  are similar to those of 𝐹 . 
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Figure 7. The comprehensive influence of multiple parameter variations on 𝐹  
and 𝐹 : (a) 𝛾, 𝑛  and 𝑛  change for 𝐹 ; (b) 𝛾, 𝑛  and 𝑛  change 
for 𝐹 . 

 

Figure 8. The comprehensive influence of multiple parameter variations on 𝐶  and 
𝐶 : (a) 𝛾, 𝑛  and 𝑛  change for 𝐶 ; (b) 𝛾, 𝑛  and 𝑛  change for 𝐶 . 

 

Figure 9. The comprehensive influence of multiple parameter variations on 𝐹  and 
𝐹 : (a) 𝐸  and 𝛽 change for 𝐹 ; (b) 𝐸  and 𝛽 change for 𝐹 . 
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Figure 10. The comprehensive influence of multiple parameter variations on 𝐶  and 
𝐶 : (a) 𝐸  and 𝛽 change for 𝐶 ; (b) 𝐸  and 𝛽 change for 𝐶 . 

 

Figure 11. The influences of key environment-related parameters on 𝐹 𝑡  and 𝐶 𝑡 : (a) 
only 𝛾  changes in the opposing opinion dissemination; (b) only 𝛾  changes in the 
supporting opinion dissemination; (c) only 𝐸  changes in the opposing opinion 
dissemination; (d) only 𝐸  changes in the supporting opinion dissemination. 

To analyze the effects of the environment-related factors on the current and cumulative number 
of forwarding users with different opinions, we change 𝛾 and 𝐸  respectively in Figure 11, where 
the full lines denote the change of the cumulative number of forwarding users and the dotted lines 
denote the change of the current number of forwarding users. Figure 11(a),(b) show that at the outbreak 
stage, when the ratio of forwarding nodes with environmental impact capability (𝛾) decreases, both 
𝐹 𝑡  and 𝐶 𝑡  decrease with it. Figure 11(c),(d) show that when the initial value of 𝐸 nodes (𝐸 ) 
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decreases, 𝐹 𝑡  and 𝐶 𝑡  decrease with it in a period of time. Take Figure 11(c) as an example, with 
the decrease of 𝐸 , 𝐹 𝑡  and 𝐶 𝑡  decrease first but after a period of time, 𝐹 𝑡  and 
𝐶 𝑡  are negatively related to 𝐸 . Figure 11 fully shows that indirect dissemination process 
affected by the complex media environment plays an important role in the diffusion of public opinion. 
Consequently, to control public opinion, social platforms can choose to intervene in cross-platform 
information forwarding by formulating relevant public opinion strategies. 

6. Conclusions 

Public opinion is a concentrated expression of public attitudes, emotions, opinions and views. 
Research on the propagation laws of public opinion is helpful to give the strategy guidance of public 
opinion evaluation. Based on the complex network, this paper constructs an opinion dynamic model 
combining opinion and information dissemination, which also considers the indirect dissemination of 
information under the influence of the media environment. We use real data to carry out data fitting 
and parameter sensitivity analysis on the model to provide a significant theoretical basis for network 
public opinion analysis. The model proposed in this paper not only improves the disadvantage of the 
traditional dynamics model that ignores the different contact probabilities between user nodes, but also 
simulates the model well based on the real social platform data. In addition, this model also introduces 
the concept of environment in epidemiology into the field of information transmission, which can 
research the laws of opinion transmission more comprehensively. 

The experimental results of parameter sensitivity analysis show that the forwarding rates (𝑚  
and 𝑚 ) under the precondition that the susceptible nodes contact the forwarding nodes and the max 
value of degree 𝐾 have a strong influence on the outbreak of public opinion. In the information 
dissemination network, different network structures have diverse effects on information dissemination. 
In order to study the differences of opinions in the information dissemination process better, we 
investigate the influence of model parameters on the variables about forwarding users with different 
opinions. Moreover, the indirect propagation path affected by the complex media environment also 
plays a certain role in promoting information dissemination. We hope that our NET-OE-SFI model 
can promote the development of research on opinions dissemination of network information under the 
influence of a complex media environment and provide control strategies support for the dissemination 
of opinions on the Internet from the perspective of a mathematical model. 
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