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Abstract: Aerial image target detection technology has essential application value in navigation 
security, traffic control and environmental monitoring. Compared with natural scene images, the 
background of aerial images is more complex, and there are more small targets, which puts higher 
requirements on the detection accuracy and real-time performance of the algorithm. To further improve 
the detection accuracy of lightweight networks for small targets in aerial images, we propose a cross-
scale multi-feature fusion target detection method (CMF-YOLOv5s) for aerial images. Based on the 
original YOLOv5s, a bidirectional cross-scale feature fusion sub-network (BsNet) is constructed, using 
a newly designed multi-scale fusion module (MFF) and cross-scale feature fusion strategy to enhance 
the algorithm’s ability, that fuses multi-scale feature information and reduces the loss of small target 
feature information. To improve the problem of the high leakage detection rate of small targets in aerial 
images, we constructed a multi-scale detection head containing four outputs to improve the network’s 
ability to perceive small targets. To enhance the network’s recognition rate of small target samples, we 
improve the K-means algorithm by introducing a genetic algorithm to optimize the prediction frame 
size to generate anchor boxes more suitable for aerial images. The experimental results show that on 
the aerial image small target dataset VisDrone-2019, the proposed method can detect more small 
targets in aerial images with complex backgrounds. With a detection speed of 116 FPS, compared with 
the original algorithm, the detection accuracy metrics mAP0.5 and mAP0.5:0.95 for small targets are 
improved by 5.5% and 3.6%, respectively. Meanwhile, compared with eight advanced lightweight 
networks such as YOLOv7-Tiny and PP-PicoDet-s, mAP0.5 improves by more than 3.3%, and 
mAP0.5:0.95 improves by more than 1.9%. 
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1. Introduction 

Object detection plays a vital role in many application scenarios, such as gesture recognition [1], 
instance segmentation [2] and medical data processing [3]. In recent years, with the rapid development 
of computer vision and airborne remote sensing technologies, target detection tasks based on aerial 
images have become a hotspot for research and play an essential role in scenarios such as nautical 
security [4], traffic management [5] and environmental monitoring [6]. Although much research has 
been conducted on target detection in aerial images, [7] summarizes in a very comprehensive and 
detailed way the current development status and the research progress made in aerial image target 
detection in recent years. However, due to the rapid change in flight altitude of aerial photography 
equipment, the unique nature of the shooting angle and location and having a complex background 
and more small targets, the detection algorithms’ real-time detection and detection accuracy must also 
be improved. 

Currently, there are two main types of target detection methods based on deep learning. One is 
the two-stage detection algorithm represented by Fast R-CNN [8]. One is the one-stage detection 
algorithm YOLO represents [9]. For the two-stage detection algorithm, the first stage uses a region 
proposal network to generate multiple candidate regions. In the second stage, these candidate regions 
are screened, categorized and regressed to obtain the final detection results. For the one-stage detection 
algorithm, there is no need to generate candidate regions but to generate the category probability and 
location direct coordinate values of the target to be tested, and the final detection results can be directly 
obtained after a single detection. Compared with the two-phase detection algorithm, the one-phase 
detection algorithm can maintain a balance between real-time detection and high accuracy and better 
meet the needs of target detection in unmanned aerial vehicle (UAV) aerial images. The two-phase 
detection algorithm needs to consume a lot of computational resources when running due to the 
limitations of the internal framework, and it cannot meet the real-time requirements of computing devices. 

In recent years, target detection in aerial images based on single-stage detection algorithms has 
received more and more attention. Liu et al. [10] proposed UAV-YOLO based on the YOLOv3 
detection algorithm, which improves the whole network structure and enriches spatial information by 
adding shallow convolution. However, there are leakage and false detection problems for small targets. 
Liang et al. [11] proposed a single-stage detection model FS-SSD based on feature fusion and scale 
scaling, which utilizes the inverse convolution and feature fusion modules for prediction and further 
improves detection accuracy through contextual analysis. Liu et al. [12], based on CenterNet, improved 
the detection accuracy of the network by adding an adaptive base module, a global attention module 
and a high-quality decoding module. However, the large number of parameters required for the 
network and the high arithmetic requirement made it challenging to deploy in UAV platforms. Huang 
et al. [13] improved the detection accuracy of the YOLOv5s network by introducing the shufflenetv2 
feature extraction structure, which reduces the computation of the network but causes a large amount 
of accuracy loss. Xu and Mao [14] proposed a multilayer feature fusion algorithm for UAV aerial 
image detection based on YOLOv5, which improves the accuracy of small targets in aerial images by 
fusing different layers of feature maps to aggregate contextual information. However, the 
computational resources consumed are as high as 109.3 GFLOPs, leading to slow detection speed 
and failing to meet the real-time detection requirements. Liu et al. [15] proposed a one-stage aerial 
image target detection algorithm, RelationRS. This framework combines the bi-relational module 
and the bridging visual representation module to solve the multi-scale fusion problem of aerial 
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images in complex backgrounds, improving the target detection accuracy but not meeting the real-
time detection requirements. 

