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Abstract: With the rise of multi-modal methods, multi-modal knowledge graphs have become a better
choice for storing human knowledge. However, knowledge graphs often suffer from the problem of
incompleteness due to the infinite and constantly updating nature of knowledge, and thus the task of
knowledge graph completion has been proposed. Existing multi-modal knowledge graph completion
methods mostly rely on either embedding-based representations or graph neural networks, and there
is still room for improvement in terms of interpretability and the ability to handle multi-hop tasks.
Therefore, we propose a new method for multi-modal knowledge graph completion. Our method aims
to learn multi-level graph structural features to fully explore hidden relationships within the knowledge
graph and to improve reasoning accuracy. Specifically, we first use a Transformer architecture to
separately learn about data representations for both the image and text modalities. Then, with the
help of multimodal gating units, we filter out irrelevant information and perform feature fusion to
obtain a unified encoding of knowledge representations. Furthermore, we extract multi-level path
features using a width-adjustable sliding window and learn about structural feature information in
the knowledge graph using graph convolutional operations. Finally, we use a scoring function to
evaluate the probability of the truthfulness of encoded triplets and to complete the prediction task.
To demonstrate the effectiveness of the model, we conduct experiments on two publicly available
datasets, FB15K-237-IMG and WN18-IMG, and achieve improvements of 1.8 and 0.7%, respectively,
in the Hits@1 metric.
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1. Introduction

The continuous development of deep learning technology has had a significant impact on research
in various fields. For instance, in the field of biomedicine, automatic diagnostic techniques based on
deep learning have emerged, enabling image recognition and assisting healthcare professionals in the
diagnosis and subsequent procedures [1–5]. Furthermore, deep learning has demonstrated a superior
performance in scenarios with larger datasets, such as multi-view clustering [6–10]. In order to store
and learn from a vast amount of information, knowledge graphs (KG) have emerged.

A knowledge graph can be conceptualized as a large-scale semantic integration network, which
represents entities as nodes and relationships as directed edges; thus, it stores a vast amount of human
knowledge in the form of a directed graph. The resource description framework (RDF) provides a
standard framework for KG representation, wherein fact triples (head, relationship, tail) are employed
to describe knowledge [11]. The KG is capable of storing a rich amount of information regarding real-
world entities and their relationships and can enable a range of reasoning processes across the graph.
The graph-based approach to data processing has demonstrated a superior performance in tasks such
as assisting information retrieval, question-answering systems, and recommendation systems, when
compared to traditional structured data [12, 13]. However, due to the infinite and constantly evolving
nature of real-world knowledge, the incompleteness of the KG has led to the task of knowledge graph
completion (KGC).

In the field of natural language processing (NLP), KGC techniques can be broadly categorized
into three types: rule-based models, path-based models, and embedding-based models. Rule-based
models tend to retain the original semantic information more completely, and therefore offer better
interpretability. Path-based models make a better use of and represent the graph structure, enabling
guided reasoning through various path-searching mechanisms. Both of these approaches are more
interpretable, though their expressiveness is limited by model constraints, and their spatiotemporal
complexity is higher. Compared to the first two types of models, embedding-based models typically
offer greater expressiveness. With the development of graph neural networks (GNNs), GNN-based
models have shown great potential in various graph-based tasks, providing additional ideas for KGC.
In recent years, KG has also been studied in computer vision, such as in the context of scene graphs
and language and image integration.

In recent years, multi-modal knowledge graphs (MKG) have gained significant attention as an ex-
tension to traditional knowledge graphs based on a single modality. MKGs typically augment semantic
KGs with additional modality data, such as visual and audio attributes, to provide more physically rich
representations of the world [14–16], as illustrated in Figure 1. For a given entity in the knowledge
graph, we can use both image and text descriptions to supplement more detailed information that cannot
be captured solely by the graph structure. Unfortunately, due to the lack of accumulated multi-modal
corpora, existing MKGs often suffer from more severe incompleteness compared to traditional KGs,
which greatly reduces their utility and effectiveness. In the task of multi-modal knowledge graph com-
pletion (MKGC), we must consider both the issues of multi-modal information fusion and the accuracy
and interpretability of knowledge graph completion. In terms of multi-modal information fusion, we
need to address issues such as semantic alignment, noise reduction or attenuation, and the realization of
unified embeddings. In the process of link prediction, we must not only leverage the semantic richness
of multi-modal information to improve accuracy but also enhance the logicality of the algorithm and
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improve its interpretability [17, 18].
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Figure 1. A simple multi-modal knowledge graph example.

