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Abstract: Aiming at the problems of the basic ant colony algorithm in path planning, such as long 
convergence time, poor global path quality and not being suitable for dynamic environments and 
unknown environments, this paper proposes a path planning method for mobile robots in complex 
environments based on an improved ant colony (CBIACO) algorithm. First, a new probability transfer 
function is designed for an ant colony algorithm, the weights of each component in the function are 
adaptively adjusted to optimize the convergence speed of the algorithm, and the global path is re-
optimized by using the detection and optimization mechanism of diagonal obstacles. Second, a new 
unknown environment path exploration strategy (UPES) is designed to solve the problem of poor path 
exploration ability of the ant colony algorithm in unknown environment. Finally, a collision 
classification model is proposed for a dynamic environment, and the corresponding dynamic obstacle 
avoidance strategy is given. The experimental results show that CBIACO algorithm can not only 
rapidly generate high-quality global paths in known environments but also enable mobile robots to 
reach the specified target points safely and quickly in a variety of unknown environments. The new 
dynamic obstacle avoidance strategy enables the mobile robot to avoid dynamic obstacles in different 
directions at a lower cost. 

Keywords: path planning; ant colony algorithm; unknown environment; path exploration; dynamic 
obstacle avoidance 
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1. Introduction 

With the rapid development of science and technology, mobile robots have been widely used in 
people’s work and life. For example, in autonomous navigation on the ground [1], resource exploration 
and development [2], emergency rescue and disaster relief [3], etc., mobile robots can replace or assist 
humans in completing various complex tasks. In addition, with the continuous expansion of application 
scenarios and service modes of mobile robots, people have increasingly higher requirements for the 
intelligence of mobile robots, and the intelligent core technology of mobile robots is path planning 
technology. Path planning refers to a mobile robot exploring a high-quality collision-free path from 
the starting point to the end point in a complex spatial environment [4]. A good path planning method 
can effectively improve the utilization of resources, reduce the wear and tear of mobile robots and 
prolong the service life of mobile robots [5,6]. 

At present, the mainstream algorithms of mobile robot path planning are divided into two 
categories: traditional algorithms and intelligent bionic algorithms. Among them, the traditional 
algorithms mainly include the A* algorithm and artificial potential field method [7]. Intelligent bionic 
algorithms mainly include genetic algorithms [8], ant colony algorithms, particle swarm algorithms 
and immune algorithms [9]. Traditional algorithms have good performance in simple map 
environments, but they are not suitable for complex map environments. However, intelligent bionic 
algorithms have some problems, such as premature convergence, poor global path quality and easily 
falling into local extrema. In addition, there are many unknown environments in practical application 
environments, such as earthquake relief, emergency rescue and other actual scenes, which are usually 
unknown environments. Unknown environments are more complex and uncertain than known 
environments. However, most of the current path planning algorithms are only applicable to path 
planning of known environments [10], while the applicability to path planning of unknown 
environments [11] is poor. Therefore, it is very necessary to study a path planning method for mobile 
robots which is suitable for complex environments (including known environments, unknown 
environments and dynamic environments). 

2. Related work 

In the actual environment, the movement of a mobile robot is restricted by many factors. For 
example, the map scale is large, the terrain is complex, there are many static and dynamic obstacles, 
and some map environment information is unknown. Therefore, there will be many problems. For 
example, the global path generated by mobile robots is poor in quality and easily crosses diagonal 
obstacles, and mobile robots are not suitable for dynamic environments and unknown environments. 
To solve these problems, experts and scholars have carried out in-depth research. 

[12] proposed an improved global path planning method combining ant colony algorithm and A* 
algorithm, which solved the problems of the low quality of the path generated by the traditional ant 
colony algorithm and easily falling into local optima. However, this method did not take into account 
the problem that the deadlock of ants in complex maps would lead to invalid paths generated by the 
algorithm. [13] proposed a multi-ant colony cooperative optimization algorithm based on cooperative 
game mechanism (CCACO) to speed up the algorithm to generate global paths, but this algorithm is 
not suitable for large-scale maps and multi-obstacle maps. A terrain-assisted path planning algorithm 
based on particle swarm optimization was proposed in [14]. The algorithm integrates a terrain 
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recognition strategy and an obstacle avoidance strategy in a path planning algorithm based on a particle 
swarm, and it can plan a suitable path in unknown terrain. However, this algorithm is only applicable 
to unknown environments with relatively simple obstacle distributions and not applicable to unknown 
environments with high complexity. In [15], a real-time online path planning method based on a deep 
neural network (DNN) was proposed. The method is suitable for cluttered unknown environments and 
has significant improvements in efficiency, success rate and path quality. However, the algorithm does 
not consider special terrain such as concave areas, which will make the mobile robot stagnate or 
oscillate. [16] proposed a path planner based on the hybrid A* algorithm. The path planner tree pruning 
process was given to improve the operation of an autonomous underwater vehicle (AUV) in an 
unknown environment and keep an effective and feasible search tree in the operation process. To solve 
the problem of online cooperative path planning of a multi-quadrotor unmanned aerial vehicle (UAV) 
in an unknown dynamic environment, an online collision avoidance strategy based on local 
environment information and a distributed online path planning strategy were proposed in [17]. This 
strategy can obtain the feasible path of each quadrotor UAV. However, the dynamic obstacle 
avoidance effect of this strategy is poor, and the decision time of obstacle avoidance is long. Aiming 
at the multi-intelligent, multi-objective navigation problem in unknown dynamic environments, an 
evolutionary algorithm was proposed in [18]. The algorithm combines an artificial swarm 
neighborhood search planner with an evolutionary planner to smooth the generated intermediate 
feasible paths. However, the algorithm has a long execution time, low execution efficiency and high 
instability in complex maps. 

To sum up, this paper proposes a path planning method for mobile robots in complex 
environments based on an improved ant colony algorithm (CBIACO). The innovations and 
contributions of this paper are as follows: 1) The ant colony algorithm is improved. By improving the 
probability transfer function and designing adaptive component weights, the generation time of the 
global path is reduced, and the generation quality of the global path is improved. 2) A global path 
optimization strategy based on diagonal obstacle detection and optimization mechanism is proposed. 
The problem of the global path crossing diagonal obstacles is solved, and the re-optimization of the 
global path is realized. 3) The unknown environment path exploration strategy (UPES) is proposed. 
By using the real-time local information obtained by the sensor and the corresponding path exploration 
strategy, the mobile robot can reach the destination safely, efficiently and quickly. 4) A collision 
classification model is proposed, and corresponding dynamic obstacle avoidance strategies are given, 
considering more comprehensive potential collision situations. The mobile robot can avoid various 
obstacles effectively by behavioral obstacle avoidance and local path replanning. 

The remainder of the paper is organized as follows: Section 2 introduces environmental modeling. 
Section 3 introduces the path planning method for mobile robots based on the CBIACO algorithm in 
detail. Section 4 verifies the feasibility and effectiveness of the CBIACO algorithm proposed in this 
paper. Section 5 summarizes the paper. 

3. Environmental model 

In this paper, the grid method [19,20] is used to establish the spatial environment model. As 
shown in Figure 1, the entire two-dimensional spatial environment is divided into 30 × 30 equal-size 
squares. Among them, the white grid area represents the free area, the black grid area represents the 
static obstacles, the green grid area represents the dynamic obstacles, and the blue grid area represents 
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the unknown environment area (i.e., the distributions of static obstacles and dynamic obstacles in 
motion in the blue area are unknown). From left to right and from top to bottom of the map, we start 
numbering the squares from 1 until reaching the 900th square in the lower right corner. The coordinates 
of each square in the grid map are represented by its center point coordinates 𝑥, 𝑦 , and the 
conversion between the square number and the grid coordinate is calculated as follows: 

Equations (1) and (2) convert the square number into grid coordinates. Equation (3) converts the 
grid coordinates to the square number. 𝑚𝑜𝑑  is the remainder function, 𝑓𝑙𝑜𝑜𝑟  is the downward 
rounding function, and 𝑐𝑒𝑖𝑙  is the upward rounding function. Here, 𝑚 is the square number, 𝑛 is 
the total number of grid columns, 𝑙 is the total number of grid rows, and 𝑥, 𝑦  are the horizontal and 
vertical grid coordinates. 

 

Figure 1. 30 × 30 grid map. 

4. Path planning method for mobile robots in complex environments based on improved ant 
colony algorithm 

Based on previous research [21], this paper considers using the CBIACO algorithm to study path 
planning in complex environments. When the mobile robot is located in the known environment, the 
improved ant colony (IACO) algorithm is directly used to generate the global path from the start point 
to the target point. When the mobile robot encounters the unknown environment, the IACO algorithm 
and UPES are used for path exploration, so that the mobile robot can safely and quickly traverse the 
unknown environment and reach the specified target point. When the mobile robot encounters dynamic 
obstacles, the dynamic obstacle avoidance strategy is used to avoid obstacles, so that the mobile robot 
can avoid all kinds of dynamic obstacles at a low cost. 