For small target detection, researchers have done many studies. Chu et al. [16] proposed a small 
target detection algorithm based on multi-layer convolution feature fusion based on regional proponent 
network (R-CNN). By fusing feature information from high and low feature layers to improve the 
detection accuracy of small targets in intelligent traffic detection scenarios. Sheikhpour et al. [17] 
proposed a Hessian-based semi-supervised feature selection using a generalized uncorrelated 
constraint method to help the algorithm eliminate redundant features and extract information-rich 
favorable features. Lin et al. [18] proposed feature pyramid network (FPN) to achieve multi-scale 
feature fusion for the first time for different scales feature maps, but the fusion of FPN is unidirectional, 
and there is inevitably the problem of insufficient fusion of feature information. The path-aggregation 
network (PANet) proposed by Liu et al. [19] was designed to use top-down and bottom-up bidirectional 
paths to fuse multi-scale feature maps in an additive manner to enhance the representation of deeper 
feature information with accurate localization signals. Tan et al. [20] proposed a weighted bidirectional 
feature pyramid network (BiFPN) based on [19] which enhances the representation of features through 
weighted fusion and residual connectivity. The above small target detection methods can make up for the 
differences in spatial and semantic information between the shallow and deep feature maps to a certain 
extent. However, at the same time, they also introduce more parameters and calculations which cannot 
meet the real-time detection needs of small target detection in aerial images. 

To address the problems of insufficient real-time performance and difficulty in improving the 
accuracy of small target detection in the current target detection algorithms for aerial images, we 
propose a cross-scale multi-feature fusion target detection method (CMF-YOLOv5s) for aerial images 
based on the lightweight target detection algorithm YOLOv5s, and the main contributions are as 
follows: 1) We constructed a bi-directional cross-scale feature fusion sub-network in the feature fusion 
stage. Specifically, we design a multi-scale feature fusion module (MFF) to fuse and extract global and 
local information from different sensory fields of the same feature map to reduce the problem of small 
object feature information loss due to repeated sampling during the fusion process. At the same time, 
we use a cross-scale feature fusion strategy to fully fuse the shallow large-scale feature maps that are 
beneficial for small object detection with other deep small-scale feature maps to increase the 
importance of small object information in the overall feature map and further enhance the 
characterization capability of the small object. 2) We constructed a multiscale detection head to 
improve the multiscale object recognition capability of the model by changing tri-scale detection into 
quad-scale detection based on the original algorithm to reduce the number of missed detections of 
small objects. 3) According to the characteristics of aerial images, the K-means clustering algorithm 
is optimized to generate 16 groups of anchor boxes of different sizes for multi-scale object detection, 
to improve the recall of small objects. 

2. YOLOv5s 

The YOLOv5 network is widely used in object detection tasks due to its high accuracy, fast 
detection speed and ease of deployment on different hardware platforms. YOLOv5s, as a lightweight 
version of YOLOv5 series algorithms, has a small and streamlined network and high detection 
accuracy and speed, and it is one of the most popular target detection algorithms in the current 
development of industrial intelligence. As shown in Figure 1, YOLOv5s uses CSPNet (C3) as the 
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backbone feature extraction network to form a multi-scale feature map and PANet to fuse the multi-
scale feature map. The final detection results are output by a triple-scale detection head. This structure 
is designed to be enough for general image object detection tasks. However, for aerial images 
containing many dense small-scale objects, YOLOv5s has the problem of easy loss of small object 
feature information during multi-scale feature fusion, which leads to poor detection accuracy of 
YOLOv5s on aerial images. 
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Figure 1. Architecture of YOLOv5s. 
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Figure 2. Architecture of CMF-YOLOv5s. Please refer to the “Appendix” at the end of 
the paper for the detailed composition of each network layer and the input/output 
parameters of each layer. 
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We propose a lightweight object detection method for the aerial image based on the 
YOLOv5s_v6.2 network [21], as shown in Figure 2. The CMF-YOLOv5s comprises a feature 
extraction network, a bi-directional cross-scale feature fusion network (BsNet) and a multi-scale 
detection head (Multi-Head). The feature extraction network is CSPNet (C3), mainly composed of 
BottlenackC3, CBS and SPPF. The function of CSPNet (C3) is to increase the network receptive field, 
extract each scale object’s feature information in the input image and form five different scale feature 
maps from f1 to f5. BsNet fuses the feature maps at different scales to enrich the feature information 
representation of small object samples by the multi-dimensional cross-scale intermingling of deep and 
shallow feature information. The multi-scale detection head performs classification, regression and 
non-maximal suppression (NMS) of category and location information for objects of different sizes in 
the same image at four scales and outputs the detection results. Specifically, the head of 20 × 20 size 
is used to detect large-scale objects in the image, and the head of 160 × 160 is taken to detect the 
smallest-size objects in the image. 