Despite the abundance of existing image-text embedding pre-training models, these models often
focus on a single pair of corresponding images and text and fail to consider the distinctive structural fea-
tures of KGs. Therefore, our research builds upon MKGs that contain image-text feature information.
In addition to integrating embeddings from different modalities, we also retain local graph features and
introduce path features to enhance the interpretability of the reasoning model. Specifically, we propose
a method that first utilizes separate modality encoders to learn image and text embeddings, followed by
an irrelevant filtering layer to further select semantically relevant key features. Next, we fuse and en-
code information from different modalities to obtain a multi-modal representation. We then use graph
convolution algorithms and path features to extract structural features, and use a scoring function to
predict missing triples. Our innovation can be summarized as follows:

1) Designed a structure for extracting image-text information through single-modality encoding, fol-
lowed by interaction fusion, and improved the semantic similarity through an irrelevant filtering
module, thereby enhancing the fusion understanding of different modalities;

2) Proposed a structure feature learning scheme that combines graph convolution and path embedding,
thereby enhancing interpretability during the reasoning process;

3) Achieved better results on two public datasets, FB15K-237-IMG and WN18-IMG.

2. Related work

2.1. Knowledge graph completion

The task of knowledge graph completion has been widely studied, with typical sub-tasks including
link prediction, entity prediction, and relation prediction, aimed at predicting missing triples (head,
relation, tail) in the knowledge graph. Rule-based models such as AMIE and RLvLR utilize symbolic
features to perform reasoning through either rule mining or rule searching algorithms [19, 20]. Neu-
ralLP introduced dynamic programming and further optimized rule mining through attention mecha-
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nisms and auxiliary memory [21]. Path-based models focus more on the paths between queried head
and tail entities, and algorithms such as the path ranking algorithm (PRA) and random walks have
been applied and further explored in such models. RNNPRA uses recurrent neural networks (RNN)
to better learn path features for reasoning tasks [22]. DIVA proposed a unified reasoning framework
that divides multi-hop reasoning into a path search and path inference steps [23]. The continuous
development of deep reinforcement learning (DRL) techniques has enabled more effective multi-hop
reasoning in sparse graphs. A series of models such as DeepPath and MultiHop have achieved more
effective path exploration by designing new reward mechanisms [24, 25].

Currently, the more mainstream methods for solving KGC problems are focused on embedding-
based models. Translation-based models such as TransE, TransR, and TransH embed entities and their
relations by projection, and use a distance function to score the factual triplets [26–28]. Tensor factor-
ization models such as RESCAL, Tucker, and LowFER use vectors to capture latent semantics through
tensor decomposition and continuously improve model efficiency while reducing model size [29–31].
With the continuous improvement in neural networks (NN) in learning and expressing knowledge,
additional embedding-based models choose to use neural network architectures to implement KGC.
NTN uses neural tensor networks for relation reasoning in KG [32]. ConvE learns deeper features
using two-dimensional convolutional layers [33]. InteractE processes more complex semantic infor-
mation and KG interactions through multiple operations such as feature reshaping, feature permutation,
and recurrent convolution [34]. Although CNN-based KGR models generally perform better than tra-
ditional NN models, the feature information contained in the graph structure itself has not been well
utilized. Therefore, GNNs have been introduced into the KGC field to perform more complex rea-
soning tasks based on graph structure features. RGCN encodes each entity into a vector, uses specific
transformations to aggregate neighborhood information for different relationship categories, and then
reproduces facts through a decoder [35]. SACN uses weighted graph convolutional networks (WGCN)
to implement the encoder, and then inputs the encoded information into a convolutional network for
decoding [36]. NBF-Net and RED-GNN improve on traditional algorithms, choosing Bellman-Ford
algorithms and dynamic programming to optimize the propagation strategy in previous GNN models,
and achieve efficiency improvements [37, 38].

