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Abstract: In this paper, we propose a SVEIR-I epidemic model with media coverage in a spatially
heterogeneous environment, and study the role of media coverage in the spread of diseases in a
spatially heterogeneous environment. In a spatially heterogeneous environment, we first set up the
well-posedness of the model. Then, we define the basic reproduction number R0 of the model and
establish the global dynamic threshold criteria: when R0 < 1, disease-free steady state is globally
asymptotically stable, while when R0 > 1, the model is uniformly persistent. In addition, the
existence and uniqueness of the equilibrium state of endemic diseases were obtained when R0 > 1 in
homogeneous space and heterogeneous diffusion environment. Further, by constructing appropriate
Lyapunov functions, the global asymptotic stability of disease-free and positive steady states was
established. Finally, through numerical simulations, it is shown that spatial heterogeneity can increase
the risk of disease transmission, and can even change the threshold for disease transmission; media
coverage can make people more widely understand disease information, and then reduce the effective
contact rate to control the spread of disease.

Keywords: SVEIR-I epidemic model; nonlinear incidence; media coverage; global stability; spatial
heterogeneous environment

1. Introduction

In epidemiological theory, environmental heterogeneity has been regarded as an indispensable factor
in the transmission of infectious diseases. Due to altitude, temperature, humidity, latitude, climate, life
factors and other factors, the spread of epidemics in different environments varies greatly. In the
process of COVID-19 transmission, due to differences in population density, medical resources and
climatic conditions in different regions, the outbreak degree of different regions is also different. For
example, during the first outbreak, the epidemic spread faster and more widely in southern and large
parts of eastern China, because these areas were densely populated, developed rapidly, and also easy to
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move people, resulting in a concentrated performance at the peak of the outbreak. In addition, Smith
et al. [1] observed temporary fluctuations in mosquito populations affected by environmental variables
such as rainfall, humidity and temperature. These spatio-temporal heterogeneity have a significant
impact on the mode of transmission of mosquito-borne diseases. Wang et al. [2] found that cholera
transmission is influenced by spatial variations and seasonal fluctuations, so disease control measures
should pay more attention to the spread process. Cai et al. [3] showed that combinations of spatial
heterogeneity tended to enhance the persistence of influenza disease in the model, in other words,
influenza infection risk would be very important if spatial heterogeneity was taken into account. Luo et
al. [4] observed that dengue is a climate-sensitive disease, and that climatic factors, such as temperature
and rainfall, promote dengue transmission through potential changes in vector mosquito density and
human behavior, leading to increased exposure to dengue, especially in areas where temperatures favor
dengue and other vector-borne diseases. Therefore, in order to study the effects of heterogeneous
environments on disease transmission, more and more reaction-diffusion epidemic models have been
developed [4–12].

As we all know, clinical results show that for certain diseases, including hepatitis B (HBV) [13],
hepatitis C (HCV) [14], most human tuberculosis [15], herpes virus and other infectious diseases, since
the recovered person still carries the pathogen, the recovered person may appear with the reactivation
of the infection when the pathogen lurking in the tissue reproduces to a certain extent. For example,
herpes simplex virus type 2 (HSV-2) is usually transmitted through close physical or sexual contact and
can cause genital herpes [16]. The main incidence of genital herpes is due to its frequent recurrence
rate. In one study [17], 89% of HSV-2 patients had at least one recurrence during follow-up, with
a mean monthly recurrence rate of 34%, 38% of patients relapsed at least six times in the first year,
and 20% relapsed more than 10 times. They concluded that almost all initially symptomatic patients
with HSV-2 infection had a relapse of symptoms, more than 35% of such patients relapse frequently.
Recurrence rates were particularly high in patients with prolonged onset of first infection, whether or
not they received acyclovir antiviral chemotherapy. In fact, relapse has been extensively studied as an
important feature of human or animal diseases, see [18–23]. Tudor [24] was the first to incorporate
recurrence into mathematical models, building a bilinear compartment model of morbidity and constant
population size (later called the SIRI model). The results show that the basic reproduction number is a
threshold parameter for the stability of the system.

On the one hand, people’s perception of disease risk is influenced by information widely
disseminated by the media. In the early stages of an outbreak, due to lack of medical diagnosis and
vaccination, effective media coverage can reduce infection peaks [25]. In order to characterize the
impact of media coverage on disease transmission and control, more and more mathematical models
have been proposed. For example, Cui et al. [26] proposed an infectious disease model with Logistic
growth under media coverage, with β(I) = µe−mI as the effective contact rate and m as the influence
parameter of media coverage on the effective contact rate. In [27,28], the model adopted β1 − β2

I
m+I as

the effective contact rate to reflect the reduced amount of contact rate due to media coverage. In [29],
the model uses βi(I) = ai − bim(I) as the effective contact rate, the results suggest that changes in
human behavior in response to media coverage can reduce outbreaks and reduce the speed of disease
transmission. In [30], the author assumes that the media reports of infectious function of
f (I) := (β − β1I

m+I )I, and established an age-structured epidemic model for a class of incomplete
vaccination. In [31], to model the impact of sanitation and awareness on infectious disease
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transmission, the authors selected β(M) = (β − β1
k1 M

p+k1 M ) as the effective contact rate of susceptible
individuals. They showed through model analysis that health and advocacy programs have the ability
to lower epidemic thresholds and thus control the spread of infection.

However, these models based on ordinary differential equations ignore the important factor of
spatial heterogeneity. Undoubtedly, it would be more practical to consider the impact of media
coverage on disease transmission in heterogeneous environments, but there has been little research in
this area. In a recent study, Song et al. [32] studied a class of diffuse epidemic systems with spatial
heterogeneity and lagging effects of media influence, where the media influence function is
β(x)e−m(x)I(x,t−r). Inspired by [27, 28], we suggest that, as the number of infected people increases,
corresponding interventions reported by the media can provide profound psychological cues to
susceptible individuals to help them reduce their contact with infected individuals. Therefore, the
contact rate between susceptible and infected individuals should be assumed to be a monotonically
decreasing function. Motivated by the above works, in this paper, we use the general smooth function
β(x) − β1(x) f (I) as the effective contact rate under the influence of media coverage in a heterogeneous
environment, where f (I) is the media coverage function with saturated psychological effect. Consider
that “asymptomatic” individuals can still spread the infection even if they do not show any symptoms
(for example, a particular but critical feature of the recent COVID-19 epidemic is that a large
proportion of the population infected with SARS-Cov-2 virus originates from asymptomatic
individuals [33, 34].) The main reason is that asymptomatic cases are often unrecognized during the
incubation period and therefore have more contacts than symptomatic cases. Therefore, this paper
incorporates the transmission of exposed persons to susceptible populations into the mathematical
epidemic model. Additionally, since the latent has no obvious symptoms during the incubation
period, the effective contact rate is not affected by media reports.

On the other hand, we also know that vaccination is an important means of preventing infection and
relapse of these diseases [35–37]. Hence, the effect of spatial factors on relapse and vaccination should
be taken into account. Inspired by the above literature, in this paper, we study a SVEIR-I epidemic
response-diffusion model that incorporates the impact of media coverage on disease transmission and
considers the spread of asymptomatic infected individuals.

∂S (t, x)
∂t

= ∇ · (D1(x)∇S ) + Λ(x) − [β(x) − β1(x) f (I)]S I − β2(x)S E − p(x)S − µ(x)S ,

∂V(t, x)
∂t

= ∇ · (D2(x)∇V) + p(x)S − σ(x)[β(x) − β1(x) f (I)]VI − σ(x)β2(x)VE − µ(x)V,

∂E(t, x)
∂t

= ∇ · (D3(x)∇E) + {[β(x) − β1(x) f (I)]I + β2(x)E}(S + σ(x)V) − α(x)E − µ(x)E,

∂I(t, x)
∂t

= ∇ · (D4(x)∇I) + α(x)E + ρ(x)R − µ(x)I − η(x)I − δ(x)I,

∂R(t, x)
∂t

= ∇ · (D5(x)∇R) + δ(x)I − µ(x)R − ρ(x)R,

(S (0, x),V(0, x), E(0, x), I(0, x),R(0, x)) = (ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x), ϕ5(x)), x ∈ Ω,

(1.1)

with the homogeneous Neumann boundary condition(NBC)

∂S (t, x)
∂n

=
∂V(t, x)
∂n

=
∂E(t, x)
∂n

=
∂I(t, x)
∂n

=
∂R(t, x)
∂n

= 0, x ∈ ∂Ω, t ≥ 0,

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15641–15671.



15644

where Ω ⊂ Rn is a bounded domain with the smooth boundary ∂Ω. ∂
∂n denotes the outward normal

derivative on ∂Ω. S (t, x),V(t, x), E(t, x), I(t, x) and R(t, x) represent the population density of
susceptible individuals, vaccinated individuals, exposed individuals, infected individuals and
recovered individuals at location x and time t, respectively. Di(x)(i = 1, 2, 3, 4, 5) respectively
represent the diffusion rate of corresponding individuals at position x. We assume that Λ(x), Di(x),
µ(x), β(x), βi(x)(i = 1, 2), p(x), σ(x), δ(x), α(x), ρ(x) and η(x) are positive, continuous and bounded
on Ω̄. The meanings of other parameters in the Table 1.

Table 1. The meaning of parameters in model (1.1).

Symbol Meaning

µ(x) Natural mortality rate at location x.

p(x) Vaccination rate at position x.

ρ(x) Relapse rate at position x.

δ(x) Per-capita recovery (treatment) rate at position x.

Λ(x) The recruitment rate of S at position x.

η(x) Disease-related death rate at position x.

α(x) The conversion rate from exposed to infected individuals.

β(x) The infection rate of S affected by I at position x.

β2(x) The infection rate of S affected by E at position x.

β1(x) The maximum reduced contact rate of S at position x affected by media coverage.