The pseudo-code of the CBIACO algorithm is shown in Table 1. 

𝑥
𝑚𝑜𝑑 𝑚, 𝑛 0.5, 𝑖𝑓 𝑚𝑜𝑑 𝑚, 𝑛 0
   𝑛 0.5 , 𝑖𝑓 𝑚𝑜𝑑 𝑚, 𝑛 0  (1)

𝑦 𝑛 0.5 𝑐𝑒𝑖𝑙 𝑚/𝑛 (2)

𝑚 𝑓𝑙𝑜𝑜𝑟 𝑙 𝑦 ∗ 𝑛 𝑐𝑒𝑖𝑙 𝑥 (3)
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Table 1. The pseudo-code of the CBIACO algorithm. 

Algorithm 1 
Initialization of algorithm parameters; 
If the mobile robot is located in the known environment 

The mobile robot uses IACO algorithm to generate the global path; 
If the mobile robot encounters the unknown environment 

The mobile robot uses IACO algorithm and UPES to explore path; 
If the mobile robot encounters dynamic obstacles 

The mobile robot uses dynamic obstacle avoidance strategy to avoid the dynamic obstacle; 

4.1. IACO algorithm 

The flow of the IACO algorithm is shown in Figure 2. First, several ants are randomly placed at 
the starting point, and each ant selects the next path point according to the pseudo-random probability 
transfer function. Next, if the ant does not reach the target point, repeat the above process. If the ants 
reach the target point, the pheromone table is updated according to the paths generated by each ant. If 
the final algorithm does not reach the maximum number of iterations, repeat the above process. 
Otherwise, the algorithm outputs the globally optimal path. 

 

Figure 2. Flow chart of IACO algorithm. 

4.1.1. Pseudo-random probability transfer function 

The pseudo-random probability transfer function enhances the selection degree of high-quality 
path points in the algorithm. It adjusts the selection probability of high-quality path points by a pseudo-
random probability transfer adjustment factor (as shown in Eqs (4) and (5)), aiming at ensuring the 
diversity of the population and strengthening the utilization of the current best neighbor information. 
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Among them, 𝑝  represents the transfer probability of the k-th ant between path point i and path 

point j, 𝜏  represents pheromone concentration, 𝜂  represents heuristic information, 𝛼 represents  

the pheromone factor, 𝛽 represents the heuristic factor, 𝑎𝑙𝑙𝑜𝑤𝑒𝑑  represents the optional set of the 

next path point, 𝑤 represents the path point obtained by the pseudo-random probability transfer 

function, 𝑎𝑟𝑔 ∈  𝑚𝑎𝑥 𝜏 𝜂  is the function of selecting the best neighbor path point, 

𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒() represents the function of selecting the path point by roulette strategy, 𝑞 is a random 

number, and 𝑞  is a pseudo-random probability transfer adjustment factor. When 𝑞 𝑞 , the 

current optimal neighbor path point is selected as the next path point. When 𝑞 𝑞 , the roulette 

strategy is used to select the next path point. 
In the traditional probability transfer function, assuming that the probability of a high-quality path 

point being selected is 𝑝, the pseudo-random probability transfer adjustment factor 𝑞  is introduced. 
Assuming that the probability of the pseudo-random probability transfer function selecting the high-
quality path point is 𝑝 , according to Eq (4), 𝑝 𝑞 1 𝑞 𝑝. Because 𝑝 𝑝 𝑞 𝑝𝑞
𝑞 1 𝑝 0, 𝑝 𝑝, that is, after introducing the pseudo-random probability transfer adjustment 
factor 𝑞 , the probability of selecting a high-quality path point in the pseudo-random probability 
transfer function is greater than that of the traditional probability transfer function. When 𝑝 is known, 
the selection probability of the pseudo-random probability transfer function for a high-quality path 
point depends on 𝑞 , so it is feasible to adjust the selection probability of the high-quality path point 
by introducing the pseudo-random probability transfer adjustment factor 𝑞 . 

The IACO algorithm makes full use of prior information such as target points to strengthen the 
guiding role of heuristic information, as shown in Eq (6), where 𝑑  represents the Euclidean distance 
between the path point j and the target point g. 

According to the iterative rule of the ant colony algorithm, this paper adaptively adjusts 
pheromone factors and heuristic factors to accelerate the convergence rate of the algorithm and 
improve the performance of the algorithm (as shown in Eqs (7) and (8)). 

𝑝
𝜏 𝜂

∑ 𝜏 𝜂∈

, 𝑖𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑

0    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

𝑤
𝑎𝑟𝑔 ∈ 𝑚𝑎𝑥 𝜏 𝜂 , 𝑖𝑓 𝑞 𝑞

   𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑝 , 𝑖𝑓 𝑞 𝑞
(5)

𝜂
1

𝑑
(6)

𝛼 𝑁 𝑁 /𝑁 ∗ 𝛼 (7)

𝛽 𝛽 ∗ 𝑒𝑥𝑝 2 ∗ 𝑁 /𝑁 (8)
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where 𝛼  is the adaptive pheromone factor, 𝛽  is the adaptive heuristic factor, 𝑁  is the 
maximum iteration number, and 𝑁  is the current iteration number. 

4.1.2. Initialization and updating of pheromones 

In the aspect of pheromone initialization, this paper considers generating uniformly distributed 
initial pheromones (that is, the initial pheromones of each feasible path segment are the same fixed 
constant). In the aspect of pheromone update, the method of single pheromone update is adopted, and 
the update is based on the path fitness. Path fitness is composed of path length and penalty information. 
The pheromone updating process is shown in Eqs (9)–(11), the fitness calculation formula is shown in 
Eq (12), and the penalty information calculation formula is shown in Eq (13). 

where, ∆𝜏  is the pheromone increment on the path segment i, j , 𝜌 is the pheromone volatilization 

factor, ∆𝜏  is the pheromone increment of the k-th ant on the path segment 𝑖, 𝑗 , K is the total number 

of ants, Q is the pheromone constant, and Fitness is the fitness of the path passed by the k-th ant. 

𝐿  is the length of the path passed by the k-th ant, and 𝑝𝑢𝑛𝑖𝑠ℎ  is the punishment information 
obtained by the k-th ant. cons is a fixed constant, 𝜃  is the maximum rotation angle of the path passed 
by the k-th ant, and 𝜃 is the steering angle constraint of the mobile robot. When the maximum rotation 
angle of the path is greater than the steering angle constraint of the mobile robot, the k-th ant gets the 
punishment information. Otherwise, no penalty information is obtained. 

4.1.3. Deadlock problem handling strategy 

In this paper, the method of combining a backtracking mechanism and a path length zeroing 
mechanism is adopted to solve the deadlock problem of the ant colony algorithm. Suppose that the 
current ant travels to the n-th path point, and the ant is in a deadlock state at the n-th path point. The 
specific process of executing the method is as follows: 

1) Let i = n; 

𝜏 𝑡 1 1 𝜌 𝜏 𝑡 ∆𝜏 , 𝜌𝜖 0,1  (9)

∆𝜏 ∆𝜏 (10)

∆𝜏
𝑄

𝐹𝑖𝑡𝑛𝑒𝑠𝑠
, 𝐼𝑓 𝑎𝑛𝑡 𝑘 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖, 𝑗

 0  ,    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 (11)

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐿 𝑝𝑢𝑛𝑖𝑠ℎ  (12)

𝑝𝑢𝑛𝑖𝑠ℎ
𝑐𝑜𝑛𝑠, 𝜃 𝜃

0, 𝜃 𝜃 (13)
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2) The path between the i-th path point and the i-1 th path point is marked as an infeasible path 
(i.e., the path length zeroing mechanism); 

3) The ant returns to the i-1 th path point (i.e., the backtracking mechanism), i.e., i = i - 1. 
4) Determine whether the current path point of the ant is trapped in the deadlock phenomenon. If 

the current path point of the ant is trapped in the deadlock phenomenon, go to step (2). If the current 
path point of the ant is not trapped in the deadlock phenomenon, the process ends. The ant selects the 
next path point according to the probability transfer function. 

This method readjusts the driving direction of ants through the backtracking mechanism and the 
path length zeroing mechanism, which ensures the 100% ant survival rate and improves the ability of 
the ants to explore the solution space. 

4.1.4. Pseudo-code of IACO algorithm 

The pseudo-code of the IACO algorithm is shown in Table 2. 

Table 2. The pseudo-code of the IACO algorithm. 