2.2. Multi-modal task

The traditional tasks in the two major fields of computer vision (CV) and natural language pro-
cessing (NLP) have been extensively discussed, and more recent research has focused on cross-modal
problems. The optimization and development of the Transformer model has led to a series of explo-
rations into visual-text pre-training frameworks. VisualBERT is considered to be the first image-text
pre-training model, which uses Faster R-CNN to extract visual features and connects them with text
embeddings, which are then input into a transformer initialized by BERT [39]. Inspired by the feature
extraction and architecture in the VisualBERT model, more pre-training models have been proposed
by adjusting the pre-training tasks and datasets. CLIP uses a dataset of 400 million image-text pairs
for pre-training, learning representations by directly matching raw text and corresponding images [40].
METER further explores single-modal feature extraction and processes multi-modal fusion using a
dual-stream architecture model, achieving excellent performance on many downstream tasks [41].

Numerous excellent multi-modal pretraining models have adopted the masked language modeling
(MLM), masked visual modeling (MVM), and visual-linguistic matching (VLM) tasks as pretrain-
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ing objectives; their corresponding downstream tasks are mainly focused on works that deal with the
meaning and relationships between text and images, such as visual question answering (VQA), visual
commonsense reasoning (VCR), and visual captioning (VC). However, for KGs, their distinguishing
feature from semantically structured information is their graph structure. Recently, some studies have
recognized the importance of structural features for handling KG-related tasks. DRAGON proposes a
deep bidirectional, self-supervised pretraining method for language knowledge models from text and
KGs [42]. Knowledge-CLIP takes entities and relations in KGs as inputs and extracts the original
features of these entities and relations [43]. Entities can be in the form of images/text, while relations
are described using language tokens. These pretraining models with structural features provide better
options for MKG-related tasks.

2.3. Multi-modal knowledge graph completion

As an emerging research field, related work in MKGC is not yet systematic, and early MKGC
tasks often directly added image information to the input of the original KGR model, which usually
led to a suboptimal performance. To address this issue, many studies have made more attempts and
explorations in the field of image-text feature fusion in MKG.

IKRL first proposed an attention-based neural network to consider visual information in entity im-
ages [44]. TransAE introduced a KG representation learning method that integrates multi-channel
(visual and language) information in a translation-based framework, and extended the definition of
triple energy to consider new multi-channel representations [45]. MKBE and MRCGN integrated dif-
ferent neural encoders and decoders with relation models to embed learning and multi-modal data
for inference [14, 46]. MarT constructed a multi-channel analogical reasoning framework based on
structural mapping theory to improve model interpretability [47]. MMKGR used a unified gate at-
tention network to perform an attention interaction and to filter noise for generating more effective
and reliable multi-modal complementary feature encoding, and designed a new reinforcement learning
framework to predict missing elements in multi-hop reasoning processes [16]. MM-RNS proposed
a multi-channel relation-enhanced negative sampling framework that provides bidirectional attention
between visual and text features by integrating relation embeddings, and combined it with contrastive
learning to construct an effective contrastive semantic sampler to improve MKGC performance [48].

We have conducted a brief overview of the related models in traditional and multimodal KGs, as
shown in Table 1.

Table 1. Summarization of existing KGC models.
Knowledge Graph Completion Multi-Modal Knowledge Graph Completion

Rule-based Models AMIE, RLvLR, NeuralLP -
Path-based Models RNNPRA, DIVA, DeepPath, MultiHop -

Embedding-based Models
Translational Models TransE, TransR, TransH TransAE
Tensor Decompositional Models RESCAL, Tucker, LowFER -
Neural Network Models NTN, ConvE, InteractE, RGCN, SACN, NBF-Net, RED-GNN IKRL, MKBE, MRCGN, MarT, MMKGR, MM-RNS

In order to provide a clearer demonstration of the effectiveness of the aforementioned work, we
have provided a more detailed comparative analysis of selected algorithms in Table 2.
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Table 2. Model performance comparison.