σ(x) The fraction of V being infected and entering E at position x.

This paper is structured as follows. In Section 2, we first introduce some spaces, give some symbols
and make some assumptions. In Section 3, we present and prove some basic results on the existence
and ultimate boundedness of global solutions. In Section 4, we define the basic reproduction number R0

for model (1.1), and give the relationship between the principal eigenvalue and the basic reproduction
number R0. In Section 5, the dynamics with R0 as the threshold are established, that is, when R0 < 1,
disease-free steady state is globally asymptotically stable, and when R0 > 1, the system is uniformly
persistent. In Section 6, we consider the global dynamics of a spatially homogeneous model. In
Section 7, some numerical examples are given to illustrate our results and show the impact of media
coverage and spatial heterogeneity on disease transmission. A brief conclusion is given in Section 8.

2. Preliminaries

Throughout this paper, we first introduce the following assumptions.
(A1) f (I) is continuously differentiable on [0,+∞), and it satisfies f ′(I) > 0, f (0) = 0 and limI→∞

f (I) = 1.
(A2) The limitations of media coverage indicate β(x) > β1(x) for all t > 0 and x ∈ Ω̄.
(A3) The incidence of disease is a strictly monotonically increasing function of I, so ∂{[β−β1 f (I)]S I}

∂I > 0.
Let X := C(Ω̄,R5), Y := C(Ω̄,R3) and Z := C(Ω̄,R) are Banach spaces with the supremum norm
∥·∥ of continuous functions. Furthermore, X+ := C(Ω̄,R5

+), Y+ := C(Ω̄,R3
+) and Z+ := C(Ω̄,R+) are the

positive cones corresponding to X, Y and Z, respectively. Then, (X, X+), (Y,Y+) and (Z,Z+) are ordered
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Banach spaces. For any function ℵ(x) defined on some nonempty set U, we denote

ℵ∗ := max
x∈U
ℵ(x), ℵ∗ := min

x∈U
ℵ(x).

Let Ai(t)(i = 1, 2, 3, 4, 5) : C(Ω̄,R)→ C(Ω̄,R) are the C0 semigroup associated with ∇· (Di(x)∇)−πi(x)
subjects to NBC, where π1 = µ(x) + p(x), π2 = µ(x), π3 = µ(x) + α(x), π4 = µ(x) + η(x) + δ(x) and
π5 = µ(x) + ρ(x). Then, we have

(Ai(t)ϕ)(x) =
∫
Ω

Gi(t, x, y)ϕ(y)dy, t > 0, ϕ ∈ C(Ω̄,R), (2.1)

where Gi(t, x, y) is the Green function with ∇ · (Di(x)∇) − πi(x)(i = 1, 2, 3, 4, 5) subjects to NBC.
Furthermore, based on ( [38], Corollary 7.2.3), we know that Ai(t) is compact and strongly positive
for all t > 0. Thus, there exist constants Mi > 0 such that ∥Ai(t)∥ ≤ Mieαit for all t ≥ 0, where
αi < 0 are the principal eigenvalue of ∇ · (Di(x)∇) − πi(x) under NBC. For any initial value function
ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ X+, we denote u(t, ·, ϕ) = (S (t, ·, ϕ),V(t, ·, ϕ), E(t, ·, ϕ), I(t, ·, ϕ),R(t, ·, ϕ))T be
the solution of model (1.1). Let

F1(ϕ)(x) =Λ(x) − [β(x) − β1(x) f (ϕ4(x))]ϕ1(x)ϕ4(x) − β2(x)ϕ1(x)ϕ3(x),
F2(ϕ)(x) =pϕ1(x) − σ(x)[β(x) − β1(x) f (ϕ4(x))]ϕ2(x)ϕ4(x) − σ(x)β2(x)ϕ2(x)ϕ3(x),
F3(ϕ)(x) =[β(x) − β1(x) f (ϕ4(x))]ϕ1(x)ϕ4(x) + β2(x)ϕ1(x)ϕ3(x)

+ σ(x)[β(x) − β1(x) f (ϕ4(x))]ϕ2(x)ϕ4(x) + σ(x)β2(x)ϕ2(x)ϕ3(x),
F4(ϕ)(x) =α(x)ϕ3(x) + ρ(x)ϕ5(x), F5(ϕ)(x) = δ(x)ϕ4(x),

then model (1.1) can be written in the following form:u(t, ·, ϕ) = A(t)ϕ +
∫ t

0
A(t − s)F (u(s, ·, ϕ))ds,

u(0) = ϕ,
(2.2)

where A(t) = diag(A1(t), A2(t), A3(t), A4(t), A5(t)) and F (ϕ)(x) = diag(F1(ϕ)(x), F2(ϕ)(x), F3(ϕ)(x),
F4(ϕ)(x), F5(ϕ)(x))T .

3. The well-posedness of the model

In this section, we give the existence of global solutions and the ultimate boundedness of
system (1.1).

Lemma 1. For any ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ X+, model (1.1) has a unique non-negative solution
u(t, ·, ϕ) = (S (t, ·, ϕ),V(t, ·, ϕ), E(t, ·, ϕ), I(t, ·, ϕ),R(t, ·, ϕ)) ∈ X+ on [0, τ∞) and τ∞ ≤ ∞. Moreover, this
solution is a classical solution.

Proof. Similar to the proof of in ( [10], Lemma 1), it is sufficient to show the following subtangential
conditions holds

lim
h→0+

dist(ϕ + hF (ϕ), X+) = 0, ϕ ∈ X+.
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We can prove that for any ϕ ∈ X+ and a sufficiently small h ≥ 0,

ϕ(x) + hF (ϕ)(x)

=


ϕ1(x) + h

{
Λ(x) − [β(x) − β1(x) f (ϕ4(x))]ϕ1(x)ϕ4(x) − β2(x)ϕ1(x)ϕ3(x)

}
ϕ2(x) + h

{
p(x)ϕ1(x) − σ(x)[β(x) − β1(x) f (ϕ4(x))]ϕ2(x)ϕ4(x) − σ(x)β2(x)ϕ2(x)ϕ3(x)

}
ϕ3(x) + h

{[(
β(x) − β1(x) f (ϕ4(x))

)
ϕ4(x) + β2(x)ϕ3(x)

][
ϕ1(x) + σ(x)ϕ2(x)

]}
ϕ4(x) + h[α(x)ψ3(x) + ρ(x)ϕ5(x)]

ϕ5(x) + hδ(x)ϕ4(x)



≥


ϕ1(x) − h[β(x) − β1(x) f (ϕ4(x))]ϕ1(x)ϕ4(x)

ϕ2(x) − hσ(x)[β(x) − β1(x) f (ϕ4(x))]ϕ2(x)ϕ4(x)
ϕ3(x)
ϕ4(x)
ϕ5(x)


> 0,

which indicates that ϕ + hF (ϕ) ∈ X+. That completes the proof. □

To continue our research, first, consider the following system,
∂ω(t, x)
∂t

=∇ · (d(x)∇ω(t, x)) + α(x) − β(x)ω(t, x), x ∈ Ω, t ≥ 0,

∂ω(t, x)
∂n

=0, x ∈ ∂Ω, t ≥ 0,
(3.1)

where d(x), α(x) and β(x) are positive continuous functions defined on Ω̄, and we have the following
lemma.

Lemma 2. [39] System (3.1) admits a unique positive steady state ω0(x), which satisfies the equation
∇ · (d(x)∇ω0(x)) + α(x) − β(x)ω0(x) = 0, x ∈ Ω,

∂ω0(x)
∂n

= 0, x ∈ ∂Ω,

and it is globally asymptotically stable in C(Ω̄,R+). In addition, ω0(x) = a
b when α(·) ≡ a and β(·) ≡ b

are positive constants.

Theorem 1. For any ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ X+, model (1.1) has a unique classical solution u(t, ·, ϕ)
= (S (t, ·, ϕ),V(t, ·, ϕ),E(t, ·, ϕ),I(t, ·, ϕ),R(t, ·, ϕ)) ∈ X+ defined on [0,∞), and this solution is also
ultimately bounded.

Proof. Using a standard argument (see, e.g., ( [40], Theorem 3.2)), it is only necessary to get the
boundness of solution in Ω̄ × [0, τ∞). From the first equation of (1.1), we have

∂S
∂t
≤ ∇ · (D1(x)∇S ) + Λ∗ − p∗S − µ∗S , t ∈ [0, τ∞), x ∈ Ω̄. (3.2)

From the comparison principle [41] and Lemma 2, we can see that there exists a constant M1 > 0 such
that S (t, x) ≤ M1 for all t ∈ [0, τ∞) and x ∈ Ω̄. From the second equation of (1.1), we have

∂V
∂t
≤ ∇ · (D2(x)∇V) + p∗M1 − µ∗V, t ∈ [0, τ∞), x ∈ Ω̄. (3.3)
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Through similar analysis, there exists a constant M2 > 0 such that V(t, x) ≤ M2 for all t ∈ [0, τ∞) and
x ∈ Ω̄.

Then we can get

∂E(t, x)
∂t

≤ ∇ · (D3(x)∇E) + β∗M1I + β∗2M1E + σ∗β∗M2I + σ∗β∗2M2E

− (α∗ + µ∗)E,
∂I(t, x)
∂t

≤ ∇ · (D4(x)∇I) + α∗E + ρ∗R − µ∗I − η∗I − δ∗I,

∂R(t, x)
∂t

≤ ∇ · (D5(x)∇R) + δ∗I − µ∗R − ρ∗R,

t ∈ [0, τ∞), x ∈ Ω,

∂E
∂n
=
∂I
∂n
=
∂R
∂n
= 0, x ∈ ∂Ω, t > 0,

(3.4)

Consider the following comparison system:

∂v1

∂t
= ∇ · (D3(x)∇v1) + β∗M1v2 + β

∗
2M1v1 + σ

∗β∗M2v2 + σ
∗β∗2M2v1

− (α∗ + µ∗)v1,

∂v2

∂t
= ∇ · (D4(x)∇v2) + α∗v1 + ρ

∗v3 − µ∗v2 − η∗v2 − δ∗v2,

∂v3

∂t
= ∇ · (D5(x)∇v3) + δ∗v2 − µ∗v3 − ρ∗v3,

t > 0, x ∈ Ω,

∂v1

∂n
=
∂v2

∂n
=
∂v3

∂n
= 0, x ∈ ∂Ω, t > 0.