Algorithm 2 
Initialize the algorithm parameters; //The starting point grid number S, the target point grid number 
//G, the maximum number of iterations Nc_max, the current number of iterations Nc, the total 
//number of ants K, the current number of ants k, the pheromone constant Q, the pheromone factor 
//α, the heuristic factor β, the pheromone volatilization factor ρ and the pseudo-random probability 
//transfer adjustment factor 𝑞 . 
For Nc=1:Nc_max //Enter an iterative loop. 

For k=1:K //Enter ant iteration. 
Place the k-th ant at the starting point; 
While !isgoal(k) //Judge whether the k-th ant has reached the target point, and if not, the loop 

//is performed. 
Probability_transfer_function(); //Select the next path point according to the pseudo-random

//probability transfer function. 
While IsDeadlock(k) //Judge whether the k-th ant is trapped in a deadlock, and if so, loop. 

Deadlock_handling_strategy(); //The backtracking mechanism and path length zeroing  
//mechanism are invoked to handle deadlock. 

Probability_transfer_function(); //Select the next path point according to the  
//pseudo-random probability transfer function. 

Update tabu list(); //The tabu table is updated after the next path point is selected. 
Pheromone update strategy(); //Execute pheromone update strategy. 
If IsConvergence() //Judge whether the algorithm converges. 

The convergence path is obtained; //If the algorithm has converged, the convergence path is 
//obtained. 

Path_optimization_strategy(); //Execute path optimization strategy for convergence path. 
The best path is obtained; 
Break; 
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4.2. Diagonal obstacle optimization strategy 

When the grid method is used to model the map, some diagonal obstacles may be generated (as 
shown in Figure 3). When the map complexity is low, diagonal obstacles will not have a substantial 
impact on the result of path planning. However, when the map complexity is high, the traditional ant 
colony algorithm may generate a path that crosses diagonal obstacles, which will adversely affect 
the feasibility and security of the path. In order to ensure the feasibility and security of the path, this 
paper designs a diagonal obstacle detection and optimization method suitable for the two-
dimensional grid map. 

 

Figure 3. Schematic diagram of path crossing diagonal obstacles. 

Assuming that a path consists of several path points, if we want to check whether a path crosses 
a diagonal obstacle, we only need to check whether each path segment composed of all adjacent path 
points in the path crosses a diagonal obstacle. If a path segment composed of any adjacent path points 
crosses a diagonal obstacle, it can be considered that the path crosses a diagonal obstacle. Otherwise, 
the path does not cross the diagonal obstacles. 

First, the four-direction detection method is used to detect whether the path segment composed 
of adjacent path points crosses diagonal obstacles. Four-direction detection is a method to detect 
whether the path segment composed of adjacent path points crosses diagonal obstacles. Assuming that 
the path segment ij is a path segment composed of adjacent path points i and j, the steps of detecting 
whether the path segment ij crosses diagonal obstacles by adopting the four-direction detection method 
are as follows: 1) Detect whether the neighbor obstacle squares of the up, down, left and right 
directions of the path point i and the neighbor obstacle squares of the up, down, left and right directions 
of the path point j overlap. 2) If there are two or more overlapping obstacles squares, it can be judged 
that the path segment ij has crossed a diagonal obstacle. 3) Optimize the path segment. 

The optimization method is as follows: 1) Find the path section ij that crosses the diagonal 
obstacle. 2) Mark the square where the path point j is located as a temporary obstacle, and use the 
heuristic strategy to generate a new path segment from the path point i to the path point j + 1. 3) In 
order to avoid the new path segment still crossing the diagonal obstacle, it is necessary to use the 
four-direction detection method to detect the new path segment again. 4) If the new path segment 
does not cross the diagonal obstacle, the new path segment will replace the old path segment. 
Otherwise, the above method is adopted to continue optimization until the new path segment does 
not cross the diagonal obstacle. 
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Note: When the path point i is the penultimate path point in the global path, j is the target point, 
and the path segment ij just crosses the diagonal obstacle, it cannot be optimized according to the 
above method because there is no path point j + 1. At this time, the path point i can be marked as a 
temporary obstacle, and a new path segment between the path point i - 1 and the path point j can be 
generated by heuristic strategy, and then the above optimization method can be followed. 

4.3. Path exploration strategy in unknown environment 

 

Figure 4. UPES execution flow chart. 

Compared with the known environment, the unknown environment has high complexity, strong 
uncertainty and a large amount of global prior information missing, but it exists widely in the actual 
environment. Actual scenes such as earthquake relief and emergency rescue are usually unknown 
environments. Therefore, this paper proposes an unknown environment path exploration strategy 
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(UPES). The CBIACO algorithm will explore the path in the unknown environment through UPES 
(Figure 4). 

In the unknown environment, the guidance point in the UPES is the intermediate path point 
selected by the mobile robot according to the prior information and local environment information 
detected by the sensor. It aims to more conveniently generate a high-quality guidance path in an 
unknown environment to improve the success rate of the mobile robot reaching the target point. The 
flow chart and specific steps of the UPES are as follows: 

1) The target point 𝐺 (virtual target point 𝑉𝐺 ) is vertically projected to the non-obstacle area 
in the known environment to generate the mapping point 𝑖 . 𝑖 𝐺 ℎ ∗ 𝑙 ℎ ∗ 𝑙, where 𝐺 is 
the grid number of the target point, ℎ  is the total row number of the unknown environment in the 
vertical direction, ℎ  is the total row number of the obstacle area connected with the unknown 
environment in the vertical direction, and 𝑙 is the total grid number per row. 

2) We expand n grid lengths on the left and right sides of point 𝑖  to generate the preparatory 
area, so the preparatory area contains 2n + 1 squares. In the preparatory area, the squares beyond the 
map boundary and obstacle squares are removed, and the remaining squares are the set of preparatory 
guidance points, i.e., the 𝑖_𝑠𝑒𝑡. 

3) The mobile robot uses the IACO algorithm to generate the preparatory paths from the current 
position c_point to each point in the 𝑖_𝑠𝑒𝑡. Check whether the current 𝑖_𝑠𝑒𝑡 is completely repeated 
with the historical 𝑖_𝑠𝑒𝑡. If so, go to step (4); otherwise, go to step (5). 

4) The mobile robot sets the sensor detection radius to the maximum value and generates the 
virtual target point 𝑉𝐺  with an interval of n grid lengths on the left or right side of the point 𝐺(𝑉𝐺 ). 
𝑉𝐺  temporarily replaces point 𝐺. Then, go to step (1). 

5) The path evaluation mechanism is used to evaluate the quality of each preparatory path, the 
best path among the preparatory paths is selected as the guidance path, and the guidance point 
corresponding to this guidance path is the current guidance point 𝑖. Check whether 𝑉𝐺  exists; if so, 
cancel 𝑉𝐺  and restore point 𝐺. 

6) The mobile robot drives along the guidance path to point 𝑖. Meanwhile, the mobile robot uses 
sensors to update the map environment information in real time during the driving process. 

7) Determine whether point 𝐺 appears in the known environment. If point 𝐺 appears in the 
known environment, the next guidance point is point 𝐺, and the process ends. If point 𝐺 does not 
appear in the known environment, go to step (1). 

4.3.1. Path evaluation mechanism 

In order to get a better exploration path for mobile robots in unknown environment, this paper 
proposes a path evaluation mechanism based on multi-performance indicators. The evaluation indexes 
of path quality include the path reachability, path safety, path length and path smoothness. The path 
quality is calculated as shown in Eq (14). 

𝑄 𝜔 𝑃 𝜔 𝑃 𝜔 𝑃 𝜔 𝑃  (14)

where Q is the path quality value, 𝑃  is the path reachability value, 𝑃  is the path safety value, 𝑃  is 
the path length value, and 𝑃  is the path smoothness value. 𝜔 , 𝜔 , 𝜔  and 𝜔  are the weight 
coefficients of path reachability, path safety, path length and path smoothness, respectively, and 𝜔
𝜔 𝜔 𝜔 1. 
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a. Path reachability 

The path reachability value is defined as the difference between the distance from the preparatory 
guidance point z to target point 𝐺  and the distance from mapping point 𝑖  to target point 𝐺 , 
multiplied by the adaptive expansion coefficient. The purpose is to make the guidance point as close 
to the target point as possible, and when the preparatory guidance point deviates more from the target 
point, it has a lower probability of being selected as the real guidance point. 

Suppose that the coordinates of the preparatory guidance point 𝑧 are 𝑥 , 𝑦 , the coordinates 
of the vertical mapping point 𝑖  are 𝑥 , 𝑦 , and the coordinates of the target point 𝐺 are 𝑥 , 𝑦 . 
Then, the path reachability is calculated as shown in Eqs (15)–(18). 

𝑑𝑖𝑠_1 𝑥 𝑥 𝑦 𝑦
.