Models Dataset Technique Performance(Hits@10)
RLvLR FB75K Logic rule 43.4
MultiHop FB15k-237 Relation path 56.4
TransE FB15k-237 Translational 47.1
LowFER FB15k-237 Tensor decompositional 54.4
RED-GNN FB15k-237 GNN 55.8
TransAE WN9-IMG Translational 94.84
MMKGR WN9-IMG Attention 92.8

3. Problem formulation

The knowledge graph G = {E,R,F } is a directed graph, where E is the entity set, R is the relation
set, and F = {(h, r, t) |h ∈ E, t ∈ E, r ∈ R} is the fact set consisting of fact triples (h, r, t). The head entity
h ∈ E and tail entity t ∈ E are connected by a relation r ∈ R. For a multi-modal knowledge graph G,
the entity e includes two modalities, namely textual information et and visual information ev.

The purpose of multi-modal KGC is to infer incomplete triplets T =

{(h, r, t) |h ∈ E, t ∈ E, r ∈ R, (h, r, t) < F } based on known fact triplets (h, r, t). In practice, the in-
complete triplets that may appear in our prediction task can take three forms, namely (h, r, ?),
(h, ?, t), and (?, r, t). In the implementation process, we input the feature information of entities e and
relationships r into an encoder to obtain the corresponding embedding vectors h, r, t. Then, we use
a scoring function f (h, r, t) to evaluate the probability of the truthfulness of inferred triplets. That
is, when triplet (h, r, t) ∈ Gis true, f (h, r, t) scores 1, otherwise, when (h, r, t) < G is true, f (h, r, t)
scores 0. Taking a missing triplet in the form of (h, ?, t) as an example, let us assume the existence
of a relationship rpd between the head entity h and the tail entity t, thereby obtaining the complete
triplet

(
h, rpd, t

)
with an unknown truthfulness. To evaluate the probability of its actual occurrence, we

employ a scoring function, resulting in the output f
(
h, rpd, t

)
. The basic terminology definitions are

shown in Table 3.

Table 3. Notation summary.

Notation Explanation
G Multi-modal knowledge graph
E Entity set
R Relation set
F Fact set
T Incomplete fact set
(h, r, t) Fact triplet of the head, relation, tail
h Embedding of head entity
t Embedding of tail entity
r Embedding of relation entity
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4. Methodology

The model we proposed, MLSFF, has an overall architecture shown in Figure 2, which consists of
three components: 1) single-modality encoders for image and text embedding; 2) a multi-modal feature
fusion mechanism with irrelevant filtering to discard interfering information and to reduce noise when
the image and text features interact with each other; 3) a reasoning framework that combines the graph
structure and path features, introduces a new scoring function containing multi-hop path features, and
uses multi-modal features to predict incomplete triplets in KGC processes.

Figure 2. Overview of our model structure.

4.1. Single modal encoder

The emergence of the Transformer model has caused a huge revolution in the NLP field and has been
widely used in various tasks. The attempt to introduce the Transformer model into the CV field has not
only achieved success, but even achieved astonishing results. Specifically when the pre-training data
is large enough, Transformer’s performance in CV will be significantly better than CNN, breaking the
limitation of the original few inductive biases, and achieving better transfer effects in downstream tasks.
We use independent image encoders and text encoders based on the Transformer architecture to extract
features from the raw inputs. For a given triple, the entity and relation are sent to the corresponding
encoder based on their modality (image or text). The relation represented by language tokens is sent
to the text encoder similar to the text entity. The main architecture of our single-modality encoder is
illustrated in Figure 3.
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14103

Multi-Head

Attention

Norm & Add

Embedded

Patches

Feed

Forward

Norm & Add

V
L

Norm & Add 

Multi-Head

Attention

Embedded

Sen&Word

Norm & Add

Feed

Forward

T
L

Aberystwyth University is a public research

university located in Aberystwyth, Wales.

Aberystwyth was a founding Member

Institution of the former federal University

of Wales…

Figure 3. Structure of single modal encoder.