(3.5)

According to the Krein-Rutman theorem [42], the eigenvalue problem associated with the
system (3.5) has a strongly positive eigenfunction ξ = (ξ1, ξ2, ξ3) corresponding to the principal
eigenvalue λ. Thus, system (3.5) admits a solution ceλtξ(x) for t ≥ 0, where c is a positive constant
and satisfies cξ = (v1(x, 0), v2(x, 0), v3(x, 0)) ≥ (E(x, 0), I(x, 0),R(x, 0)) for all x ∈ Ω̄. Then, using the
principle of comparison

E(t, x), I(t, x),R(t, x) ≤ ceλtξ(x), t ∈ [0, τ∞), x ∈ Ω̄.

This means that there is a constant M3 > 0 such that

E(t, x) ≤ M3, I(t, x) ≤ M3, R(t, x) ≤ M3, t ∈ [0, τ∞), x ∈ Ω̄.

Therefore, τ∞ = ∞. This shows the global existence of u(t, ·, ϕ).
We next show that the solution is ultimately bounded. According to the comparison principle, from

inequality (3.2), (3.3) and Lemma 2, it follows that there exists constants of N1 > 0 , N2 > 0 and times
t1 > 0, t2 > 0 such that S (t, x) ≤ N1 and V(t, x) ≤ N2 for all t ≥ max{t1, t2}, x ∈ Ω̄, which means that
S (t, x) and V(t, x) are ultimately bounded.

Let

P(t) =
∫
Ω

(S (t, x) + V(t, x) + E(t, x) + I(t, x) + R(t, x))dx,
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Using ( [43], Theorem 3.7), we have

dP
dt
=

∫
Ω

[Λ(x) − µ(x)S (t, x) − µ(x)V(t, x) − µ(x)E(t, x) − µ(x)I(t, x) − η(x)I(t, x) − µ(x)R(t, x)]dx

≤Λ∗|Ω| − µ∗P, t ∈ [0, τ∞),
(3.6)

where |Ω| is the volume of Ω. Hence, there exists a constant N3 > 0 and t3 > 0 such that P(t) ≤ N3 for
all t ≥ t3. Consequently, we have∫

Ω

E(t, x)dx ≤ N3,

∫
Ω

I(t, x)dx ≤ N3,

∫
Ω

R(t, x)dx ≤ N3. (3.7)

Then, using the similar method in ( [9], Theorem 1), for any t ≥ t4 = max{t1, t2, t3}, we have

E(t, x) =A3(t)E(t4, x) +
∫ t

t4
A3(t − s)

{
[β(x) − β1(x) f (I(s, x))]I(s, x) + β2(x)E(s, x)

}[
S (s, x)

+ σ(x)V(s, x)
]
ds

≤M3eα3(t−t4)∥E(t4, x)∥ + ω3

∫ t

t4
e−(α∗+µ∗)(t−s)[β∗N1

∫
Ω

I(s, y) + β∗2N1

∫
Ω

E(s, y)

+ σ∗β∗N2

∫
Ω

I(s, y) + σ∗β∗2N2

∫
Ω

E(s, y)
]
dyds

≤M3eα3(t−t4)∥E(t4, x)∥ +
ω3N1N2N3(β∗ + β∗2 + σ

∗β∗ + σ∗β∗2)
α∗ + µ∗

.

So, we have

lim sup
t→∞

∥E(t, x)∥Z ≤
ω3N1N2N3(β∗ + β∗2 + σ

∗β∗ + σ∗β∗2)
α∗ + µ∗

.

This shows that E(t, x) is ultimately bounded. Similarly, for I(t, x) and R(t, x) we get

lim sup
t→∞

∥I(t, x)∥Z ≤
ω4N3(α∗ + ρ∗)
µ∗ + η∗ + δ∗

, lim sup
t→∞

∥R(t, x)∥Z ≤
ω5N3δ

∗

µ∗ + ρ∗
,

where ω4 > 0 and ω5 > 0 are constants. This indicates that the solution is ultimately bounded. □

Corollary 1. For any ϕ ∈ X+, the solution semiflow Q(t)ϕ = u(t, ·, ϕ) : X+ → X+ generated by
model (1.1) has a compact global attractor.

Proof. By Theorem 1, we know that the system (1.1) is ultimately bounded, which means that the
solution semiflow Q(t)ϕ = u(t, ·, ϕ) : X+ → X+ is point dissipative on X+. Furthermore, from ( [44],
Theorem 2.6), we can see that Q(t) is compact for any t > 0. Thus, from ( [45], Theorem 1.1.3), we
get that Q(t) : X+ → X+ has a compact global attractor on X+.

□
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4. Basic reproduction number

According to Lemma 2, the system (1.1) has a unique disease-free steady state
D0(x) = (S 0(x),V0(x), 0, 0, 0), where S 0(x) and V0(x) satisfies

−∇ · (D1(x)∇S 0(x)) =Λ(x) − p(x)S 0(x) − µ(x)S 0(x),
−∇ · (D2(x)∇V0(x)) =p(x)S 0(x) − µ(x)V0(x),

x ∈ Ω, t > 0,

∂S 0(x)
∂n

=
∂V0(x)
∂n

= 0, x ∈ ∂Ω, t > 0.

By linearizing model (1.1) at D0(x), we obtain the following linear system

∂E(t, x)
∂t

= ∇ · (D3(x)∇E) +
[
β(x)I + β2(x)E

][
S 0(x) + σ(x)V0(x)

]
− (α(x) + µ(x))E,

∂I(t, x)
∂t

= ∇ · (D4(x)∇I) + α(x)E + ρ(x)R − µ(x)I − η(x)I − δ(x)I,

∂R(t, x)
∂t

= ∇ · (D5(x)∇R) + δ(x)I − µ(x)R − ρ(x)R,

x ∈ Ω, t > 0,

∂E
∂n
=
∂I
∂n
=
∂R
∂n
= 0, x ∈ ∂Ω, t > 0.

(4.1)

Let (E(t, x), I(t, x),R(t, x)) = (eλtϖ3(x), eλtϖ4(x), eλtϖ5(x)), then we get the following eigenvalue
problem

λϖ3(x) = ∇ · (D3(x)∇ϖ3(x)) +
[
β(x)ϖ4(x) + β2(x)ϖ3(x)

][
S 0(x) + σ(x)V0(x)

]
− (α(x) + µ(x))ϖ3(x),

λϖ4(x) = ∇ · (D4(x)∇ϖ4(x)) + α(x)ϖ3(x) + ρ(x)ϖ5(x) − µ(x)ϖ4(x)
− η(x)ϖ4(x) − δ(x)ϖ4(x),

λϖ5(x) = ∇ · (D5(x)∇ϖ5(x)) + δ(x)ϖ4(x) − µ(x)ϖ5(x) − ρ(x)ϖ5(x),

x ∈ Ω, t > 0,

∂ϖ3

∂n
=
∂ϖ4

∂n
=
∂ϖ5

∂n
= 0, x ∈ ∂Ω, t > 0.

(4.2)

From ( [38], Theorem 7.6.1), we have the following result.

Lemma 3. (4.2) has a unique principal eigenvalue λ0 = λ0(S 0(x), V0(x)) with positive eigenvector
(ϖ3(x), ϖ4(x), ϖ5(x)).

Define

D =


D3(x) 0 0

0 D4(x) 0
0 0 D5(x)

 , V =


α(x) + µ(x) 0 0
−α(x) µ(x) + η(x) + δ(x) −ρ(x)

0 −δ(x) µ(x) + ρ(x)

 ,

F =


β2(x)S 0(x) + σ(x)β2(x)V0(x) β(x)S 0(x) + σ(x)β(x)V0(x) 0

0 0 0
0 0 0

 .
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Then system (4.1) is
∂ð

∂t
= ∇ · (D(x)∇ð) + (F − V)ð,

where ð = (E, I,R)T . Let the positive semigroup P(t) : Y+ → Y+ generated by the following system

∂ð

∂t
= Bð,

where B := D−V . Then we know that B is a resolvable positive operator [46] and P(t)Y+ ⊂ Y+ can be
obtained. Moreover, we denote the spectral radius of Q as r(Q) = sup{|λ|, λ ∈ σ(Q)} and the spectral
bound of Q as s(Q) = sup{Reλ, λ ∈ σ(Q)}.

Denote ψ = (ψ3(x), ψ4(x), ψ5(x)) is initial infection distribution. Based on a similar discussion by
Luo et al. [10], we define the following operators

L (ψ)(x) =
∫ +∞

0
F(x)P(t)ψ(x)dt = F(x)

∫ +∞

0
P(t)ψ(x)dt, (4.3)

where F(x)
∫ +∞

0
P(t)ψ(x)dt denotes the total distribution of new infections. Then, based on [46–49],

the basic reproduction number for model (1.1) is defined by R0 := r(L ). Further, through the argument
in [46, 47], we get the following lemma.

Lemma 4. (i) sign(R0 − 1) = sign(λ0).
(ii) If R0 < 1, then D0(x) of system (1.1) is locally asymptotically stable.
(iii) If R0 > 1, then D0(x) is unstable.

5. Threshold dynamics

5.1. Extinction of the disease

In this section, we study the global stability of the disease-free steady state D0(x) of the system (1.1),
and establish the following results.

Theorem 2. The disease-free steady state D0(x) of the model (1.1) is globally asymptotically stable in
X+ when R0 < 1.