3.1. BsNet network 

The shallow network extracts object texture edge features with a more comprehensive detail 
description. The deeper network extracts the rich semantic features of the object. Still, it 
simultaneously weakens the perception of small object location information and detail information, 
causing the feature information of the small object in the feature map to be lost [22]. YOLOv5s uses 
PANet to fuse different scale feature information in each layer by an equal relationship, ignoring the 
importance of varying depth feature layers for different scale object detection, and only combines 
multi-scale features for layers f3 to f5 without fusing the output of the shallow feature map f2 which 
mainly contains small object feature information. To address the above problems, we construct a bi-
directional cross-scale feature fusion network, as shown in Figure 3. First, a bottom-up and top-down 
bi-directional path is used to coarsely fuse the multi-scale feature information of the four-scale feature 
maps from f2 to f5. Meanwhile, a new multi-scale feature fusion module (MFF) is designed to achieve 
fine-grained feature extraction and fusion from different perceptual fields to improve the 
characterization capability for small object feature information. In addition, cross-scale feature fusion 
is performed between the parallel fusion paths of {f3, f4} and {f4, f5} to enrich further the semantic 
information and localization information of the feature maps at each level. 
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Figure 3. The structure of the BsNet network. The red dotted line in the figure represents 
cross-scale feature fusion. 
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3.1.1. MFF module 

Please refer to the Symbol List for the symbols covered in this paper and their descriptions, as 
shown in Table 1. 

Table 1. List of symbols. 

Symbol Description
in

( )xf   Input feature map, x   is the feature layer variable 

md
( )xf  Intermediate feature map of the fusion process 

out
( )xf  Output feature map 

( )Concat    Feature summation based on channel dimension 
( )Resize    Image size scaling function 

Nrecall  Maximum number of ground truths that can be recalled 
Ngt  Total number of ground truths
IOU  Intersection over Union, the mathematical description: A B

A B




 

Many small objects are in the aerial images, and little feature information is available after 
extraction. PANet of YOLOv5s fuses features by continuously upsampling and downsampling the 
feature map to enable multi-scale information. Nevertheless, the repeated sampling operation causes a 
lot of small object information to be lost. To solve the above problem, we design a multi-scale feature 
fusion module (MFF), as shown in Figure 4, which consists of Unit A and Unit B in cascade. For the 
input feature map md

( )xf  , Unit A extracts the fine-grained features of md
( )xf   from different scale 

perceptual fields and fuses the features again on the channel dimension by “Concat” to form the more 
detailed information-rich md

( )
'

xf   feature map. Then, in Unit B, local and global information depth 
extraction is performed on md

( )
'

xf  in two branches to obtain the final enhanced feature map out
( )xf  for 

the detection output. The fusion and re-extraction of feature information by the MFF module can 
effectively avoid the loss of small object information caused by sampling operations during the 
fusion process. 
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Figure 4. Schematic of the MFF. 

The function of Unit A is to fuse the feature information under different receptive fields of the 
same feature map through “Concat” to enrich the detailed information of the feature map. For the input 
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feature map md
( )xf , it first passes through a 1 × 1 convolutional layer to form the feature map y and then 

serially passes through three convolutional kernel size 5 × 5 MaxPool layers. Three feature maps of 
different sizes, y1, y2 and y3, are formed, where the size of y1 is 5 × 5, the size of y2 is 9 × 9, and the 
size of y3 is 13 × 13. Finally, the feature information extracted under the four scale receptive fields is 
fused to obtain md

( )
'

xf . The fusion process can be described by Eq (3.1), where x indicates the multi-scale 
feature map variable, and “Concat” indicates the summation of features based on channel dimensions: 
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 (3.1) 

Unit B’s function is to fully extract the global and local information from the same feature map, 
enhance the features’ edge and texture information and improve the recognition rate of small objects. 
Unit B performs feature extraction on the input feature map 

md
( )

'
xf  by two branches. On the branch 

md
1( )

'
xf , the 1 × 1 convolution reduces the number of channels to half the original size, and the 3 × 3 

convolution doubles the number of channels. The “downscaling-extraction-Upgrading” pattern will 
help the network to extract more global information. The 

md
2( )

'
xf  branch uses only a 1 × 1 convolution, 

which means that the size of the feature map is not changed, so it keeps the spatial resolution of the 
feature map from being reduced, thus better preserving the local information of the object. The feature 
extraction process for Unit B can be described by Eqs (3.2)–(3.4): 

 
md md

1( ) 3 3 1 1 ( )
' '{ [ ( )]}x xConv Convf f   (3.2) 

 
md md

2( ) 1 1 ( )
' '( )x xConvf f  (3.3) 

 
out md md

( ) 1( ) 2( )
' '( , )x x xConcatf f f  (3.4) 