Visual Encoder For image feature extraction, we adopt the embedding layer and Transformer en-
coder of the pre-trained model ViT as the main architecture [49]. Let C be the number of channels in
the image (in RGB images, C = 3) and the resolution of each image patch be (P, P). First, we scale
the input image I to a unified resolution (A, B), and then divide it into N = AB/P2 patches. We use a
linear mapping (i.e., FC layer) to transform each patch into a one-dimensional vector. This completes
the embedding of the original image Xv

pat. Subsequently, we feed the obtained image embedding and
position embedding Xv

pos into the Transformer encoder as an input. The overall forward calculation
process is as follows:

Xv
0 = Xv

pat + Xv
pos (4.1)

X̂v
l = MSA

(
LN

(
Xv

l−1
))

+ Xv
l−1, l = 1, 2, ..., Lv (4.2)

Xv
l = FFN

(
LN

(
X̂v

l

))
+ X̂v

l , l = 1, 2, ..., Lv (4.3)

The MSA Block consists of a multi-head attention mechanism, a layer normalization, and a skip
connection (Layer Norm & Add), which can be repeated for Lv times, and the output of the l−th block is
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X̂v
l . The MLP Block consists of feedforward neural network, layer normalization, and skip connection

(Layer Norm & Add), which can be repeated for Lv times, and the output of the l−th block is Xv
l .

Textual Encoder In NLP tasks, a large number of pre-training models based on the Transformer
architecture have emerged, such as BERT, which has recently been widely applied and demonstrated
great success in various downstream tasks [50, 51]. In this paper, we use BERT to perform language
modeling and feature extraction. Specifically, we divide the complete sentence into a word sequence
and perform word embedding to obtain the word embeddings Xt

word. In order to preserve sentence-
level features, we also embed the entire sentence and align it with the word embeddings to obtain the
sentence embeddings Xt

sen. Then, we send the word embeddings Xt
word, position embeddings Xt

pos, and
sentence embeddings Xt

sen to the encoder.

Xt
0 = Xt

word + Xv
sen + Xv

pos (4.4)

X̂t
l = LN

(
MSA

(
Xt

l−1
))

+ Xt
l−1, l = 1, 2, ..., Lt (4.5)

Xt
l = LN

(
FFN

(
X̂t

l

))
+ X̂t

l , l = 1, 2, ..., Lt (4.6)

The difference between text encoding and visual encoding is that layer normalization (LN) is located
after the multi-head self-attention (MSA) and feed-forward network (FFN) layers. Similarly, the output
of the l−th MSA block is denoted as X̂t

l and the output of the l−th MLP block is denoted as Xt
l . We

denote the number of MSA and MLP blocks in the text encoder as Lt.

4.2. Multimodal feature fusion

In the multimodal fusion module, we fuse the separately encoded text and image information.
Specifically, since relationships belong to a separate data category with certain label information, al-
though they are usually described using text, their semantic relevance to the text and image descriptions
of entities is relatively low. Therefore, we choose to fuse and filter the image and text information sep-
arately for relationships, and then introduce the encoded relationship attributes when learning the path
features.

To enhance the efficiency of the semantic interaction between the two different modalities of image
and text, we adopt an intermediate representation to unify the multimodal information. On one hand,
we aim to achieve a more fine-grained interaction between different modal feature information; on the
other hand, since images often contain semantically irrelevant information, directly using the complete
image embedding in the feature fusion process may introduce noise. Therefore, we feed the learned
image and text vectors into a multimodal gated unit for weight learning to achieve the intermediate
feature representation.

g f = σ
(
XvWv � XtW t) (4.7)

X̂m = g f Xv +
(
1 − g f

)
Xt (4.8)

In this equation, σ represents the sigmoid function, Xv and Xt denote the feature vectors outputted
by the image and text encoders, respectively, Wv and W t are parameter matrices, g f is a scalar within
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the range of [0, 1], X̂m represents the multi-modal embedding vector obtained through the filtering
layer, and � denotes the element-wise multiplication (i.e., Hadamard product).

Later, we feed the original embeddings X̂m into the multi-modal encoder to further learn the seman-
tic features.