Proof. According to Lemma 4, we know that D0(x) is locally asymptotically stable when R0 < 1. Thus
we only need to show that D0(x) is globally attractive. From the first equation of model (1.1), we get

∂S
∂t
≤ ∇ · (D1(x)∇S ) + Λ(x) − µ(x)S , x ∈ Ω, t > 0,

∂S
∂n
= 0, x ∈ ∂Ω, t > 0.

Using the comparison principle and Lemma 2, we obtain lim supt→∞ S (t, x) ≤ S 0(x) uniformly for
x ∈ Ω̄, which means that there exist positive constants t1 and ϵ1 such that S (t, x) ≤ S 0(x) + ϵ1 for any
t ≥ t1. Similarly, from the second equation of model (1.1), we have

∂V
∂t
≤ ∇ · (D2(x)∇V) + p(x)(S 0(x) + ϵ1) − µ(x)V, x ∈ Ω, t > 0,

∂V
∂n
= 0, x ∈ ∂Ω, t > 0.
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and then we have there exist positive constants ϵ2 and t2 such that V(t, x) ≤ V0(x) + ϵ2 for any t ≥ t2

and x ∈ Ω̄. Hence, for any t ≥ t3 we have

∂E
∂t
≤∇ · (D3(x)∇E) + β(x)(S 0(x) + ϵ1)I + β2(x)(S 0(x) + ϵ1)E

+ σ(x)β(x)(V0(x) + ϵ2)I + σ(x)β2(x)(V0(x) + ϵ2)E − (α(x) + µ(x))E,
∂I
∂t
≤∇ · (D4(x)∇I) + α(x)E + ρ(x)R − (µ(x) + η(x) + δ(x))I,

∂R
∂t
≤∇ · (D5(x)∇R) + δ(x)I − (µ(x) + ρ(x))R,

x ∈ Ω,

∂E
∂n
=
∂I
∂n
=
∂R
∂n
= 0, x ∈ ∂Ω.

Let (E(t, x),I(t, x),R(t, x)) be the solution of the following system

∂E

∂t
=∇ · (D3(x)∇E) + β(x)(S 0(x) + ϵ1)I + β2(x)(S 0(x) + ϵ1)E

+ σ(x)β(x)(V0(x) + ϵ2)I + σ(x)β2(x)(V0(x) + ϵ2)E − (α(x) + µ(x))E,
∂I

∂t
=∇ · (D4(x)∇I) + α(x)E + ρ(x)R − (µ(x) + η(x) + δ(x))I,

∂R

∂t
=∇ · (D5(x)∇R) + δ(x)I − (µ(x) + ρ(x))R,

x ∈ Ω,

∂E

∂n
=
∂I

∂n
=
∂R

∂n
= 0, x ∈ ∂Ω.

(5.1)

Using comparison principle, (E(t, x), I(t, x),R(t, x)) ≤ (E(t, x),I(t, x),R(t, x)). It follows from the
Lemma 4 that λ0(S 0(x) + ϵ1,V0(x) + ϵ2) < 0 when R0 < 1, where λ0(S 0(x) + ϵ1,V0(x) + ϵ2) < 0 is the
principal eigenvalue of system (5.1). Denote (a3(x), a4(x), a5(x)) be the eigenfunction corresponding
to this principal eigenvalue λ0(S 0(x) + ϵ1,V0(x) + ϵ2) < 0, we can get the following solution for
system (5.1),

(E(t, x),I(t, x),R(t, x)) = (a3(x), a4(x), a5(x))eλ0(S 0(x)+ϵ1,V0(x)+ϵ2)(t−t3), t ≥ t3.

Therefore, (E(t, x), I(t, x),R(t, x)) → 0 uniformly on x ∈ Ω̄ as t → ∞. Further, we get the following
limit system 

∂S
∂t
= ∇ · (D1(x)∇S ) + Λ(x) − µ(x)S , x ∈ Ω, t > 0,

∂V
∂t
= ∇ · (D2(x)∇V) + p(x)S − µ(x)V, x ∈ Ω, t > 0,

∂S
∂n
=
∂V
∂n
= 0, x ∈ ∂Ω, t > 0.

Based on the theory of asymptotically autonomous semiflows ( [50], Corollary 4.3) and Lemma 3, we
have S (t, x)→ S 0(x) and V(t, x)→ V0(x) uniformly for x ∈ Ω̄ as t → ∞. That means D0(x) is globally
asymptotically stable. □
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5.2. Uniform persistence of the disease

In this subsection, we prove that R0 is the threshold for disease persistence. We first give the
following results.

Theorem 3. If R0 > 1, then (1.1) is uniformly persistent, that is, there is a constant ϱ > 0 such
that for any initial value ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ X+ with ϕ3 , 0, ϕ4 , 0 and ϕ5 , 0, u(t, ·, ϕ) =
(S (t, ·, ϕ),V(t, ·, ϕ), E(t, ·, ϕ), I(t, ·, ϕ),R(t, ·, ϕ)) satisfies

lim inf
t→∞

S (t, ·, ϕ) ≥ ϱ, lim inf
t→∞

V(t, ·, ϕ) ≥ ϱ lim inf
t→∞

E(t, ·, ϕ) ≥ ϱ, lim inf
t→∞

I(t, ·, ϕ) ≥ ϱ, lim inf
t→∞

R(t, ·, ϕ) ≥ ϱ,

uniformly for x ∈ Ω̄. Moreover, model (1.1) has at least one endemic steady state D∗(x) = (S ∗(x),
V∗(x), E∗(x), I∗(x),R∗(x)).

Proof. Let

X0 : = {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ X+ : ϕ3 , 0, ϕ4 , 0 and ϕ5 , 0},
∂X0 : = X+ \ X0 = {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ X+ : ϕ3 = 0 or ϕ4 = 0 or ϕ5 = 0}.

and
M∂ := {ϕ ∈ X+ : Q(t)ϕ ∈ ∂X0 for all t ≥ 0}, M1 = {D0(x)}.

First, we give the following two claims:
Claim 1. ∪ϕ∈M∂

ω(ϕ) = M1 for any given ϕ ∈ M∂ (where ω(ϕ) be the omega limit set of ϕ for Q(t)).

Proof. Since Q(t)D0(x) = D0(x) for all t ≥ 0, then M1 ⊂ ∪ϕ∈M∂
ω(ϕ). Now, we just have to prove

∪ϕ∈M∂
ω(ϕ) ⊂ M1. Since Q(t)ϕ ∈ ∂X0 for any given ϕ ∈ M∂ and t ≥ 0, then E(t, ·, ϕ) ≡ 0 or I(t, ·, ϕ) ≡ 0

or R(t, ·, ϕ) ≡ 0 for all t ≥ 0.
The first case, E(t, x) ≡ 0. By the third and fourth equations of the system (1.1), we yield

∂I(t, x)
∂t

+
∂R(t, x)
∂t

= ∇ · (D4(x)∇I) + ∇ · (D5(x)∇R) − µ(x)I − η(x)I − µ(x)R,

by the parabolic maximum principle [41], we immediately obtain I(t, x) = 0 and R(t, x) = 0 from
model (1.1). Thus, we yield

∂S (t, ·, ϕ)
∂t

= ∇ · (D1(x)∇S (t, ·, ϕ)) + Λ(x) − µ(x)S (t, ·, ϕ), x ∈ Ω, t > 0,

∂V(t, ·, ϕ)
∂t

= ∇ · (D2(x)∇V(t, ·, ϕ)) + p(x)S (t, ·, ϕ) − µ(x)V(t, ·, ϕ), x ∈ Ω, t > 0,

∂S (t, ·, ϕ)
∂n

=
∂V(t, ·, ϕ)

∂n
= 0, x ∈ ∂Ω, t > 0.

(5.2)

According to the comparison principle and Lemma 2, S (t, x) → S 0(x) and V(t, x) → V0(x) uniformly
on x ∈ Ω̄ as t → ∞ hold. This implies ω(ϕ) = D0(x).

Second case, I(t, x) ≡ 0. According to the fourth equation of system (1.1), we know that
α(x)E(t, x) + ρ(x)R(t, x) = 0. Due to α(x) > 0 and ρ(x) > 0, we have E(t, x) = 0 and R(t, x) = 0. Thus,
by asymptotically autonomous semiflow theory [50], we get S (t, x) → S 0(x) and V(t, x) → V0(x)
uniformly on x ∈ Ω̄ as t → ∞. This also implies ω(ϕ) = D0(x).
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The third case, R(t, x) ≡ 0. Similar to the first case, we get I(t, x) = 0 and E(t, x) = 0. Additionally,
S (t, x) → S 0(x) and V(t, x) → V0(x) uniformly on x ∈ Ω̄ as t → ∞. This implies ω(ϕ) = D0(x). Thus,
we have ∪ϕ∈M∂

ω(ϕ) ⊂ M1, and finally get ∪ϕ∈M∂
ω(ϕ) = M1.

□

Claim 2. If R0 > 1, then there exists a constant δ > 0 such that for any ϕ ∈ X0, the solution u(t, ·, ϕ)
of the model (1.1) is satisfied

lim sup
t→∞

∥u(t, ·, ϕ) − D0(x)∥X ≥ δ.