3.1.2. Cross-scale feature fusion 

The PANet adds up each multi-scale feature map in the feature fusion process, ignoring the 
importance of shallow and large-scale feature maps for small object detection. Therefore, we fused the 
feature maps of layers f3 and f4 with the feature maps of layers f3 and f4 by using jump connections to 
fully extract the potential small object information in the feature maps when constructing the BsNet. 
In the meantime, the fast normalized fusion formula (fast normalized fusion), the calculation formula 
shown in (3.5), is introduced to assign weights equally to different scale features to enhance the 
importance of small object feature weights. 

 
i

i
i j

j

O I


 
 

 
 (3.5) 
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where Ii is the input value, the O is the output value, the Relu function ensures   0, and the   is a 
minimal value greater than 0, which is used to avoid numerical instability. Eventually, the value of each 
weight falls between 0 and 1 by normalization calculation. We take the multi-scale fusion process of the 
fourth layer feature map as an example, and the calculation process is shown in Eqs (3.6) and (3.7). 

 
 in md

1 24 5md
4

1 2
Conv

Resizef f
f

 

  

  
 
   

 (3.6) 

 
 in md out

3 4 54 4 3out
4

3 4 5
Conv

Resizef f f
f

  

   

    
 
    

 (3.7) 

where Conv represents the convolution operation, in
4f  and out

4f  represent the input and output 
of the layer four feature map, and the Resize represents the upsampling operation. The computational 
flow of cross-scale feature fusion is shown in Figure 5, and the same process is used for all other layers. 

 

Figure 5. The cross-scale feature fusion process of fourth layer. 

 

Figure 6. Comparison of the mean accuracies (mAP0.5) of FPN, PANet, BiFPN, and BsNet. 
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To verify the effectiveness of the BsNet network, BsNet was compared with the classical FPN, 
PANet and BiFPN feature fusion networks. Keeping the experimental conditions constant, the feature 
fusion networks of YOLOv5s were replaced with FPN, PANet, BiFPN and BsNet. Figure 6 shows the 
variation of the average accuracy (mAP0.5) with the number of iterations (Epochs) after replacing 
different feature fusion networks on YOLOv5s. 

The experiments show that with the increase of Epochs, the best average detection accuracy 
is obtained for the trained model when BsNet is used as the feature fusion network. Compared 
with other feature fusion methods, the BsNet constructed in this paper has better multi-scale feature 
fusion capability. 

3.2. Multi-scale feature head 

For object detection, smaller feature maps correspond to more large mapping regions in the 
original image, allowing the detection of larger objects in the image. However, the large mapping 
regions lack detailed information, which causes small objects to be less likely to be detected. As 
shown in Figure 7(a), YOLOv5s uses three scale detection heads of 80 × 80 × 128, 40 × 40 × 256, 
and 20 × 20 × 512 to detect objects of small, medium and large image sizes. However, the shallow 
large-scale feature map is more critical in improving detection accuracy for aerial images containing 
numerous small objects. We constructed a multi-scale detection head to address these issues, as 
shown in Figure 7(b). A new 160 × 160 × 64 detection head is added for tiny object detection in 
images based on the head structure of the original YOLOv5s. The four-scale detection head helpfully 
improves detection accuracy while reducing the missed detection rate of small objects. 

 

Figure 7. Comparing head structure before and after improvement. 

Figure 8 shows the trend of each loss value with the number of iterations (Epochs) during the 
training process for the original YOLOv5s and the YOLOv5s with the improved head structure, with 
Boxes_loss indicating the mean loss value of bounding boxes and Clc_loss indicating the mean loss 
value of classification. Smaller values of Boxes_loss and Cls_loss indicate faster convergence of the 
model and better performance in object prediction and classification. The experimental results show 
that the training loss values of YOLOv5s are significantly lower than those of YOLOv5s after replacing 
Multi-Head in the case of using the same loss function, indicating that the improved Multi-Head 
structure can effectively improve the accuracy of the network in object classification and prediction. 
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(a) Train/Boxes_loss                                       (b) Train/Cls_loss 

Figure 8. Comparison of training loss values. 

3.3. Optimized anchor boxes 

The YOLO series algorithm uses anchor boxes to constrain the range of predicted objects and 
incorporates the previous experience of setting sizes to improve model learning efficiency while 
helping the model converge quickly. The original YOLOv5s algorithm uses the K-means clustering 
algorithm to calculate the distance between the authentic label boxes and the predicted boxes in the 
dataset based on the Euclidean distance to generate anchor boxes applicable to the current dataset. 
However, as can be seen from Table 2, the K-means algorithm only generates nine sets of anchor boxes 
on the three scale feature maps, which cannot meet the detection needs of realistic aerial scenes with 
significant differences in object scales. In order to better improve the matching between anchor boxes 
and each size object on each feature map, we use IOU distance [23] to calculate the similarity between 
actual label boxes and prediction boxes, with BPR [24] (best possible recall) as the index. At the same 
time, the genetic algorithm is introduced based on the K-means algorithm to optimize the search 
results and calculate the anchor boxes that better match the current data set. The algorithm flow is 
shown in Table 2. 