 (15)

𝑑𝑖𝑠_0 𝑥 𝑥 𝑦 𝑦
.

 (16)

𝑃 𝑐𝑜𝑒1 ∗ 𝑑𝑖𝑠_1 𝑑𝑖𝑠_0  (17)

𝑐𝑜𝑒1
𝑖𝑛𝑖𝑡_𝑐𝑜𝑒1 𝑛𝑢𝑚 ∗ 𝑠𝑡𝑒𝑝, 𝑖𝑛𝑖𝑡_𝑐𝑜𝑒1 𝑛𝑢𝑚 ∗ 𝑠𝑡𝑒𝑝 1
                1,     𝑖𝑛𝑖𝑡_𝑐𝑜𝑒1 𝑛𝑢𝑚 ∗ 𝑠𝑡𝑒𝑝 1 (18)

where 𝑑𝑖𝑠_1 is the distance from 𝑧  to 𝐺 , 𝑑𝑖𝑠_0 is the distance from 𝑖  to 𝐺 , 𝑃  is the path 
reachability value, 𝑐𝑜𝑒1 is the expansion coefficient of path reachability, 𝑖𝑛𝑡𝑖_𝑐𝑜𝑒1 is the initial 
expansion coefficient and is a fixed constant, 𝑛𝑢𝑚 is the number of generated guidance points, and 
𝑠𝑡𝑒𝑝 is a fixed step size. 

b. Path length 

The path length is defined as the Euclidean distance of a path. Suppose that a path consists of n 
path points, the coordinates of the 𝑖 1th path point 𝑃  are 𝑥 , 𝑦 , the coordinates of the 
𝑖th path point 𝑃  are 𝑥 , 𝑦 , and the coordinates of the 𝑖 1th path point 𝑃  are 𝑥 , 𝑦 . 
Then, the path length is calculated as shown in Eq (19). 

𝑃 𝑥 𝑥 𝑦 𝑦 (19)

c. Path smoothness 

Path smoothness is defined as the cumulative sum of the required rotation angles of the mobile 
robot in a path [22], and its purpose is to make the guidance path as smooth as possible. Three 
consecutive path points can form two path segments 𝑃 𝑃 , 𝑃 𝑃 . Let 𝜃  be the rotation angle 
between two path segments 𝑃 𝑃  and 𝑃 𝑃 . Then, the path smoothness is calculated as shown in 
Eq (20), and the schematic diagram of rotation angle 𝜃  is shown in Figure 5. 

𝑃 𝜃 (20)
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Figure 5. Diagram of the rotation angle. 

d. Path safety 
The path safety is defined as the ratio of the safety penalty degree obtained by a path to the path 

length [23], multiplied by the fixed expansion coefficient. Assuming that a path consists of n path 
points, and the coordinates of the ith path point P  are x , y , the path safety is calculated as shown 
in Eqs (21)–(23). 

𝑃 𝑐𝑜𝑒2 ∗
∑ 𝑆

𝑃
 (21)

𝑆 𝑝𝑢𝑛𝑖𝑠ℎ_𝑤  (22)

𝑝𝑢𝑛𝑖𝑠ℎ_𝑤
1, 𝐼𝑓 𝜔  𝑖𝑠 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑎𝑛𝑑 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒 𝑎 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦    
0, 𝐼𝑓 𝜔  𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑞𝑢𝑎𝑟𝑒                          
0,  𝐼𝑓 𝜔  𝑖𝑠 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑏𝑢𝑡 ℎ𝑎𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑎 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦            

 
(23)

In Eq (21), P  is the path safety value, coe2 is the expansion coefficient and is a fixed constant, 

S  is the safety penalty degree obtained by the ith path point, and P  is the path length of this path. 

In Eqs (22) and (23), punish_w  is the safety penalty degree provided by the jth square around the 

ith path point, and w  is the jth square around the ith path point. 

4.3.2. Weight distribution 

Aiming at the above four path quality evaluation indexes, this paper uses the Delphi weighting 
method to evaluate the weight coefficients of each path index to obtain a set of better weight 
coefficients. First, the order of importance of the four indexes is specified according to the actual 
requirements. Considering the specificity of the unknown environment, the order of importance of the 
four indexes is path reachability, path safety, path length and path smoothness in turn, i.e., the 
reachability and safety of the exploration path are ensured in priority, and then the path length and path 
smoothness are considered. Thus, ω ω ω ω . 

The definition of the importance ratio is shown in Eq (24): 

𝐼
𝜔

𝜔
 (24)
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Then, there is 𝐼 1. The larger 𝐼  is, the more important the former is than the latter. 
The importance ratio table constructed in this paper is shown in Table 3. 
According to the defined I , the calculation process of ω  is shown in Eqs (25)–(27). 

𝐼
∑ 𝜔

𝜔
 (25)

1 𝐼 ω
 

(26)

𝜔 1 𝐼 (27)

If we can specify the values of I , I , I , we will calculate the values of ω , ω , ω , ω  in turn. 

Table 3. Importance ratio table. 

𝐼  Description 
1.3 The former is slightly more important than the latter. 
1.6 The former is more important than the latter. 
1.9 The former is far more important than the latter. 

4.3.3. Pseudo-code of UPES strategy 

The pseudo-code of the UPES strategy is shown in Table 4. 

Table 4. The pseudo-code of the IACO algorithm. 

Algorithm 3 
Initialization of algorithm parameters; //The current position of the mobile robot 𝑥 , 𝑦 . Relevant 
//parameters of IACO algorithm. 
While the mobile robot does not reach the target point G 

Generate mapping point i0 based on (virtual) target point information and vertical mapping method;
Generate preparatory guidance points based on point i0 and generate preparatory paths from the 

current position to the preparatory guidance points using IACO algorithm (Algorithm 2); 
If the current i_set is completely repeated with the historical i_set //i_set is the set of preparatory 

//guidance points. 
Set the sensor range to the maximum and generate the virtual target point VGi; 

Else 
The guidance path is selected using the path evaluation mechanism, and its corresponding 

preparatory guidance point is the current guidance point, and then cancel the virtual target point VGi;
The mobile robot drives along the guidance path to the current guidance point and updates the 

map environment information in real time; 
If the target point G appears in the known environment 

The next guidance point is the G point; 
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4.4. Dynamic obstacle avoidance 

[21] introduced several common potential collision modes, but its collision detection model lacks 
universality and does not consider collision modes such as pursuit collisions. Hence, the collision 
classification model is redesigned in this paper by using sequence pairs and sign functions. Finally, 
the corresponding obstacle avoidance strategy is given for each potential collision mode. 

4.4.1. Collision classification model 

Define the row direction: -1 represents upward, 0 represents unchanged row direction, 1 
represents downward. Define the column direction: -1 represents leftward, 0 represents unchanged 
column direction, 1 represents rightward. The direction of movement of the mobile robot can be 
represented by the direction sequence pair <x, y>. For example, the sequence pair <1, 0> indicates that 
the mobile robot moves downward, and the sequence pair <-1, -1> indicates that the mobile robot 
moves up and left. 

Since a certain function transformation is required to transform the ranks vector of the robot or 
obstacle into the direction sequence pair, this paper uses the sign function as the direction 
transformation function, as shown in Eq (28). 

𝑠𝑖𝑔𝑛 𝑥
1, 𝑥 0

0, 𝑥 0
1, 𝑥 0

 (28)

For example, if a dynamic obstacle moves from (3,3) to (5,3), the row and column vector of the 
dynamic obstacle can be calculated as (2,0), and the direction sequence pair <1, 0> can be obtained 
after the sign function processing, so that the dynamic obstacle can be determined to move downward. 
For example, if the dynamic obstacle moves from (3,4) to (3,3), the row and column vector of the 
dynamic obstacle can be calculated as (0,-1), and the direction sequence pair <0, -1> can be obtained 
after the sign function processing to determine that the dynamic obstacle moves to the left. 

According to different moving directions of dynamic obstacles and robots, potential collisions 
are classified into four different types: forward collision, lateral collision, stagnation collision and 
pursuit collision. Among them, forward collision is further divided into forward surface collision and 
forward point collision depending on the collision location. The collision classification model is shown 
in Table 5. 