Proof. Suppose that Claim 2 does not hold, then there exists an enough large T1 such that S 0(x) − δ <
S (t, ·, ϕ) ≤ S 0(x) + δ, V0(x) − δ < V(t, ·, ϕ) ≤ V0(x) + δ, 0 ≤ E(t, ·, ϕ) < δ, 0 ≤ I(t, ·, ϕ) < δ, 0 ≤
R(t, ·, ϕ) < δ, for all t ≥ T1 and x ∈ Ω̄. From model (1.1), we have

∂E
∂t
≥∇ · (D3(x)∇E) + [β(x) − β1(x)](S 0(x) − δ)I + β2(x)(S 0(x) − δ)E

+ σ(x)[β(x) − β1(x)](V0(x) − δ)I + σ(x)β2(x)(V0(x) − δ)E − (α(x) + µ(x))E,
∂I
∂t
≥∇ · (D4(x)∇I) + α(x)E + ρ(x)R − µ(x)I − η(x)I − δ(x)I,

∂R
∂t
≥∇ · (D5(x)∇R) + δ(x)I − µ(x)R − ρ(x)R,

x ∈ Ω,

∂E
∂n
=
∂I
∂n
=
∂R
∂n
= 0, x ∈ ∂Ω.

(5.3)

Study the following corresponding comparison system with (5.3)

∂v3

∂t
=∇ · (D3(x)∇v3) + [β(x) − β1(x)](S 0(x) − δ)v4 + β2(x)(S 0(x) − δ)v3

+ σ(x)[β(x) − β1(x)](V0(x) − δ)v4 + σ(x)β2(x)(V0(x) − δ)v3 − (α(x) + µ(x))v3,

∂v4

∂t
=∇ · (D4(x)∇v4) + α(x)v3 + ρ(x)v5 − µ(x)v4 − η(x)v4 − δ(x)v4,

∂v5

∂t
=∇ · (D5(x)∇v5) + δ(x)v4 − µ(x)v5 − ρ(x)v5,

x ∈ Ω,

∂v3

∂n
=
∂v4

∂n
=
∂v5

∂n
= 0, x ∈ ∂Ω.

(5.4)

For any initial value ϕ ∈ X0, it is obtained by the parabolic maximum principle [41] for all t ≥ T1 and
x ∈ Ω̄, there is E(t, x) > 0, I(t, x) > 0 and R(t, x) > 0.

Next, we consider the following eigenvalue problem

λϕ
ϱ
3 =∇ · (D3(x)∇ϕϱ3) + [β(x) − β1(x)](S 0(x) − δ)ϕϱ4 + β2(x)(S 0(x) − δ)ϕϱ3
+ σ(x)[β(x) − β1(x)](V0(x) − δ)ϕϱ4 + σ(x)β2(x)(V0(x) − δ)ϕϱ3 − (α(x) + µ(x))ϕϱ3,

λϕ
ϱ
4 =∇ · (D4(x)∇ϕϱ4) + α(x)ϕϱ3 + ρ(x)ϕϱ5 − µ(x)ϕϱ4 − η(x)ϕϱ4 − δ(x)ϕϱ4,

λϕ
ϱ

5 =∇ · (D5(x)∇ϕϱ5) + δ(x)ϕϱ4 − µ(x)ϕϱ5 − ρ(x)ϕϱ5,

x ∈ Ω,

∂ϕ
ϱ
3

∂n
=
∂ϕ

ϱ
4

∂n
=
∂ϕ

ϱ

5

∂n
= 0, x ∈ ∂Ω.

(5.5)
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Let λ0(ϵ) be the principal eigenvalue of (5.5). There is a constant that is small enough ϵ0 > 0, such
that λ0(ϵ0) > 0 and S 0(x) − ϵ0 > 0, V0(x) − ϵ0 > 0 for all x ∈ Ω̄. In addition, the eigenvalue λ0(ϵ0)
corresponds to a strictly positive eigenfunction (ϕϱ3(x), ϕϱ4(x), ϕϱ5(x)) for x ∈ Ω̄. Clearly, system (5.4)
has a solution (v3(t, x), v4(t, x), v5(t, x)) = eλ0(ϵ0)(t−T1)(ϕϱ3(x), ϕϱ4(x), ϕϱ5(x)). Then we can choose a constant
c1 > 0, according to the comparison principle, we get

(E(t, x), I(t, x),R(t, x)) > c1(ϕϱ3(x), ϕϱ4(x), ϕϱ5(x))eλ0(ϵ0)(t−T1), t ≥ T1.

Owing to λ0(ϵ0) > 0, we have limt→∞ E(t, x) = +∞, limt→∞ I(t, x) = +∞ and limt→∞ R(t, x) = +∞.
However, by Theorem 1, we know from the boundedness of (E(t, x), I(t, x),R(t, x)) that this is a
contradiction, which shows Claim 2 holds. □

Next, we prove the required persistence. By Theorem 1, the solution u(t, ·, ϕ) of model (1.1) is
ultimately bounded, that is, for a constant M > 0 and time T2 > 0, such that u(t, ·, ϕ) ≤ M for all t > T2

and x ∈ Ω̄. Therefore, according to the first and second equations of model (1.1), we get

∂S
∂t
≥ ∇ · (D1(x)∇S ) + Λ∗ − β∗S M − β∗2S M − p∗S − µ∗S , x ∈ Ω, t > 0,

∂V
∂t
≥ ∇ · (D2(x)∇V) + p∗S − σ∗β∗V M − σ∗β∗2V M − µ∗V, x ∈ Ω, t > 0,

∂S
∂n
=
∂V
∂n
= 0, x ∈ ∂Ω, t > 0,

for any t ≥ T2. It follows from Lemma 2 and the comparison principle [41]

lim inf
t→∞

S (t, ·, ϕ) ≥
Λ∗

(β∗ + β∗2)M + µ∗ + p∗
,

lim inf
t→∞

V(t, ·, ϕ) ≥
p∗Λ∗

[(β∗ + β∗2)M + µ∗ + p∗][(β∗ + β∗2)σ∗M + µ∗]
,

which implies that S (t, ·, ϕ) and V(t, ·, ϕ) has a positive lower bound. Therefore, the uniform persistence
of S (t, ·, ϕ) and V(t, ·, ϕ) in model (1.1) is proved.

Define a continuous function p : X+ → [0,+∞) by

p(ϕ) = min{min
x∈Ω̄

ϕ3(x),min
x∈Ω̄

ϕ4(x),min
x∈Ω̄

ϕ5(x)}.

Obviously, p−1(0,+∞) ⊆ X0 and p satisfies the following properties: p(ϕ) = 0 and ϕ ∈ X0 or p(Q(t)ϕ) >
0. Based on the definition ( [51], Section 3), we know that p is a generalized distance function for
semiflow Q(t) : X+ → X+. In addition, as can be seen from the discussion in Claim 1 and Claim 2, all
the solution of the model (1.1) tend to D0(x) on boundary ∂X0, which implies that D0(x) is a isolated
invariant set in X+, no subset of M1 forms a cycle in ∂X0 and W s(D0) ∩ X0 = ∅, where W s(D0) is the
stable set of D0(x). Thus, W s(D0(x)) ∩ p−1(0,∞) = ∅. By ( [51], Theorem 3), there exists a constant
ϱ2 > 0 such that lim inft→∞ p(Q(t)ϕ) ≥ ϱ2 for all ϕ ∈ X0, which implies

lim inf
t→∞

E(t, ·, ϕ) ≥ ϱ2, lim inf
t→∞

I(t, ·, ϕ) ≥ ϱ2, lim inf
t→∞

R(t, ·, ϕ) ≥ ϱ2.

Define ϱ1 = min
{ Λ∗

(β∗+β∗2)M+µ∗+p∗ ,
p∗Λ∗

[(β∗+β∗2)M+µ∗+p∗][(β∗+β∗2)σ∗M+µ∗]

}
and let ϱ = min{ϱ1, ϱ2}, the uniform

persistence of the system (1.1) is obtained. From the above proof and Theorem 4.7 in [52], we have
the following result.
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Lemma 5. When R0 > 1, model (1.1) has at least one positive steady state D∗(x) = (S ∗(x),V∗(x), E∗(x),
I∗(x),R∗(x)).

□

6. Global stability in homogeneous Spaces

In this section, we study the dynamic behavior of model (1.1) in homogeneous space, where all the
coefficients of model (1.1) are positive constants except the diffusion coefficient.

∂S
∂t
= ∇ · (D1(x)∇S ) + Λ − [β − β1 f (I)]S I − β2S E − pS − µS ,

∂V
∂t
= ∇ · (D2(x)∇V) + pS − σ[β − β1 f (I)]VI − σβ2VE − µV,

∂E
∂t
= ∇ · (D3(x)∇E) +

{
[β − β1 f (I)]I + β2E

}
(S + σV) − αE − µE,

∂I
∂t
= ∇ · (D4(x)∇I) + αE + ρR − µI − ηI − δI,

∂R
∂t
= ∇ · (D5(x)∇R) + δI − µR − ρR,

x ∈ Ω, t ≥ 0.

∂S
∂n
=
∂V
∂n
=
∂E
∂n
=
∂I
∂n
=
∂R
∂n
= 0, x ∈ ∂Ω, t ≥ 0.

(6.1)

Obviously, by Lemma 2, the system (6.1) has a disease-free equilibrium Q0 = (S 0,V0, 0, 0, 0) with
S 0 = Λ

µ+p and V0 =
pΛ

µ(µ+p) . By simple computation, one has

R0 =
β2(µΛ + σpΛ)
µ(µ + p)(α + µ)

+
βα(µΛ + σpΛ)(µ + ρ)

µ(µ + p)(α + µ)
[
(µ + η + δ)(µ + ρ) − ρδ

] ≜ R01 + R02.

Remark 1. R01 and R02 can be expressed as the contribution of exposed and infected individuals to
the basic reproduction number, respectively. It can be seen that a primary case in the latent population
has a rate β2(µΛ+σpΛ)

µ(µ+p) of infectious contact with the susceptible population in the expected time 1
α+µ

,
while a primary case in the infected population has a rate βα(µΛ+σpΛ)(µ+ρ)

µ(µ+p) of infectious contact with the
susceptible population in the expected time 1

(α+µ)[(µ+η+δ)(µ+ρ)−ρδ] .

Theorem 4. When R0 > 1, there exists a unique endemic equilibrium for system (6.1).