Table 2. K-means & Genetic algorithm flow. 

Algorithm: K-means & Genetic algorithm
Data Generation: H: Height of the sample boxes, W: Width of the sample boxes
Inputs: K: number of clusters, BPR: 0.98, Max: maximum number of iterations (1000) 
Outputs: width and height of anchor boxes for BPR greater than or equal to 0.98
While BPR 0.98 or Max = 1000 do:  

(1). Initialize K anchor boxes 
(2). Calculate d: 1-IOU (box, centroid) and pick the smallest value of d and Update the value of K
(3). Calculate BPR 
(4). When BPR < 0.98, the Genetic algorithm is applied to search for the optimal width and height of 

anchor boxes, update the width and height of anchor boxes, and iterate continuously 
return Optimal Anchor boxes width and height values
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As shown in Table 3, the optimized anchor boxes have 16 scale values in four rows and four 
columns. Each detection head has four scales of anchor boxes, and they can be matched to various 
sizes of objects in the feature map, effectively reducing the miss-detection of small objects. 

Table 3. Optimization of the anchor boxes size. 

Feature map sizes Anchor boxes of YOLOv5s Optimized anchor boxes 
160 × 160 None [3,4; 4,9; 7,6; 7,13] 
80 × 80 [3,4; 4,9; 8,6] [13,7; 12,12; 10,19; 22,11] 
40 × 40 [7,14; 15,9; 15,19] [19,17; 16,26; 33,18; 28,32] 
20 × 20 [31,17; 25,37; 55,42] [47,28; 40,58; 86,53; 97,126] 

Equation (3.8) is a formula designed by the authors of YOLOv2 for the target detection problem 
to calculate the distance between the predicted frame and the truth box using IOU as the metric. 
Compared with the Euclidean distance calculation formula, the IOU distance formula aligns more with 
the target detection distance calculation principle. In the formula, “box” denotes the position of the 
prediction box, and “centroid” denotes the position of the center point of the truth box, and the smaller 
the value of d(box, centroid) is, the higher the fitness of the anchor boxes to the dataset. Equation (3.9) 
is the formula for the best possible recall (BPR), which was initially proposed in the Fully 
convolutional one-stage object detection (FCOS) paper to measure the best recall of a dataset, where a 
larger value means that the model is more capable of identifying positive samples, and the optimal value 
is 1. Nrecall represents the number of labeled boxes of objects that can be recalled in the dataset, and Ngt 
represents the total number of labeled boxes of objects. 

 (box, centroid) 1 (box, centroid)IOUd    (3.8) 

 
recall

gt
BPR ×= 100%

N

N
 (3.9) 

Table 4 shows the BPR values of YOLOv5s’s anchor boxes and the optimized anchor boxes. The 
experiments show that the BPR of the original anchor boxes is only 0.933, which is less than 0.98 and 
does not meet the requirements. The match between our optimized Anchor boxes and the labeled boxes 
of objects reached 0.998, indicating that the improved anchor boxes are more suitable for the dataset 
and can effectively improve the detection precision of the aerial image objects. 

Table 4. Comparison of BPR values. 

  Anchor boxes of YOLOv5s Optimized Anchor boxes 

BPR/% 0.933 0.998 

4. Experimental results 

4.1. Data sets and evaluation metrics 

To verify the performance of CMF-YOLOv5s object detection in aerial images, we conduct 
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experiments on the publicly aerial image dataset VisDrone-2019 [25]. The dataset contains 8629 
images with 260 manually annotated label boxes comprising ten categories, including pedestrians, cars, 
etc. In the COCO dataset [26], objects with an area smaller than 32 × 32 pixels are defined as small 
objects. According to statistics, the percentage of small objects in the COCO dataset is 21.73% [27], 
while compared to the distribution of small objects in the COCO dataset, the percentage of objects 
smaller than 32 × 32 pixels in the VisDrone-2019 dataset is as high as 44.70%. Figure 8 shows the 
distribution of data label sizes in the VisDrone-2019 training set, where the horizontal coordinate of 
width is the ratio of the data label to the width of the whole image, and the vertical coordinate of height 
indicates the ratio of the data label to the height of the whole image. The smaller the value of the 
coordinate point composed of width and height is, the smaller the size of the label box in the image. It 
can be seen from Figure 9 that most of the objects in the data set used in the experiment are small 
objects, which are consistent with the characteristics of natural aerial photography scenes. 

 

Figure 9. Label size distribution of VisDrone-2019 training set data. 