Suppose that the coordinates of the current position 𝑅  of the mobile robot are 𝑥 , 𝑦 , and the 
coordinates of the next position 𝑅  are 𝑥 , 𝑦 . The coordinates of the current position 𝑂  of the 
dynamic obstacle are 𝑟 , 𝑐 , and the coordinates of the next position 𝑂  are 𝑟 , 𝑐 . Then, the 
collision type judgment formulas are as follows: 

𝑥 𝑟 &&𝑦 ==𝑐 , 

𝑠𝑖𝑔𝑛 𝑟 𝑟 𝑠𝑖𝑔𝑛 𝑥 𝑥 && 𝑠𝑖𝑔𝑛 𝑐 𝑐 𝑠𝑖𝑔𝑛 𝑦 𝑦  
(29)

𝑥 𝑟 &&𝑦 𝑐 && 𝑥 𝑟 &&𝑦 𝑐 , 

𝑠𝑖𝑔𝑛 𝑟 𝑟 𝑠𝑖𝑔𝑛 𝑥 𝑥 && 𝑠𝑖𝑔𝑛 𝑐 𝑐 𝑠𝑖𝑔𝑛 𝑦 𝑦  
(30)
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𝑥 𝑟 &&𝑦 𝑐 (31)

𝑥 𝑟 &&𝑦 𝑐 ，𝑟 𝑟 &&𝑐 𝑐 (32)

𝑥 𝑟 &&𝑦 𝑐 , 

𝑠𝑖𝑔𝑛 𝑟 𝑟 𝑠𝑖𝑔𝑛 𝑥 𝑥 && 𝑠𝑖𝑔𝑛 𝑐 𝑐 𝑠𝑖𝑔𝑛 𝑦 𝑦  
(33)

Table 5. Collision classification model. 

Collision 
type 

Direction of 
motion 

Collision 
position 

Judgment 
formula 

Collision characteristics Schematic 
diagram 

Forward 
point 
collision 

Collinear 
and reverse 
direction 

Common 
collision 
points 

(29) Mobile robot and 
dynamic obstacle drive 
into the same square. 

 

Forward 
surface 
collision 

Collinear 
and reverse 
direction 

No common 
collision 
points 

(30) Face to face collision. 

 

Lateral 
collision 

noncollinear Common 
collision 
points 

(31) At a certain moment, the 
two happen to have a 
common collision point. 

 

Stagnation 
collision 

-- Common 
collision 
points 

(32) The dynamic obstacle just 
stays on the planned path. 

-- 

Pursuit 
collision 

Collinear 
and same 
direction 

Common 
collision 
points 

(33) At a certain moment, the 
common collision point 
is created due to the 
mismatch of the two 
velocities. 

 

4.4.2. Obstacle avoidance strategy 

This paper designs three obstacle avoidance strategies: the turning behavior strategy, in-situ 
waiting strategy and local path replanning strategy. The turning behavior strategy implies that when 
the mobile robot senses that it is about to have a forward surface collision, a forward point collision 
or a pursuit collision with a dynamic obstacle, the mobile robot turns left or right to avoid the 
dynamic obstacle. 

In-situ waiting strategy implies that when the mobile robot senses that it is about to have a lateral 
collision with a dynamic obstacle, the mobile robot avoids the dynamic obstacle by stopping in-situ. 
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The local path replanning strategy implies that when the dynamic obstacle stagnates on the 
planned path, the robot uses a heuristic strategy to replan the local path between the current path point 
(the 𝑖th path point) and the 𝑖 2th path point to avoid dynamic obstacles. After the mobile robot 
avoids the dynamic obstacle in this manner, the mobile robot will return to the planned path and 
continue to drive along the planned path. 

Therefore, the turning behavior strategy is used to avoid the dynamic obstacle when a forward 
collision or pursuit collision is about to occur between the mobile robot and the dynamic obstacle. The 
in-situ waiting strategy is used to avoid the dynamic obstacle when a lateral collision is about to occur 
between the mobile robot and the dynamic obstacle. The local path replanning strategy is used to avoid 
the dynamic obstacle when a stagnation collision is about to occur between the mobile robot and the 
dynamic obstacle. 

4.4.3. Pseudo-code of obstacle avoidance strategy 

The pseudo-code of the obstacle avoidance strategy is shown in Table 6. 

Table 6. The pseudo-code of the IACO algorithm. 

Algorithm 4  
Initialize the algorithm parameters; //The current position of the mobile robot 𝑥 , 𝑦 and the next 
//position 𝑥 , 𝑦  . The current position of the dynamic obstacle 𝑟 , 𝑐   and the next position 
// 𝑟 , 𝑐 . 
If their position relationship satisfies Eq (29) 

The mobile robot uses the turning behavior strategy to avoid the dynamic obstacle; 
If their position relationship satisfies Eq (30) 

The mobile robot uses the turning behavior strategy to avoid the dynamic obstacle; 
If their position relationship satisfies Eq (31) 

The mobile robot uses the in-situ waiting strategy to avoid the dynamic obstacle; 
If their position relationship satisfies Eq (32) 

The mobile robot uses the local path replanning strategy to avoid the dynamic obstacle; 
If their position relationship satisfies Eq (33) 

The mobile robot uses the turning behavior strategy to avoid the dynamic obstacle; 

5. Experimental results and analysis 

In order to verify the feasibility and effectiveness of the proposed method, this paper designs 
map environments of different scenes. The scenes 1 and 2 are the maps with a known global 
environment, and their purpose is to verify the performance of the CBIACO algorithm in a known 
environment. Scenes 3, 4 and 5 are representative maps of unknown environments, namely, unknown 
environment with irregular distribution of obstacles, unknown environment with special terrain and 
unknown environment with dynamic obstacles. At the same time, in the three kinds of unknown 
environments, the CBIACO algorithm is compared with the path planning method based on a greedy 
algorithm [24] (GRA) to verify the performance of the CBIACO algorithm in unknown environments. 

The hardware and software configurations of the experiments are shown in Table 7. 
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Table 7. Hardware and software configurations. 

Hardware Processor Intel(R) Core(TM) i5-7300HQ CPU @ 2.50 GHz 2.50 GHz 

RAM 8.00 GB (7.89 GB available) 

Software Operating System Windows 10 (64-bit operating system) 

Simulation tool MATLAB R2018a 

5.1. Weight coefficient selection 

Table 8. Importance ratio and path evaluation value. 

𝐼  𝐼  𝐼  Path evaluation value 

1.3 1.3 1.3 11.3912 
1.3 1.3 1.6 11.5857 

1.3 1.3 1.9 11.7792 

1.3 1.6 1.3 11.5503 

1.3 1.6 1.6 11.4031 

1.3 1.6 1.9 11.3836 

1.3 1.9 1.3 11.5194 

1.3 1.9 1.6 11.3147 

1.3 1.9 1.9 11.4992 

1.6 1.3 1.3 12.2246 

1.6 1.3 1.6 11.6016 

1.6 1.3 1.9 12.2307 

1.6 1.6 1.3 12.0059 

1.6 1.6 1.6 11.5781 

1.6 1.6 1.9 11.7228 

1.6 1.9 1.3 11.9375 

1.6 1.9 1.6 12.2661 

1.6 1.9 1.9 12.2719 

1.9 1.3 1.3 12.9832 

1.9 1.3 1.6 12.8568 

1.9 1.3 1.9 12.8591 

1.9 1.6 1.3 12.8352 

1.9 1.6 1.6 12.9431 

1.9 1.6 1.9 12.7933 

1.9 1.9 1.3 12.7477 

1.9 1.9 1.6 12.5693 

1.9 1.9 1.9 12.6154 



15586 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15568–15602. 

Because the weight coefficient is related to the path quality, this section will analyze and select 
the weight coefficient. 

According to the importance ratio table (Table 3), 𝐼  has three possible values, so theoretically 
there are 27 ways to combine 𝐼 , 𝐼 , 𝐼 . In this paper, the scene shown in Figure 1 is taken as the test 
scene, and then the corresponding relationship between the importance ratio and the path evaluation 
value is shown in Table 8. 

As can be seen from Table 8, when I 1.3,  I 1.9, and I 1.6, the path evaluation value is 
the best. This shows that this importance ratio combination method can make the mobile robot cross the 
unknown environment to reach its destination at less cost. Therefore, we specify that I 1.3, I 1.9,
and I 1.6. In other words, we think that in the unknown environment, the path reachability is 
slightly more important than path safety, path safety is far more important than the path length, and 
path length is more important than the path smoothness. According to Eqs (24)–(27), there are 

𝜔 0.4117
𝜔 0.3171
𝜔 0.1669
𝜔 0.1043

 (34)

That is, the weight coefficients of path reachability, path safety, path length and path smoothness 
are 0.4117, 0.3171, 0.1669 and 0.1043, respectively. Compared with other weight coefficient 
combinations, the above weight coefficient combination has obvious superiority. 

5.2. Sensor model 

In this paper, based on the working mode of RPLIDAR A2 lidar [25], an analog sensor is designed 
for experimental application. The mobile robot can use sensors to sense local information in an 
unknown environment, and the detection radius of sensors can be adaptively adjusted according to the 
surrounding environment of the mobile robot's current position. When the sensor detects many 
obstacles in the surrounding environment, it will expand the detection radius to obtain more local 
environmental information to ensure the safety of the mobile robot. In contrast, when the sensor detects 
few obstacles in the surrounding environment, it will reduce the detection radius to reduce the energy 
loss of the sensor. 