Proof. Suppose that there exists an endemic equilibrium Q∗(S ∗,V∗, E∗, I∗,R∗) for system (6.1), then
Q∗ satisfies 

Λ − [β − β1 f (I∗)]S ∗I∗ − β2S ∗E∗ − µS ∗ − pS ∗ = 0,
pS ∗ − σ[β − β1 f (I∗)]V∗I∗ − β2V∗E∗ − µV∗ = 0,{
[β − β1 f (I∗)]I∗ + β2E∗

}
(S ∗ + σV∗) − αE∗ − µE∗ = 0,

αE∗ + ρR∗ − µI∗ − ηI∗ − δI∗ = 0,
δI∗ − µR∗ − ρR∗ = 0.

(6.2)
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By a simple computation, we have

S ∗ =
Λ

[β − β1 f (I∗)]I∗ + β2E∗ + µ + p
, E∗ =

[(µ + ρ)(µ + η + δ) − ρδ]I∗

α(µ + ρ)
,

V∗ =
pΛ

{[β − β1 f (I∗)]I∗ + β2E∗ + µ + p}{σ[β − β1 f (I∗)]I∗ + σβ2E∗ + µ}
.

Since I∗ , 0, by the third equation in (6.2), we have

S ∗ + σV∗ =
(α + µ)E∗

[β − β1 f (I∗)] + β2E∗
=

(α + µ)[(µ + ρ)(µ + η + δ) − ρδ]
α(µ + ρ)[β − β1 f (I∗)] + β2[(µ + ρ)(µ + η + δ) − ρδ]

Let C(I) = α(µ+ ρ)[β− β1 f (I)]I + β2[(µ+ ρ)(µ+ η+ δ)− ρδ]I. According to the known formula, we
have

S ∗ + σV∗ =
Λ

[β − β1 f (I∗)]I∗ + β2E∗ + µ + p

[
1 +

σp
σ[β − β1 f (I∗)]I∗ + σβ2E∗ + µ

]
=

αΛ(µ + ρ)[σC(I∗) + α(µ + ρ)(µ + σp)]
[C(I∗) + α(µ + p)(µ + ρ)][σC(I∗) + αµ(µ + ρ)]

.

Thus,

αΛ(µ + ρ)[σC(I∗) + α(µ + ρ)(µ + σp)]
[C(I∗) + α(µ + p)(µ + ρ)][σC(I∗) + αµ(µ + ρ)]

=
(α + µ)[(µ + ρ)(µ + η + δ) − ρδ]

α(µ + ρ)[β − β1 f (I∗)] + β2[(µ + ρ)(µ + η + δ) − ρδ]
.

Define H(I) := ψ(I) − φ(I) = 0, where

ψ(I) =
α(µ + ρ)[σC(I) + α(µ + ρ)(µ + σp)]

[C(I) + α(µ + p)(µ + ρ)][σC(I) + αµ(µ + ρ)]
,

φ(I) =
(α + µ)

[
(µ + ρ)(µ + η + δ) − ρδ

]
Λ{α(µ + ρ)[β − β1 f (I)] + β2[(µ + ρ)(µ + η + δ) − ρδ]}

.

(6.3)

Obviously, φ(I) is increasing for I > 0. Further

ψ′(I) =
h(I){

[C(I∗) + α(µ + p)(µ + ρ)][σC(I∗) + αµ(µ + ρ)]
}2 ,

where
h(I) =α(µ + ρ)C′(I)

{
σ
[
C(I) + α(µ + ρ)(µ + p)

][
σC(I) + αµ(µ + ρ)

]
−
[
σC(I) + α(µ + ρ)(µ + σp)

][
σC(I) + αµ(µ + ρ)

]
−
[
σC(I) + α(µ + ρ)(µ + σp)

]
σ
[
C(I) + α(µ + ρ)(µ + p)

]}
< 0.

Combined with (A1), (A2) and (A3), we obtain that function ψ(I) is decreasing for I > 0, and then H(I)
is decreasing for I > 0.

In addition, from (6.3) we get

H(0) =
(α + µ)

[
(µ + ρ)(µ + η + δ) − ρδ

]
Λ{βα(µ + ρ) + β2[(µ + ρ)(µ + η + δ) − ρδ]}

(R0 − 1), (6.4)
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and

H(I) <
α(µ + ρ)

C(I)
−

(α + µ)
[
(µ + ρ)(µ + η + δ) − ρδ

]
Λ{α(µ + ρ)[β − β1 f (I)] + β2[(µ + ρ)(µ + η + δ) − ρδ]}

.

It is easy to see that H(0) > 0 and limI→∞ H(I) < 0 when R0 > 1. Based on the monotonicity of H(I),
we can get system (6.1) has unique endemic equilibrium Q∗ = (S ∗,V∗, E∗, I∗,R∗) when R0 > 1. This
completes the proof.

□

Next we mainly discuss the global stability of disease-free equilibrium Q0 and endemic equilibrium
Q∗. Based on the discussion of Theorem 2, we give the following invariant domain

Γ = {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ X+ : ϕ1(x) ≤ S 0, ϕ2(x) ≤ V0, x ∈ Ω̄}.

Theorem 5. (a) If R0 ≤ 1, then disease-free equilibrium Q0 is globally asymptotically stable in domain
Γ.

(b) If R0 > 1, then equilibrium Q0 is unstable.

Proof. Define

W(t) =
∫
Ω

[
S 0G
( S
S 0

)
+ V0G

( V
V0

)
+ E +

α + µ

α
I +

(α + µ)ρ
α(µ + ρ)

R
]
dx,

where G(x) = x − 1 − ln x. According to [43, Theorem 3.7], we have

dW(t)
dt
=

∫
Ω

{
(1 −

S 0

S
)
[
∇ · (D1(x)∇S ) + Λ − [β − β1 f (I)]S I − β2S E − (µ + p)S

]
+ (1 −

V0

V
)
[
∇ · (D2(x)∇V) + pS − σ[β − β1 f (I)]VI − σβ2VE − µV

]
+ ∇ · (D3(x)∇E) +

{
[β − β1 f (I)]I + β2E

}
(S + σV) − (α + µ)E

+
α + µ

α

[
∇ · (D4(x)∇I) + αE + ρR − (µ + η + δ)I

]
+

(α + µ)ρ
α(µ + ρ)

[
∇ · (D5(x)∇R) + δI − (µ + ρ)R

]}
dx

≤

∫
Ω

{
µS 0
(
2 −

S 0

S
−

S
S 0

)
+ µV0

(
3 −

S 0

S
−

V
V0 −

S V0

S 0V

)
+
[
β − β1 f (I)

]
S 0I + β2S 0E + σ

[
β − β1 f (I)

]
V0I + σβ2V0E − (α + µ)E

+
α + µ

α

[
αE + ρR − (µ + η + δ)I

]
+

(α + µ)ρ
α(µ + ρ)

[
δI − (µ + ρ)R

]}
dx

≤

∫
Ω

[
µS 0
(
2 −

S 0

S
−

S
S 0

)
+ µV0

(
3 −

S 0

S
−

V
V0 −

S V0

S 0V

)]
dx

+
1

αµ(µ + p)(µ + ρ)

∫
Ω

I
{
µ(µ + p)(α + µ)

[
(µ + η + δ)(µ + ρ) − ρδ

]
(R0 − 1)

}
dx.

(6.5)

Therefore, dW(t)
dt ≤ 0 when R0 < 1 and dW(t)

dt = 0 if and only if S = S 0, V = V0 and I(t, x) = 0,
from model (6.1), we can obtain E(t, x) = 0 and R(t, x) = 0. This means that Q0 is the largest invariant
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set in {(S ,V, E, I,R) ∈ Γ : dW(t)
dt = 0}. By the invariance principle, we can conclude that Q0 is globally

asymptotically stable for model (6.1).
□

Theorem 6. If R0 > 1 and

[
g(I) − g(I∗)

][g(I)
I
−

g(I∗)
I∗

]
≤ 0, (E − E∗)

(E
I
−

E∗

I∗

)
≤ 0, (6.6)

where g(I) = [β − β1 f (I)]I, then endemic equilibrium Q∗ is globally asymptotically stable.

Proof. Define

L(t) =
∫
Ω

[
W1(t) +W2(t) +W3(t) +W4(t) +W5(t)

]
dx

where

W1(t) = S − S ∗ − S ∗ ln
S
S ∗
, W2(t) = V − V∗ − V∗ ln

V
V∗
, W3(t) = E − E∗ − E∗ ln

E
E∗
,

W4(t) =
α + µ

α
(I − I∗ − I∗ ln

I
I∗

), W5(t) =
(α + µ)ρ
α(µ + ρ)

(R − R∗ − R∗ ln
R
R∗

).

Define β(I) = β − β1 f (I), we yield that

dL(t)
dt
=

∫
Ω

{
(1 −

S ∗

S
)
dS
dt
+ (1 −

V∗

V
)
dV
dt
+ (1 −

E∗

E
)
dE
dt

+
α + µ

α
(1 −

I∗

I
)
dI
dt
+

(α + µ)ρ
α(µ + ρ)

(1 −
R∗

R
)
dR
dt

}
dx

=

∫
Ω

{
(1 −

S ∗

S
)
[
∇ · (D1(x)∇S ) + Λ − β(I)S I − β2S E − pS − µS

]
+ (1 −

V∗

V
)
[
∇ · (D2(x)∇V) + pS − σβ(I)VI − σβ2VE − µV

]
+ (1 −

E∗

E
)
[
∇ · (D3(x)∇E) + β(I)S I + β2S E + σβ(I)VI + σβ2VE − αE − µE

]
+
α + µ

α
(1 −

I∗

I
)
[
∇ · (D4(x)∇I) + αE + ρR − (µ + η + δ)I

]
+

(α + µ)ρ
α(µ + ρ)

(1 −
R∗

R
)
[
∇ · (D5(x)∇R) + δI − (µ + ρ)R

]}
dx.