In our experiment, precision (P), recall (R), average precision (AP), mean average precision (mAP) 
and frames per second (FPS) were used as the evaluation indicators of model performance. AP0.5 
represents the average detection precision of each category in the data set when the IOU threshold is 0.5, 
mAP0.5 represents the average value of AP0.5 when the IOU threshold is 0.5, and mAP0.5:0.95 represents 
the average of 10 mAP obtained for IOU thresholds of 0.5 to 0.95. FPS is a measure of the speed of 
detection of the algorithm. The time of the algorithm to detect an image includes the image pre-
processing (Pre) time, inference (Infer) time and non-maximum suppression (NMS) time. A higher 
value of FPS on the same hardware device means that the algorithm processes the data faster. The 
formula for the evaluation metrics is shown in Eqs (4.1)–(4.5). 

 
TP

P =
TP+ FP  

(4.1)

 
T P

R =
T P+ FN  

(4.2)
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1

0
AP = P(R) dR

 
(4.3)

 

N

=1
AP

mAP =
N

i
i

 
(4.4)

 
1

FPS =
Pre+ Infer+ NMS

 (4.5)

TP denotes the number of positive samples correctly predicted by the model, FP denotes the number 
of negative samples incorrectly predicted by the model and FN denotes the number of positive samples 
incorrectly predicted by the model in the formula. 

4.2. The environment and parameters of the experiment 

Table 5. Setting of the main experimental parameters. 

Parameter Value 

Epochs 300 

Batch size 32 

Image size 640 × 640 

Initial learning rate 0.01 

Optimization algorithm SGD 

The operating system used in this experiment is Ubuntu 22.04, the experimental software was 
Anaconda 2.1.1 and PyCharm 2022.2.3, and the experimental environment is Python 3.8 + PyTorch 
1.10.1 + CUDA 11.1. All algorithms in this experiment were run on an NVIDIA RTX 3060Ti GPU 
graphics card, and the same hyperparameters are used for training, validation and testing. Table 4 
shows the main parameter settings for the algorithm’s training. As shown in Table 5, the training model 
parameters in this paper were set as follows: The SGD optimization algorithm was used with an initial 
learning rate of 0.01. The activation function is Sigmoid, and the loss function is CIOU. The training 
batches were 300 times, with 16 images passed in at a time in each training batch for training. The 
input image size was 640 × 640, and the last iteration model weights and the best performance model 
weights were stored. 

4.3. Comparative experimental analysis 

To verify the superiority of this paper’s algorithm compared with other algorithms, CMF-
YOLOv5s was compared with eight lightweight methods, including YOLOv5s, EfficientNet [28], 
MobileNet [29], YOLOv3-Tiny [30], YOLOX-s [31], PP-PicoDet-s [32], YOLOv7-Tiny [33] and PP- 
YOLOE-s [34]. Specifically, we designed four comparative experiments, including a comparison of 
the detection accuracy of different methods, a comparison of the detection accuracy of different 
methods for each category of the object, a comparison of the detection accuracy of each version of 
YOLOv5 and CMF-YOLOv5 and a comparison of visual effects. 
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4.3.1. Comparison of the detection accuracies of different methods 

The results of the detection accuracy metrics comparison between the method in this paper and 
the eight lightweight methods are shown in Table 6. The experimental results show that the accuracy 
metrics of CMF-YOLOv5s are better than the other comparison algorithms. Specifically, compared to 
the other methods, CMF-YOLOv5s improved P and R by at least 2.9% and 0.5%, mAP0.5 by more 
than 3.3%, and mAP0.5:0.95 by more than 1.9%. Meanwhile, the mAP0.5 and mAP0.5:0.95 of this paper’s 
method improved by 5.5% and 3.6% compared to the benchmark method YOLOv5s. 

Table 6. Experimental results of the comparison of the detection performances of different methods. 

Method P/% R/% mAP0.5/% mAP0.5:0.95/% FPS 

YOLOv5s 50.1 33.6 34.5 18.7 119 

EfficientNet 34.5 30.2 26.8 13.3 106 

YOLOv7-Tiny 47.2 38.0 35.6 18.9 140 

PP-PicoDet-s 42.5 37.7 36.0 19.8 48 

YOLOX-s 49.4 36.0 36.7 20.4 99 

MobileNet 33.3 22.4 20.6 9.69 113 

YOLOv3-Tiny 28.3 18.7 15.4 6.60 132 

PP-YOLOE-s 41.4 33.8 31.8 16.7 111 

Ours 53.0 38.5 40.0 22.3 116 

4.3.2. Comparison of detection accuracies of different methods on each category of the object 

Table 7. Experimental results of comparison of detection accuracy on each category. 