X = Tran
(
X̂m

)
(4.9)

4.3. Prediction block

We have obtained the multi-modal feature embedding of a certain fact description through the pre-
vious structure, but this is insufficient for large-scale and complex KGs. Hence, we aim to further
learn path features to better accomplish the task of KGC. The overall approach regarding the learning
of structural features and completion can be summarized as follows. First, we extract a certain path
existing in the MKG, connect the relations in the path, and then divide the path into several shorter
components through a sliding window. Then, we select one of the components and use a recurrent
attention unit to embed the selected component to obtain a relation vector, which is represented as
a weighted combination of existing relations. We recursively merge the divided components of the
path, and finally use a scoring function to determine the truthfulness of unknown triplets. The overall
process of the prediction block shows in Algorithm 1.

Algorithm 1 Prediction block
Input: the path body rp

Output: the score of triplet f (h, r, t)
1: Initialize the window size w
2: for all i = 1, 2, ..., n − 1 do
3: get path segments w = {1, 2, 3} and encoding with LSTM

[
ŷi, ŷi+1

]
= LSTM (wi);

4: yi = ŷi+1

5: end for
6: µ = so f tmax

([
FC

(
y1

)
,FC

(
y2

)
, ...,FC

(
yn+1−w

)])
7: Y =

∑n+1−w
i=1 µiyi

8: f (h, r, t) = σ (vec (([Xh; Y] ∗ ω) W) Xt)
9: return f (h, r, t)

Sliding Window Segmentation To extract fine-grained features from sampled paths, we decom-
pose the sampled paths into combinations of different sizes using sliding windows of varying lengths.
In the implementation, we use windows of size w = {1, 2, 3}. Given the window size, the generated
sliding windows traverse the path body rp =

[
rp1 , ..., rpn

]
. Then, we use a long short-term memory

(LSTM) network as a sequence encoder to conceal the information within the sliding windows. Taking
the sliding window of length 2 as an example,

[
ŷi, ŷi+1

]
= LSTM (wi) (4.10)

Since the final state yi+1 usually contains the complete information of the sequence, we select
yi = ŷi+1. yi is meaningful to learn the relationship in the window if the relationship segments in
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the i−th sliding window always appear together in some combination, which is more likely to repre-
sent a real ”long-distance” relationship. To incorporate this observation into our model, we calculate
the probability value of these relationship segments by:

µ = so f tmax
([

FC
(
y1

)
,FC

(
y2

)
, ...,FC

(
yn+1−w

)])
(4.11)

where FC (·) represents a fully connected layer, which is used to learn the probability that the i−th
window in yi represents a meaningful relationship fragment. Finally, we calculate the weighted sum of
information from different windows to represent the complete path features:

Y =

n+1−w∑
i=1

µiyi (4.12)

Scoring Function Considering the excellent performance of graph convolutional models in han-
dling KGC problems, we choose the following scoring function:

f (h, r, t) = σ (vec (([Xh; Y] ∗ ω) W) Xt) (4.13)

In the proposed scoring function, Xh and Xt represent the multi-modal embeddings of the head and
tail entities, respectively, while Y represents the embedding of their relationship, ∗ and ω denote the
convolution operation and the convolution kernel, respectively, and vec (·) represents the projection
operation from the feature map to the vector space, W is a parameter matrix. With the above method,
we can compute whether a fact constructed by a certain relationship between two entities is true or not.

For ease of reference, we summarize the main symbol notations used in this chapter in Table 4.

Table 4. Notation summary.

Notation Explanation
X Embedding entity vector
X̂ Intermediate state of the embedding entity
ŷ Intermediate state of the embedding path
yi Embedding path vector
Y Encoded Complete path vector
W Parameter Matrix

5. Experiment

5.1. Dataset

We evaluate the effectiveness of the MLSFF model on two publicly available datasets: (i) FB15K-
237-IMG: a subset of the large-scale knowledge graph Freebase, where each entity has 10 images, and
is a commonly used dataset in KGC tasks; (ii) WN18-IMG: WN18 is a knowledge graph extracted
from WordNet. WN18-IMG is an extended dataset of WN18, where each entity has 10 images [52].
These two datasets can be obtained as FB15k-WN18-images. Table 5 shows the statistical information
of the datasets.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14096–14116.
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Table 5. Statistics of datasets.