(6.7)

From [43, Theorem 3.7], we can deduce that

dL(t)
dt
=

∫
Ω

{
− S ∗D1(x)

∥∇S ∥2

S 2 − V∗D2(x)
∥∇V∥2

V2 − E∗D3(x)
∥∇E∥2

E2

−
α + µ

α
I∗D4(x)

∥∇I∥2

I2 −
(α + µ)ρ
α(µ + ρ)

R∗D5(x)
∥∇R∥2

R2

+ (1 −
S ∗

S
)
[
Λ − β(I)S I − β2S E − pS − µS

]
+ (1 −

V∗

V
)
[
pS − σβ(I)VI − σβ2VE − µV

]
+ (1 −

E∗

E
)
[
β(I)S I + β2S E + σβ(I)VI + σβ2VE − αE − µE

]
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+ (1 −
I∗

I
)
[
(α + µ)E +

(α + µ)ρ
α

R −
(α + µ)(µ + η + δ)

α
I
]

+ (1 −
R∗

R
)
[ (α + µ)ρδ
α(µ + ρ)

I −
(α + µ)ρ

α
R
]}

dx

≤

∫
Ω

{
µS ∗(2 −

S ∗

S
−

S
S ∗

) + µV∗(3 −
S ∗

S
−

V
V∗
−

S V∗

S ∗V
)

+
[
σβ(I∗)V∗I∗ + σβ2V∗E∗

]
(2 −

S ∗

S
−

S
S ∗

) + (1 −
S ∗

S
)
[
β(I∗)S ∗I∗ + β2V∗E∗

]
+ β(I)S ∗I

+ β2S ∗E + (
S ∗

S
−

S V∗

S ∗V
)[σβ(I∗)V∗I∗ + σβ2V∗E∗] + σβ(I)V∗I + σβ2V∗E − β(I)S I ·

E∗

E

− β2S E∗ − σβ(I)VI ·
E∗

E
− σβ2VE∗ + (α + µ)E∗ − (α + µ)E∗ ·

I
I∗
− (α + µ)E∗ ·

EI∗

E∗I

+ (α + µ)E∗ +
2(α + µ)ρ

α
R∗ −

(α + µ)ρ
α

R ·
I∗

I
−

(α + µ)ρδ
α(µ + ρ)

I ·
R∗

R

}
dx

=

∫
Ω

{
µS ∗
(
2 −

S ∗

S
−

S
S ∗

)
+ µV∗

(
3 −

S ∗

S
−

V
V∗
−

S V∗

S ∗V

)
+ β(I∗)S ∗I∗

(
3 −

S ∗

S
+

β(I)I
β(I∗)I∗

−
S β(I)IE∗

S ∗β(I∗)I∗E
−

I
I∗
−

I∗E
IE∗

)
+ β2S ∗E∗

(
3 −

S ∗

S
−

S
S ∗
+

E
E∗
−

I
I∗
−

I∗E
IE∗

)
+ σβ(I∗)V∗I∗

(
4 −

S ∗

S
−

S V∗

S ∗V
+

β(I)I
β(I∗)I∗

−
Vβ(I)IE∗

V∗β(I∗)I∗E
−

I
I∗
−

I∗E
IE∗

)
+ σβ2V∗E∗

(
4 −

S ∗

S
−

S V∗

S ∗V
−

V
V∗
+

E
E∗
−

I
I∗
−

I∗E
IE∗

)
+

(α + µ)ρδ
α(µ + ρ)

I∗
(
2 −

I∗R
IR∗
−

IR∗

I∗R

)}
dx.

Let g(I) = β(I)I and F(x) = 1 − x + ln x. Obviously, we have F(x) ≤ 0 for all x > 0, and F(x) = 0
for x = 1, then

3 −
S ∗

S
+

g(I)
g(I∗)

−
S g(I)E∗

S ∗g(I∗)E
−

I
I∗
−

I∗E
IE∗

=3 −
S ∗

S
+

g(I)
g(I∗)

−
S g(I)E∗

S ∗g(I∗)E
−

I
I∗
−

I∗E
IE∗
+ ln

S ∗

S
+ ln

S g(I)E∗

S ∗g(I∗)E
+ ln

Ig(I∗)
I∗g(I)

+ ln
I∗E
IE∗

=F(
S ∗

S
) + F(

S g(I)E∗

S ∗g(I∗)E
) + F(

Ig(I∗)
I∗g(I)

) + F(
I∗E
IE∗

) +
I

g(I)g(I∗)
[g(I) − g(I∗)]

[g(I)
I
−

g(I∗)
I∗

]
,

3 −
S ∗

S
−

S
S ∗
+

E
E∗
−

I
I∗
−

I∗E
IE∗

=F(
S ∗

S
) + F(

S
S ∗

) + F(
I∗E
IE∗

) + F(
IE∗

I∗E
) +

I
EE∗

(E − E∗)
(E

I
−

E∗

I∗

)
,

4 −
S ∗

S
−

S V∗

S ∗V
−

V
V∗
+

E
E∗
−

I
I∗
−

I∗E
IE∗

=F(
S ∗

S
) + F(

S V∗

S ∗V
) + F(

V
V∗

) + F(
I∗E
IE∗

) + F(
IE∗

I∗E
) +

I
EE∗

(E − E∗)
(E

I
−

E∗

I∗

)
,
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4 −
S ∗

S
−

S V∗

S ∗V
+

g(I)
g(I∗)

−
Vg(I)E∗

V∗g(I∗)E
−

I
I∗
−

I∗E
IE∗

=F(
S ∗

S
) + F(

S V∗

S ∗V
) + F(

Vg(I)E∗

V∗g(I∗)E
) + F(

Ig(I∗)
I∗g(I)

) + F(
I∗E
IE∗

) +
I

g(I)g(I∗)
[g(I) − g(I∗)]

[g(I)
I
−

g(I∗)
I∗

]
.

Therefore, from (6.6) we further have dL(t)
dt ≤ 0 for all S > 0, V > 0, E > 0, I > 0 and R > 0.

Moreover, dL(t)
dt = 0 if and only if S = S ∗, V = V∗, E = E∗, I = I∗ and R = R∗, which means that {Q∗}

is the largest invariant set for dL(t)
dt = 0. Using invariance principle, we obtain that Q∗ of system (6.1) is

globally asymptotically stable.
□

7. Numerical simulations

7.1. Simulation of threshold dynamics

For convenience, we pay our attention to Ω = [0, 10]. The nonlinear term under the influence of
media reports is expressed as f (I) = q1I

1+c1I (where c1 reflects the deviation degree of people’s and
relevant departments’ understanding of disease information). At the same time, we take the initial
value as follows:S (x, 0) = 9700 × 0.92 × e−10(x−5)2

, V(x, 0) = 9600 × 0.94 × e−10(x−5)2
,

E(x, 0) = 4000 × 0.04 × e−10(x−5)2
, I(x, 0) = 40 × 0.02 × e−10(x−5)2

, R(x, 0) = 0.
(7.1)

Case 1: In order to simulate the result of Theorem 2, we take the parameters in the model (1.1)
as shown in Table 2. By the numerical scheme in [47], we get the basic reproduction number R0 =

Table 2. Values of all parameters in model (1.1) for Case 1.
Parameter Value Parameter Value Parameter Value
Λ(x) 40(1 + 0.5 sin(2πx)) c1(x) 0.15 q1(x) 0.08
β(x) 4 × 10−4(1 + 0.5 sin(2πx)) σ(x) 0.6 α(x) 0.2(1 + 0.2 sin(2πx))
β1(x) 3.6 × 10−4(1 + 0.5 sin(2πx)) δ(x) 0.3(1 + 0.5 sin(2πx)) η(x) 0.2(1 + 0.2 sin(2πx))
β2(x) 8 × 10−4(1 + 0.5 sin(2πx)) p(x) 0.3(1 + 0.5 sin(2πx)) ρ(x) 0.4(1 + 0.5 sin(2πx))
µ(x) 0.1(1 + 0.5 sin(2πx)) D1(x) 0.09 + 0.005 sin(2πx) D2(x) 0.08 + 0.005 sin(2πx)
D3(x) 0.07 + 0.005 sin(2πx) D4(x) 0.06 + 0.005 sin(2πx) D5(x) 0.085 + 0.005 sin(2πx)

0.9484 < 1. Moreover, we plot the time evolution of exposed individuals E(x, t) (Figure 1(a)–(c))
and infected individuals I(x, t) (Figure 1(d)–(f)) for model (1.1). Figure 1 shows that the density
of individuals E(x, t) and infected individuals I(x, t) converge to zero over time, which indicates the
Theorem 2.

Case 2: To support the conclusion of Theorem 3, we choose β(x) = 8 × 10−4 × (1 + 0.5 sin(2πx)),
β2(x) = 1×10−3× (1+0.5 sin(2πx)), α(x) = 0.1× (1+0.2 sin(2πx)), η(x) = 0.08× (1+0.2 sin(2πx)) and
the other parameters remain the same as Table 2. By the numerical scheme in [47], we get the basic
reproduction number R0 = 1.8605 > 1. Moreover, we plot the time evolution of exposed individuals
E(x, t) (Figure 2(a)–(c)) and infected individuals I(x, t) (Figure 2(d)–(f)) for model (1.1). Indeed, as
seen in Figure 2, the densities of exposed individuals E(x, t) and infected individuals I(x, t) converge
to a spatially heterogeneous steady state over time, which shows Theorem 3.
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Figure 1. Time evolution of system (1.1) with initial values. (a)–(c): The evolution of the
E(x, t) over time; (d)–(f): The evolution of the I(x, t) over time.
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Figure 2. Time evolution of system (1.1) with initial values. (a)–(c): The evolution of the
E(x, t) over time; (d)–(f): The evolution of the I(x, t) over time.