5.3. Scene 1 

We verify the performance of the CBIACO algorithm and the quality of the generated global path. 
In this paper, the CBIACO algorithm is compared with the traditional ant colony algorithm (ACO) and 
adaptive ant colony algorithm [26] (AACO) in a 30 × 30 simple grid map. The simulation environment 
is shown in Figure 6. In the grid, the white squares are the free squares, which represent the movable 
area of the mobile robot. The black squares are the obstacle squares, which represent the area where 
the mobile robot cannot move. The related parameters of the mobile robot path planning are set as 
follows: The starting point grid number is 1, the target point grid number is 829, the steering angle 
constraint of the mobile robot is 90, and the penalty information value cons is 1. 
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Figure 6. 30 × 30 simple grid map. 

The parameter design of the three algorithms is shown in Table 9. 

Table 9. Parameters of ant colony algorithm. 

Parameter Setting ACO algorithm AACO algorithm CBIACO algorithm 

Initial pheromone 
concentration 

1 1 1 

Number of ants 50 50 50 

Maximum number of 
iterations 

300 300 300 

Pheromone factor 1 1 Adaptive numerical 
value 

Heuristic information factor 7 7 Adaptive numerical 
value 

Pheromone volatile factor 0.3 Adaptive numerical 
value 

0.3 

Pheromone constant 1 1 1 

Pseudo-random probability 
adjustment factor 

- Adaptive numerical 
value 

0.3 

5.3.1. Path quality 

Figure 7(a) is the path trace diagram of the ACO algorithm. As can be seen from Figure 7(a), the 
quality of the path trajectory obtained by the ACO algorithm is obviously poor, as the path length is 
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long, the smoothness is poor, and there are many large turning angles. Figure 7(b) is the path trace of 
the AACO algorithm. As can be seen from Figure 7(b), compared with ACO algorithm, the quality of 
the path obtained by this algorithm has been improved to some extent in path length and path 
smoothness, but there is still room for further optimization. Figure 8 shows the path trajectory of the 
CBIACO algorithm. It can be seen from Figure 8 that the quality of the path obtained by the CBIACO 
algorithm is the best, and the path length and path smoothness are the best. Therefore, in terms of 
path quality, this paper shows that the CBIACO algorithm is superior to the ACO algorithm and 
AACO algorithm. 

 

(a) ACO algorithm            (b) AACO algorithm 

Figure 7. Path diagram of ACO algorithm and AACO algorithm for scene 1. 

 

Figure 8. Path diagram of CBIACO algorithm for scene 1. 

5.3.2. Convergence curve analysis 

Figure 9 shows the convergence curve of the algorithm. As can be seen from Figure 9, the ACO 
algorithm converges in the 189th generation, the convergence speed is very slow, the path quality after 
convergence is not high, and the optimal path fitness is 39.94. It can also be found from the figure that 
the ACO algorithm had a better path individual in the iterative process (in the 155th generation, the 
optimal path fitness was 39.11), but the path was not retained in the iterative process of the algorithm. 
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The AACO algorithm converges in 38th generation, and the optimal path fitness after convergence 
is 39.46. Compared with the ACO algorithm, the AACO algorithm has improved in optimal path 
fitness and convergence iteration times. The CBIACO algorithm has converged in the 13th generation, 
and the optimal path fitness after convergence is 38.28. This shows that the CBIACO algorithm is 
superior to the ACO algorithm and AACO algorithm in terms of optimal path fitness and convergence 
iteration times. This is because the CBIACO algorithm can accelerate the convergence speed and 
improve the convergence quality of the algorithm to the greatest extent by improving the probability 
transfer function, introducing the adaptive pheromone factor and adaptive heuristic factor and the adding 
path optimization strategy. In addition, aiming at the data fallback phenomenon in the ACO algorithm 
and AACO algorithm, the CBIACO algorithm effectively avoids this problem by adding an elite 
preservation strategy. 

 

Figure 9. Convergence curves of the algorithms. 

5.3.3. Analysis of ant survival rate 

 

Figure 10. Variation curves of ant survival rate. 
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The variation curves of ant survival rate of the three algorithms in the 30 × 30 grid map are shown 
in Figure 10. It can be seen from Figure 10 that before 251 generations, the ant survival rate of the 
ACO algorithm gradually increased with the increase of the number of iterations. After 251 
generations, the ant survival rate reached 100% and remained stable. The AACO algorithm proposed 
in [26] achieved a 100% ant survival rate after 82 generations. This shows that the deadlock penalty 
factor of the AACO algorithm plays a certain role. However, at the initial stage of algorithm iteration, 
the ant survival rate is still low. The CBIACO algorithm proposed in this paper ensures the survival of 
ants through the backtracking mechanism, and the path length zeroing mechanism can guide ants to 
adjust the direction of advance and jump out of the deadlock. The CBIACO algorithm ensures that the 
ant survival rate remains 100% from beginning to end, thus effectively solving the deadlock problem. 

5.3.4. Comprehensive comparative analysis 

In scene 1, each of the three algorithms is simulated 20 times and averaged to get the data shown in 
Table 10. It can be seen from Table 10 that the CBIACO algorithm is superior to the ACO algorithm and 
AACO algorithm in average path fitness, average convergence iteration times and average convergence 
time. The formula for calculating the convergence time of the algorithm is shown in Eq (35). 

𝑡
𝑁

𝑁
∗ 𝑇 (35)

T represents the running time of the whole program, 𝑁  represents the iteration times when 
the algorithm converges, 𝑁  represents the total iteration times of the algorithm, and t 
represents the running time of the program when the algorithm converges (that is, the convergence 
time of the algorithm). 

Table 10. Simulation results of the three algorithms. 

Parameter Setting Average path 

fitness (/) 

Average number of 

convergence iterations (times) 

Average convergence time 

of algorithm (s) 

CBIACO algorithm 38.61 18 2.4908 

AACO algorithm 39.73 48.45 6.9167 

ACO algorithm 40.5 204.8 27.8559 

It can be seen from Table 10 that the CBIACO algorithm is superior to the ACO algorithm and 
AACO algorithm in average path fitness, average convergence iteration times and average 
convergence time. Therefore, the performance superiority of the CBIACO algorithm can be proved. 

5.4. Scene 2 

Scene 1 verifies the performance of the CBIACO algorithm in a 30 × 30 simple grid map. In order 
to further verify the performance of the CBIACO algorithm, in this paper, the CBIACO algorithm is 
compared with the beetle antennae search [27] (BAS) algorithm, the biased min-consensus [28] (BMC) 
algorithm and the distributed biased min-consensus [29] (DBMC) algorithm in a 30 × 30 complex grid 
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map. The simulation environment is shown in Figure 11. In the grid, the white squares are the free 
squares, which represent the movable area of the mobile robot. The black squares are the obstacle 
squares, which represent the area where the mobile robot cannot move. The related parameters of the 
mobile robot path planning are set as follows: The starting point grid number is 1, the target point grid 
number is 900, the steering angle constraint of the mobile robot is 90, and the penalty information 
value cons is 1. 

 

Figure 11. 30 × 30 complex grid map. 

The parameter design of the CBIACO algorithm is shown in Table 9. The BAS algorithm, BMC 
algorithm and DBMC algorithm respectively adopt the default parameters in [27–29]. 

Figure 12(a) is the path trace diagram of the DBMC algorithm. As can be seen from Figure 12(a), 
the quality of the path trajectory obtained by the DBMC algorithm is very good. Unfortunately, there 
is a large turning angle at the starting point, which greatly affects the smoothness of the path. This 
situation may be related to the special terrain at the starting point. Figure 12(b) is the path trace of the 
BMC algorithm. As can be seen from Figure 12(b), the quality of the path trajectory obtained by the 
BMC algorithm is also very good. However, this path crosses diagonal obstacles, which will greatly 
affect the safety of the path. Obviously, the BMC algorithm does not consider the existence of 
diagonal obstacles. Figure 12(c) is the path trace diagram of the BAS algorithm. As can be seen from 
Figure 12(c), the quality of the path trajectory obtained by the BAS algorithm is obviously the worst, 
as the path length is long, the smoothness is poor, and there are many large turning angles. Figure 12(d) 
shows the path trajectory of the CBIACO algorithm. It can be seen from Figure 12(d) that the quality 
of the path obtained by the CBIACO algorithm is the best, and its path length and path smoothness are 
the best. Therefore, in terms of path quality, this paper shows that the CBIACO algorithm is superior 
to the BAS algorithm, BMC algorithm and DBMC algorithm. 