Methods 
AP0.5/% 

pedestrian people bicycle car van truck tricycle awning-tri bus motor

YOLOv5s 40.2 33.4 12.8 74.3 37.3 32.0 20.9 12.0 42.8 39.7 

EfficientNet 34.4 26.8 6.40 69.3 25.4 21.0 13.2 8.40 29.6 33.6 

YOLOv7-Tiny 39.3 36.3 10.0 76.8 38.5 31.2 22.4 10.7 47.2 43.8 

PP-PicoDet-s 44.6 33.6 10.5 79.3 40.7 30.2 20.5 10.7 47.4 41.8 

YOLOX-s 42.9 36.1 14.7 75.9 38.4 32.5 22.3 11.9 47.5 42.6 

MobileNet 23.2 20.0 3.90 61.5 19.9 16.1 9.90 5.20 23.2 23.3 

YOLOv3-Tiny 17.5 17.1 3.1 49.3 13.0 11.7 7.9 4.3 13.1 17.4 

PP-YOLOE-s 39.5 31.1 8.8 73.1 33.6 27.0 17.0 9.9 40.1 38.2 

Ours 47.9 36.9 15.2 81.0 42.5 36.1 26.5 12.7 54.4 44.8 
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To intuitively demonstrate the advantages of this paper’s method over other methods in terms of 
detection accuracy, we conducted single-category detection accuracy comparison experiments for each 
of the ten categories in the VisDrone-2019 dataset, and AP0.5 was used to measure the detection 
accuracy performance of each category, and Table 7 shows the experimental results. The experimental 
results show that on the VisDrone-2019 dataset, compared with other methods, CMF-YOLOv5s 
improved detection accuracy for each category in different degrees, with AP0.5 improving by at 
least 0.5–6.9%, further demonstrating that the method in this paper can effectively improve the 
accuracy of object detection in aerial images. 

4.3.3. Comparison of the detection accuracy of YOLOv5 and CMF-YOLOv5 

Like previous YOLOv5 networks, YOLOv5_v6.2 has been categorized into five versions: n, s, m, 
l and x, to satisfy the needs of different detection scenes. To validate the effectiveness of the 
improvement strategy proposed in this paper on other versions of the YOLOv5 network, the 
improvement strategy of this paper was applied to four networks of YOLOv5_v6.2, including 
YOLOv5n, YOLOv5m, YOLOv5l, and YOLOv5x, and compare with the network before 
improvements. As can be seen from the data in Table 8, the average detection accuracy of CMF-
YOLOv5 varies from 3% to 7.3% higher than that of YOLOv5 for the corresponding versions. The 
experiments demonstrate that the improved strategy in this study is not affected by the network 
complexity of different versions of YOLOv5 and has a certain degree of generalizability. 

Table 8. The detection accuracy results of the comparison of YOLOv5 and CMF-YOLOv5. 

Method P/% R/% mAP0.5/% mAP0.5:0.95/% 

YOLOv5n 33.0 28.2 24.7 12.1 

CMF-YOLOv5n 41.4 31.4 30.7 15.8 

YOLOv5s 50.1 33.6 34.5 18.7 

CMF-YOLOv5s 53.0 38.5 40.0 22.3 

YOLOv5m 46.2 37.4 35.7 19.7 

CMF-YOLOv5m 53.9 40.5 42.6 24.3 

YOLOv5l 49.2 38.3 38.2 21.7 

CMF-YOLOv5l 56.0 43.3 45.5 26.8 

YOLOv5x 49.4 40.9 39.9 22.8 

CMF-YOLOv5x 54.8 46.0 46.9 27.9 

4.3.4. Comparison of visual effects 

To display the detection effect of this paper’s method in complex aerial photography scenes, we 
conducted visual effect comparison experiments on the VisDrone-2019-DET-test-challenge dataset 
(1580 images), and we selected some representative aerial images scenes from which to display the 
effect. The selected scenes have in common a complex detection background and numerous small 
objects that are difficult to detect. A comparison of the detection results is shown in Figure 10, where 
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(a) is the original input image, (b) is the detection result of the baseline algorithm YOLOv5s, (c) is the 
detection result of YOLOX-s, which is the second most accurate detection algorithm in the comparison 
algorithm after the accuracy of this paper, and (d) is the detection result of the method in this paper. 

In Figure 10, Group (1) shows the detection result of tiny objects in complex backgrounds, and 
CMF-YOLOv5s locates the tiny object in the upper left corner of the image that is difficult to detect 
by vehicles and correctly outputs the object class information car. Group (2) indicates that CMF-
YOLOv5s can better detect dense vehicles in low light conditions and obscured pedestrians in the 
distance compared to the YOLOv5s and YOLOX-s. Groups (3) and (4) display the result in detecting 
vehicles on urban roads in both daytime and nighttime conditions, and the result indicates our method 
can detect many dense and small objects in the image with a more distant field of view. In summary, 
the proposed CMF-YOLOv5s can detect small and densely distributed objects in complex aerial scenes 
and identify the object category accurately, regardless of whether it is daytime, nighttime or under low 
light conditions. 