Case 3: To support the conclusion of Theorems 5 and 6, we first select the parameters as shown
in Figure 3, and keep the diffusion coefficient as shown in Table 2. In this case, we calculate R0 =
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0.4808 < 1. It can be seen from the Figure 3 that the density of exposed individuals E(x, t) and infected
individuals I(x, t) tends to zero over time, which indicates Theorem 5. Then we choose β = 3.6× 10−3,
β1 = 6 × 10−4, β2 = 6 × 10−3 and the other parameters remain the same as in Figure 3. In this case,
we calculate R0 = 4.8081 > 1. As can be seen from the Figure 4, the density of exposed individuals
E(x, t) and infected individuals I(x, t) tends to a steady state over time, which indicates Theorem 6.
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Figure 3. (a)–(d): Evolution of the model (6.1) solutions with time when R0 = 0.4808.
Λ = 10000/(2.79 × 365), µ = 0.03, β = 3.6 × 10−4, β1 = 6 × 10−5, β2 = 6 × 10−4, p = 0.4,
α = 0.6, η = 0.1, ρ = 0.3, δ = 0.16, σ = 0.4, q1 = 0.3, c1 = 0.15. The initial value is
(200, 120, 40, 4, 0).
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Figure 4. (a)–(d): Evolution of the model (6.1) solutions with time when R0 = 4.8081.
Λ = 10000/(2.79 × 365), µ = 0.03, β = 3.6 × 10−3, β1 = 6 × 10−4, β2 = 6 × 10−3, p = 0.4,
α = 0.6, η = 0.1, ρ = 0.3, δ = 0.16, σ = 0.4, q1 = 0.3, c1 = 0.15. The initial value is
(200, 120, 40, 4, 0).

7.2. Impact of spatial heterogeneity on disease transmission

Basic reproduction number is an important index to assess the extinction or persistence of disease,
so it is necessary to study the effect of spatial heterogeneity on R0. First, we choose β(x) = 4 × 10−4 ×

(1 + c × cos(2πx)) and β2(x) = 8.491 × 10−4 × (1 + 0.5 × cos(2πx)) and keep the other parameters as
in Table 2 to study the influence of spatial heterogeneity on R0, where c ∈ [0, 1] reflects the spatial
heterogeneity intensity of the environment. Specifically, when c = 0, the space is homogeneous,
while as c increases, the spatial heterogeneity of the environment also increases. Second, we choose
β(x) = 4×10−4× (1+0.5×cos(2πx)) and β2(x) = 8.49×10−4× (1+c×cos(2πx)) to study the influence
of spatial heterogeneity, and the other parameters are the same as in Table 2. It can be seen from
Figure 5(a),(b) that with the increase of the intensity of spatial heterogeneity c, the basic reproduction
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number R0 increases. Further, we can see that R0 is minimum in the case of spatial homogeneity of
c = 0, and R0 is greater than 1 when c exceeds the critical value. On the other hand, c2 is defined as
the spatial heterogeneity of the diffusion coefficient, we choose β(x) = 6× 10−4 × (1+ 0.5× cos(2πx)),
β2(x) = 9 × 10−4 × (1 + 0.5 × cos(2πx)) and D4(x) = 0.07 × (1 + c2 × cos(2πx)), and other parameters
are the same as in Example 2. Figure 5(c) shows that the basic reproduction number R0 decreases as
the spatial heterogeneity c2 of the diffusion coefficient increases, and R0 is less than 1 when c2 passes
a critical value. In other words, in the case of spatial heterogeneity, diffusion coefficient of the change
can change the final state of the disease.

Further, we study the effect of heterogeneity in treatment rate δ(x), recurrence rate ρ(x) and disease-
related death rate η(x) on R0, because the difference of treatment level in different regions will affect
the spread of the disease, and the recurrence of people in different regions will also affect the spread of
the disease due to environmental heterogeneity. We use ci(i = 3, 4, 5) to indicate the level of treatment
in the area. Take δ(x) = 0.3 × (1 + c3 × sin(2πx)), ρ(x) = 0.4 × (1 + c4 × sin(2πx)) and η(x) =
0.2 × (1 + c5 × sin(2πx)), where 0 ≤ ci ≤ 1 (i = 3, 4, 5), and keep the other parameters as in Table 2.
In this case, we obtain Figure 5(d)–(f), we get that R0 is a decreasing function of treatment intensity,
and R0 is an increasing function of relapse intensity. Therefore, a higher treatment rate and a better
treatment effect (a lower recurrence rate) can reduce the transmission capacity of the disease. This
means that the spread of the disease can be effectively controlled by increasing medical facilities and
improving treatment. In addition, we find that the basic reproduction number R0 is not monotonic for
η(x). For some reason, R0 may increase with the enhancement of spatial heterogeneous η(x).
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Figure 5. Relationship between R0 and spatial heterogeneity of parameters.
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7.3. The impact of media coverage on the spread of disease

In order to study the effect of media coverage on disease transmission, we assume that c1 = 0.04
means that there are extensive media reports, and people have a full understanding of disease
information and a strong awareness of prevention, c1 = 500 means there is little media coverage and
people are completely unaware of disease information. In the case of spatial heterogeneity, other
parameters are taken to be the same as those in Table 2, and the changes of the density of infected
individuals over time under different media coverage intensity are obtained when R0 < 1 (see
Figure 6), where Figure 6(a),(b) represented strong media coverage and Figure 6(c),(d) represented
small media coverage intensity. By comparing Figure 6(b),(d), it can be seen that at the same time t
and position x, the stronger the media coverage, the smaller the density of infected individuals I(x, t),
which means that in the case of spatial heterogeneity, increasing the intensity of media coverage can
reduce the peak value of infected individuals. Similarly, when R0 > 1, the density of infected
individuals changes over time under different media coverage intensity (see Figure 7). By comparing
Figure 7(b),(d), it can be seen that at the same time t and position x, the stronger the media coverage,
the smaller the density of infected individuals I(x, t). This means that in the case of spatial
heterogeneity, increasing the intensity of media coverage can reduce the density of infected
individuals and reduce the spread of the disease.
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Figure 6. The effect of different levels of media coverage on the number of I(x, t) when
R0 < 1. (a)–(b): c1 = 0.04, (c)–(d): c1 = 500.
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Figure 7. The effect of different levels of media coverage on the number of I(x, t) when
R0 > 1. (a)–(b): c1 = 0.04, (c)–(d): c1 = 500.

In the case of spatial homogeneity but heterogeneous diffusion, using the parameters in Figures 3
and 4, we fixed the position x and obtained the curve of the density I(x, t) of infected individuals
changing with time t under different media reports. It can be observed from the Figure 8 that when
R0 < 1, the number of latent and infected people tends to zero under different media coverage degrees.
When c1 is smaller (and more widely reported in the media), the time to peak the number of infected
individuals, the peak size and the time to elimination of the disease are also smaller. This means that a
reduction in effective exposure to media coverage can reduce the number of infections and accelerate
the disappearance of infectious diseases.

It can be observed from Figure 9 that when R0 > 1, the number of latent and infected people tend to
be different stable values under different media coverage levels. When c1 is smaller, which is more
widely reported in the media, the peak and final numbers of the number of latent and infected
individuals are also smaller. This means that increased media coverage can control the effective
exposure rate of the population and thus reduce the spread of the disease.

8. Conclusions

In this paper, we propose a reaction-diffusion SVEIR-I model with media coverage in spatially
heterogeneous environment. First, we analysis the well-posedness of this model. Second, we define
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(a) (b)

Figure 8. The effect of different levels of media coverage on the number of E(x, t) and I(x, t)
when R0 < 1.

(a) (b)

Figure 9. The effect of different levels of media coverage on the number of E(x, t) and I(x, t)
when R0 > 1.

and prove that the basic reproduction number R0 is a threshold parameter that determines the
extinction and persistence of the disease in the heterogeneous case. Then, we analyze the dynamic
behavior of the model when the space is homogeneous, obtain the existence and uniqueness of the
endemic equilibrium, and the global asymptotic stability of the disease-free equilibrium and the
endemic equilibrium is proved by establishing an appropriate Lyapunov function. Finally, some
numerical simulation examples are given to illustrate our major results.

Numerical simulation results show that spatial heterogeneity will increase the risk of disease
transmission. First, we use the infection rate of spatial heterogeneity to study the impact of
heterogeneity on R0. Here, we define c as the heterogeneity strength of the spatial infection rate β(x)
and β2(x), and find that R0 will increase with the increase of heterogeneity intensity c, R0 is the
minimum when c = 0, and when c exceeds a certain critical value, R0 is greater than 1, the disease
status would change. From a biological perspective, increasing the contact rate between people would
make the disease spread faster, which causes disease break out. Second, we study the effect of
diffusion coefficient on R0 under spatial heterogeneity. Here, we define c2 as the heterogeneity
strength of the spatial diffusion coefficient D4(x). We find that R0 will decrease with the increase of
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heterogeneity intensity c2, and R0 reach its maximum when c2 = 0. When c2 exceed a certain critical
value, R0 is less than 1, and the threshold state of the disease would change. According to the above
analysis, we conclude that the final state of the disease may be affected by spatial heterogeneity. In
addition, we analyze the effect of the other parameters on R0, and find that some measures to prevent
diseases, such as strengthening the construction of regional medical facilities or improving the
medical level, could reduce the spread of diseases to a certain extent. Moreover, we focus on the
impact of media coverage on disease transmission, including the case of spatially heterogeneous
environments and spatially homogeneous environments. The results show that in both cases, when
R0 < 1, strengthening media coverage can shorten the time of the peak of the number of infected
individuals, the size of the peak and the time to eliminate the disease, and when R0 > 1, strengthening
media coverage can reduce the size of the final scale of infected individuals. Therefore, as a
non-pharmaceutical measure to improve information awareness, media coverage plays a very
important role in the public response and implementation of disease control.
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