For scene 2, each of the four algorithms is simulated 20 times and averaged to get the data shown 
in Table 11. It can be seen from Table 11 that the CBIACO algorithm is superior to BAS algorithm, 
BMC algorithm and DBMC algorithm in average path fitness. Specifically, the BAS algorithm has the 
worst average path fitness, because the path length is long, the smoothness is poor, and there are many 
large turning angles. The average path fitness of the DBMC algorithm is slightly better than that of the 
BMC algorithm. This may be due to the distributed nature of the DBMC algorithm. However, in 
general, the average path fitness values of the BMC algorithm and DBMC algorithm are close. Both 
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algorithms’ paths could be better. The quality of the path obtained by the CBIACO algorithm is the 
best, and its path length and path smoothness are the best. Therefore, the performance superiority of 
the CBIACO algorithm can be proved. 

 

(a) DBMC algorithm                       (b) BMC algorithm 

 

(c) BAS algorithm                        (d) CBIACO algorithm 

Figure 12. Path diagram of the four algorithms for scene 2. 

Table 11. Simulation results of the four algorithms. 

Algorithm CBIACO algorithm BAS algorithm BMC algorithm DBMC algorithm

Average path fitness 43.94 52.71 47.12 46.35 

5.5. Scene 3 

This scene is an unknown environment with irregular obstacle distribution. The motion trajectory 
of the mobile robot based on the CBIACO algorithm is shown in Figure 13. The blue grid area 
represents the unknown environment, the pink squares represent the starting point and target point, 
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and the yellow squares represent the guidance points. Figure 13(a) shows the initial map. Figure 13(b) 
shows the complete exploration trajectory. 

It can be seen from Figure 13(b) that the mobile robot can cross the complex environment with 
irregular distribution of obstacles without falling into oscillation or stagnation. This is because UPES 
makes mobile robots make full use of prior information such as current position information, local 
environment information and target point information, and it reduces the probability of being misled 
by terrain information. At the same time, the CBIACO algorithm can effectively deal with the 
environment with irregular distribution of obstacles, generate a feasible exploration path and protect 
the mobile robot from oscillation or stagnation. 

   

(a) Initial map of the complex environment  (b) Complete exploration trajectory 

Figure 13. Path exploration trajectory diagram of mobile robot based on CBIACO 
algorithm in Scene 3. 

 

Figure 14. Path exploration trajectory diagram of mobile robot based on GRA in Scene 3. 

The exploration trajectory of the mobile robot based on the GRA is shown in Figure 14. From 
Figure 14, the random entrance is chosen as grid number 423. The random entrance is far from target 
point 𝐺, which implies that the theoretical cost of the mobile robot detecting an unknown environment 
is higher. When the mobile robot uses the GRA algorithm to drive to grid numbers 862 and 832, the 
mobile robot will fall into the state of repeated oscillation on these two grids; thus, the mobile robot 
cannot reach the target point. There are two main reasons: First, the local information generated by the 
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complex terrain causes misleading information for the GRA algorithm, which eventually makes the 
mobile robot make incorrect decisions. Second, the greedy strategy adopted by the GRA algorithm 
pays too much attention to the selection of the best neighbor path point and ignores the feasibility and 
effectiveness of the exploration path. 

For Scene 3, the CBIACO algorithm and GRA are simulated 10 times, and the average and standard 
deviation of the corresponding path evaluation index are taken. The results are shown in Table 12. The 
CBIACO algorithm has a much higher success rate (100%) than the GRA (40%), which indicates that 
the CBIACO algorithm has a higher success rate and is more suitable for Scene 3. In addition, the 
CBIACO algorithm is superior to the GRA in terms of reachability for Scene 3. The CBIACO 
algorithm has obviously better average path length, average path smoothness and average path 
evaluation value than the GRA. This shows that the UPES adopted by the CBIACO algorithm can 
indeed play an important role. In terms of the average path safety, the CBIACO algorithm is slightly 
inferior to the GRA. That is because the path safety value defined in this paper is the ratio of the safety 
penalty obtained by a path to its length, and a longer path may increase the safety of the path. 

Table 12. Evaluation results in a complex unknown environment. 

Algorithm Succes
s rate 

Measurement 
index 

Path 
length 

Path 
safety 

Path 
smoothness 

Path evaluation 
value 

CBIACO 100% Average value 46.7162 5.7633 11.6239 10.8368 

Standard 
deviation 

0.5792 0.461 1.7287 0.128 

GRA 40% Average value 50.5417 5.5943 15.3153 11.8067 

Standard 
deviation 

2.8168 0.3246 3.2383 0.6343 

In terms of the stability of the two path exploration algorithms, the CBIACO algorithm and GRA 
are unstable in Scene 3. The instability of the GRA comes from the randomness of the entrance of the 
unknown environment. The instability of the CBIACO algorithm comes from the instability of the 
IACO algorithm in a complex environment (as a probabilistic intelligent search algorithm, the IACO 
algorithm is unstable in complex maps). However, the standard deviation data in Table 12 show that 
although both are unstable, the CBIACO algorithm is far more stable than the GRA algorithm. Thus, 
the CBIACO algorithm is superior to the GRA algorithm in stability. 

Based on the above analysis, the proposed CBIACO algorithm in this paper is superior to the 
GRA algorithm in many performance indices, which verifies the feasibility and superiority of the 
CBIACO algorithm for Scene 3. 

5.6. Scene 4 

Scene 4 is an unknown environment with special terrain. The exploration trajectory of the mobile 
robot based on the CBIACO algorithm is shown in Figure 15. In the grid, the blue squares represent 
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the unknown environment, the pink squares represent the starting point and target point, the yellow 
squares represent the guidance points, and the sky blue squares represent the virtual target points. As 
shown in Figure 15, the mobile robot travels along the guidance path. When the mobile robot travels 
to the third guidance point (grid number 556), the new 𝑖_𝑠𝑒𝑡 completely repeats with the previous 
𝑖_𝑠𝑒𝑡. At this time, the mobile robot sets the detection range of the sensor to the maximum and 
generates virtual target point 𝑉𝐺  (grid number 884) at two squares to the left side of point 𝐺. Under 
the joint action of virtual target point 𝑉𝐺 , prior information and local environment information, the 
fourth guidance point (grid number 554) is generated, and the mobile robot moves to the fourth 
guidance point. Afterwards, virtual target point 𝑉𝐺  (grid number 882), the fifth guidance point 
(grid number 552), virtual target point 𝑉𝐺  (grid number 880), the sixth guidance point (grid 
number 550), virtual target point 𝑉𝐺  (grid number 878) and the seventh guidance point (grid 
number 698) are successively generated, and the mobile robot travels along the guidance path to the 
seventh guidance point. 

 

Figure 15. Path exploration trajectory diagram of mobile robot based on CBIACO 
algorithm in Scene 4. 

At this time, the mobile robot did not completely get rid of the special terrain. Under the joint 
action of virtual target point 𝑉𝐺 , prior information and local environmental information, the eighth 
guidance point (grid number 852) and the corresponding guidance path are generated. When the mobile 
robot reaches the eighth guidance point, it completely bypasses the special terrain, and the target point 
also appears in the known environment. Finally, the mobile robot uses the IACO algorithm to generate 
the guidance path to point 𝐺 and subsequently drives along the guidance path to point 𝐺. 

As shown in Figure 15, the mobile robot can bypass the special terrain to reach its destination 
without falling into the state of oscillation or stagnation. That is because the CBIACO algorithm can 
generate virtual target points when the mobile robot encounters special terrain. Under the joint action 
of current position information, local environment information and virtual target point information, 
the mobile robot can move along the boundary of special terrain until the mobile robot bypasses the 
special terrain. 

The exploration trajectory of the mobile robot based on the GRA is shown in Figure 16. 
Figure 16(a),(b) show the path exploration trajectories of the mobile robots that did not successfully 
reach the target point and that successfully reached the target point, respectively. In Figure 16(a), the 
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random entrance is selected as grid number 441. When the mobile robot adopts the GRA to travel to 
grid number 555 and grid number 556, the mobile robot encounters the special terrain and falls into 
the repeated oscillation state, so it cannot reach the target point. The main reasons are described in 
Section 5.5. 

In Figure 16(b), the random entrance is selected as grid number 448. The mobile robot first uses 
the IACO algorithm to reach grid number 448, subsequently uses the sensor and GRA to plan the path 
and finally reaches the target point. Although the mobile robot successfully reaches the target point, 
the quality of the entire exploration trajectory is very poor. Figure 16 shows that when the mobile robot 
adopts the GRA algorithm, whether it can reach the target point depends on the location of the random 
entrance and construction of the map environment. In many cases, even if the mobile robot can 
successfully reach the target point, the exploration path has very poor quality. 

     

(a) Unsuccessful path trajectory diagram      (b) Successful path trajectory diagram 

Figure 16. Path exploration trajectory diagram of mobile robot based on GRA in Scene 4. 