 

Figure 10. Comparison of the detection effects of different aerial photography scenes. 
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To verify the effectiveness of the method in this paper, we compared the detection effects of CMF-
YOLOv5s with six lightweight algorithms, and the detection results are shown in Figure 11. As shown 
in the figure, compared with the other lightweight algorithms, CMF-YOLOv5s can identify more 
objects in complex aerial photography scenes and better recognize dense and small objects further 
away from the field of view. The visual experimental results show that the method in this paper 
effectively improves the detection accuracy of the lightweight algorithm on small objects in aerial 
images, the detection time is only about 0.008 s per image, and the detection frame rate per second can 
reach 116 FPS, meeting the demand for real-time detection of aerial images. 

 

Figure 11. Comparison of the detection results. 

4.4. Ablation experiments analysis 

In order to verify the effectiveness of each improvement strategy, we designed ablation 
experiments, as shown in Table 9 on the VisDrone-2021 dataset, using YOLOv5s as the benchmark 
network. The “√” in the table indicates the improved modules. The experimental results show that the 
detection accuracies of YOLOv5s are improved after each module is added sequentially. Moreover, 
BsNet not only makes the algorithm’s detection accuracy better but also speeds up the algorithm’s 
detection speed. When each improvement strategy is added to YOLOv5s at the same time, the average 
detection accuracy of the algorithm is improved by 5.5% under the FPS of 116, which is the optimal 
value that is not achieved by adding each improvement measure alone. In fulfilling the real-time 
detection requirement, CMF-YOLOv5s gets more accuracy improvement with a slight FPS loss. 

Table 9. Results of ablation experiments. 

Groups BsNet Multi-Head Optimized anchor boxes mAP0.5/% FPS 

A    34.5 119 

B √   37.3 120 

C √ √  38.4 117 

D √ √ √ 40.0 116 
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5. Conclusions 

For the problem of many small targets in aerial images, which causes difficulty in detection, we 
propose a small target detection algorithm CMF-YOLOv5s with better performance based on the 
lightweight network YOLOv5s for enhancing the target detection accuracy of aerial images. First, the 
ability of the algorithm to fuse multi-scale information is enhanced by constructing a bidirectional 
cross-scale feature fusion sub-network. Second, the recognition rate of small targets is improved by 
constructing a multi-scale detection head. Finally, K-means, the algorithm for generating anchor boxes, 
is improved to obtain anchor boxes more suitable for aerial images. Many experiments have shown 
that the method proposed in this paper can effectively improve the performance of target detection 
accuracy in aerial images with complex backgrounds and dense small targets. On the VisDrone-2021 
dataset, the proposed method improves the mAP0.5 and mAP0.5:0.95 by at least 3.3% and 1.9% compared 
with eight lightweight methods, such as YOLOv7-Tiny. Meanwhile, the detection speed of the 
proposed method reaches 116 FPS, which meets the real-time demand of aerial image detection and is 
favorable for applying in actual aerial image detection tasks. Moreover, the improved strategy in this 
paper has a certain degree of generalization and can be extended to YOLOv5 networks of different 
sizes to improve the detection performance of the network. However, there are still some problems. 
For example, the problem of uneven category distribution in the VisDrone-2019 dataset affects the 
feature learning ability of the model for the target categories with little data to a certain extent. In the 
future, we will explore unsupervised or semi-supervised model training methods to reduce the impact 
of data volume on model training performance and improve the detection performance of the algorithm. 
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Appendix 

Table A1. The network structure and parameters of CMF-YOLOv5s. 

Layer Module 
Parameter 

Number Input Output 

0 Conv_1 × 1 ×1 640 × 640 32 × 32 
1 CBS ×1 32 × 32 64 × 64 
2 BottleneckC3 ×1 64 × 64 64 × 64 
3 CBS ×1 64 × 64 128 × 128 
4 BottleneckC3 ×2 128 × 128 128 × 128 
5 CBS ×1 128 × 128 256 × 256 
6 BottleneckC3 ×3 256 × 256 256 × 256 
7 CBS ×1 256 × 256 512 × 512 
8 BottleneckC3 ×1 512 × 512 512 × 512 
9 SPPF ×1 512 × 512 512 × 512 
10 Conv_1 × 1 ×1 512 × 512 256 × 256 
11 Upsample ×1 None None 
12 Concat ×1 None None 
13 BottleneckC3 ×1 512 × 512 256 × 256 
14 Conv_1 × 1 ×1 256 × 256 128 × 128 
15 Upsample ×1 None None 
16 Concat ×1 None None 
17 BottleneckC3 ×1 256 × 256 128 × 128 
18 Conv_1 × 1 ×1 128 × 128 64 × 64 
19 Upsample ×1 None None 
20 Concat ×1 None None 
21 MFF ×1 128 × 128 64 × 64 
22 CBS ×1 64 × 64 64 × 64 
23 Concat ×1 None None 
24 MFF ×1 256 × 256 128 × 128 
25 CBS ×1 128 × 128 128 × 128 
26 Concat ×1 None None 
27 MFF ×1 512 × 512 256 × 256 
28 CBS ×1 256 × 256 256 × 256 
29 Concat ×1 None None 
30 MFF ×1 512 × 512 512 × 512 
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