For scene 4, the CBIACO algorithm and GRA are simulated 10 times, and the average and standard 
deviation of the corresponding path evaluation index are taken. The results are shown in Table 13. In 
Table 13, the CBIACO algorithm has a much higher success rate (100%) than the GRA (30%), which 
indicates that the CBIACO algorithm has better reachability than the GRA and is more suitable for 
scene 4. In terms of average path length, average path smoothness and average path evaluation value, 
the CBIACO algorithm is significantly better than the GRA. Thus, the UPES in the CBIACO algorithm 
can indeed play an important role. In terms of the average path safety value, the CBIACO algorithm 
is slightly inferior to the GRA. The main reasons are described in Section 5.5. 

In terms of the stability of the two path exploration algorithms, the CBIACO algorithm is very 
stable for scene 4, and its standard deviation is 0. The GRA is unstable for scene 4, and its standard 
deviation is larger. The instability of the GRA comes from the randomness of the entrance to the 
unknown environment. 

Based on the above analysis, the proposed CBIACO algorithm in this paper is superior to the 
GRA in many performance indices, which verifies the feasibility and superiority of the CBIACO 
algorithm for scene 4. 
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Table 13. Evaluation results in an unknown environment containing special terrain. 

Algorithm Success 
rate 

Measurement 
index 

Path 
length 

Path 
safety 

Path 
smoothness 

Path evaluation 
value 

CBIACO 100% Average value 52.2843 6.3116 10.2102 11.7926 

Standard 
deviation 

0 0 0 0 

GRA 30% Average value 58.1027 6.09 15.603 13.2559 

Standard 
deviation 

12.9312 0.1017 1.1785 2.2622 

5.7. Scene 5 

Scene 5 is an unknown environment with dynamic obstacles. The exploration trajectory of the 
mobile robot based on the CBIACO algorithm is shown in Figure 17. In the grid, the blue squares 
represent the unknown environment, the pink squares represent the start point and target point, the yellow 
square represents the guidance point, and the green squares represent the dynamic obstacles. Figure 17(a) 
shows the initial map that contains the unknown environment and dynamic obstacles. In this map, the 
mobile robot travels along the guidance path and guidance points. 

     

(a) Initial map containing dynamic obstacles          (b) pursuit collision 

Figure 17. Initial map and track diagram of pursuit collision. 

Dynamic obstacle 1 starts to move after the mobile robot has traveled for 6 steps and travels from 
grid number 3 to the lower right direction at a speed of 2 unit steps. When the mobile robot travels 
along the guidance path, it is predicted that it will successively encounter pursuit collision and 
stagnation collision with dynamic obstacle 1, and the potential collision points are grid number 251 
and grid number 313, respectively. For the pursuit collision, the mobile robot performs steering 
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behavior. In other words, when the mobile robot predicts the collision, the mobile robot turns left to 
avoid the dynamic obstacle, waits for dynamic obstacle 1 to pass, returns to the position before obstacle 
avoidance and continues to move along the guidance path (as shown in Figure 17(b)). The decision 
time of obstacle avoidance is 0.005732 s. For the stagnation collision, the mobile robot implements 
the local path replanning strategy to avoid dynamic obstacles (as shown in Figure 18(a)). Then, the 
mobile robot continues to move along the guidance path, and the decision time of obstacle avoidance 
is 0.006879 s. The decision time of obstacle avoidance mentioned in this paper refers to the time taken 
by the mobile robot from detecting dynamic obstacles to formulating obstacle avoidance strategies, 
rather than the time taken by the mobile robot to actually avoid dynamic obstacles. In fact, the time 
taken by the mobile robot to actually avoid dynamic obstacles depends on its own performance. 

Dynamic obstacle 2 starts to move after the mobile robot has traveled for 15 steps and travels 
from grid number 446 to the left direction at a speed of 1 unit step. When the mobile robot is driving, 
it is predicted that it will have a forward point collision with dynamic obstacle 2 moving to the left, 
and the potential collision point is grid number 439, so the mobile robot performs steering behavior. 
In other words, when the mobile robot predicts the collision, the mobile robot turns left to avoid the 
dynamic obstacle, waits for dynamic obstacle 2 to pass, returns to the position before obstacle 
avoidance (as shown in Figure 18(a)) and continues to move along the guidance path until it reaches 
the initial guidance point. The decision time of obstacle avoidance is 0.006063 s. 

     

(a) Stagnation collision and forward point collision        (b) Forward surface collision 

Figure 18. Exploration trajectory diagram with multiple collision types. 

Then, the mobile robot travels along the guidance path and guidance points. In the process of 
sensor detection, the mobile robot suddenly finds dynamic obstacle 3 moving upward from grid 
number 562 with the speed of 1 unit step. When the mobile robot travels to grid number 502, it only 
meets dynamic obstacle 3. According to the proposed collision classification model in this paper, there 
will be a forward surface collision between them, and the mobile robot will perform the steering 
behavior, i.e., when the mobile robot predicts the collision, the mobile robot will turn left to avoid the 
dynamic obstacle, wait for dynamic obstacle 3 to pass, return to the position before obstacle avoidance 
and continue to move along the guidance path (as shown in Figure 18(b)). The decision time of obstacle 
avoidance is 0.00067 s. 
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In the process of continuing to drive, the mobile robot encounters dynamic obstacle 4, which is 
moving to the right from grid number 679 with the speed of 1 unit step. The mobile robot predicts in 
the traveling process that it will have a lateral collision with dynamic obstacle 4 that moves to the right, 
and the potential collision point is grid number 682, so the mobile robot performs waiting behavior, 
i.e., when the mobile robot predicts the collision, the mobile robot temporarily stops traveling and 
waits for dynamic obstacle 4 to pass. Then, the mobile robot continues to move along the guidance 
path, and the obstacle avoidance decision time is 0.000221 s (as shown in Figure 19(a)). The final path 
trajectory diagram of the mobile robot is shown in Figure 19(b). 

     

      (a) Lateral collision                (b) Final path trajectory diagram 

Figure 19. Lateral collision diagram and full motion trajectory diagram. 

Figures 17–19 show that the collision classification model and corresponding dynamic obstacle 
avoidance strategy adopted by the CBIACO algorithm are applicable to the unknown environment 
containing dynamic obstacles. Thus, the potential collision types considered by the CBIACO algorithm 
are comprehensive, and the CBIACO algorithm has a good dynamic obstacle avoidance effect and 
strong real-time performance. 

The average path evaluation values of the CBIACO algorithm in scene 3, scene 4 and scene 5 are 
approximately 89.74%, 91.79% and 88.96% of those of the GRA, respectively. The experimental 
results in three different unknown environments show that the proposed CBIACO algorithm in this 
paper is more applicable and general and more comprehensively considers the situation. However, the 
GRA may make the mobile robot stagnate or fluctuate, so the mobile robot cannot reach its destination. 
Additionally, the quality of the exploration path generated by the GRA is low, and the length, 
smoothness and accessibility of the exploration path are obviously poor. 

6. Summary 

In this paper, a path planning method for mobile robots in complex environments based on an 
improved ant colony algorithm (CBIACO) is proposed. First, by optimizing the traditional ant colony 
algorithm, the generation time of the global path is reduced, and the generation quality of the global 
path is improved by improving the probability transfer function and designing adaptive component 
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weights. Second, a global path optimization strategy based on diagonal obstacle detection and 
optimization mechanism is proposed to solve the problem that the global path crosses diagonal 
obstacles, realize the re-optimization of the global path and further improve the quality of the global 
path. Then, UPES is proposed, which makes the mobile robot reach the destination safely, efficiently 
and quickly by using the real-time local information obtained by sensors and the corresponding path 
exploration mechanism. Finally, a collision classification model is proposed, and the corresponding 
dynamic obstacle avoidance strategy is given. A more comprehensive potential collision situation is 
considered, and the mobile robot can effectively avoid various obstacles through behavioral obstacle 
avoidance and local path replanning. The experimental results show that the CBIACO algorithm can 
quickly generate high-quality global paths in known environments; the CBIACO algorithm can make 
the mobile robot safely and quickly cross the unknown environment to reach the designated target 
point in the unknown environment. The new dynamic obstacle avoidance strategy can make mobile 
robots avoid dynamic obstacles in different directions at a lower cost. 

However, the proposed CBIACO algorithm in this paper has some shortcomings. The collision 
between a mobile robot and dynamic obstacles with irregular motion is not considered. In addition, 
the mechanical performance constraints of mobile robots are not considered. In the future, we will 
focus on the collision between mobile robots and dynamic obstacles with irregular motion and increase 
the mechanical performance constraints of robots to further improve the algorithm, so that the 
CBIACO algorithm can be more applicable in complex environments. 
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