Datasets #Entities #Relations #Train #Dev #Test
FB15k-237-IMG 14,541 237 272,115 17,535 20,466
WN18-IMG 40,943 18 141,442 5000 5000

5.2. Settings

Evaluation Metrics: We adopted classic knowledge graph completion evaluation metrics, including
Hits@k and mean rank (MR), as shown in Table 6.

Table 6. Summarization of evaluation metrics.

Evaluation metrics Calculation formula
Hits@k Hits@k =

∑
i

1(ranki)<k
Q

MR MR = 1
Q

∑
i ranki

Hits@k: The Hits@k metric is defined as the proportion of true entities that appear in the top-k
ranked list of entities. It is calculated as follows:

Hits@k =
∑

i

1 (ranki) < k
Q

(5.1)

where ranki represents the rank of the expected entity of the i−th incomplete fact triple. Q represents
the total number of incomplete fact triples.

Mean Rank (MR): Mean Rank is the arithmetic average of the individual entity ranks, defined as:

MR =
1
Q

∑
i

ranki (5.2)

Parameter Configuration To consider the model’s scale and computational efficiency, we choose
the ViT-B/16 pre-trained model for the image encoder. We set the embedding dimensions for both text
and image to 768. The number of layers for both the image and text encoders is set to 12, while the
number of layers for the modality encoder is set to 3. The graph embedding dimension is set to 200,
and the batch size is set to 64. We utilize the Warmup algorithm and the ADAM optimizer to adjust the
learning rate of the model parameters. The initial learning rate is set to 0.0005, and the dropout rate is
set to 0.1.

Baseline Setup We selected four unimodal methods and four multi-modal methods as baselines to
compare with our proposed model. The unimodal methods include the following: 1) TransE [26], a
classic translation-based model that encodes entities and relationships into a linear space; 2) DistMult
[53], which uses a linear neural network to encode a multi-relation graph for multi-relation learning;
3) ComplEx [54], which solves both symmetric and asymmetric relations by introducing complex
methods; and 4) RotatE [55], which defines relations as rotations from the head entity to the tail entity
in a complex space to achieve multi-class reasoning. The multi-modal methods include the following:
(i) IKRL (UNION) [44], which extends TransE to learn about visual representations of entities and
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structural features of KGs; (ii) TransAE [56], which combines multi-modal encoders with TransE to
achieve unified representation of visual and textual features; (iii) RSME [57], which uses a forget gate
to learn about valuable images for MKG embedding; and (iv) MKGformer [52], which proposes an
MKG pre-training model based on a hybrid transformer structure.

5.3. Main results

The experimental results on the two datasets are shown in Table 7, which shows that our model
generally outperforms the 8 baseline methods.

Table 7. Results of link prediction on FB15k-237-IMG and WN18-IMG.

Model
FB15k-237-IMG WN18-IMG

Hits@1↑ Hits@3↑ Hits@10↑ MR↓ Hits@1↑ Hits@3↑ Hits@10↑ MR↓
TransE 0.198 0.376 0.441 323 0.40 0.745 0.923 357
DistMult 0.199 0.301 0.466 512 0.335 0.876 0.940 655
ComplEx 0.194 0.297 0.450 546 0.936 0.945 0.947 -
RotatE 0.241 0.375 0.533 177 0.942 0.950 0.957 254
IKRL (UNION) 0.194 0.284 0.458 298 0.127 0.796 0.928 596
TransAE 0.199 0.317 0.463 431 0.323 0.835 0.934 352
RSME 0.242 0.344 0.467 417 0.943 0.951 0.957 223
MKGformer 0.256 0.367 0.504 221 0.944 0.961 0.972 28
MLSFF (ours) 0.274 0.411 0.552 193 0.951 0.973 0.980 22

Firstly, in all works, the scores on FB15k-237-IMG are generally lower than those on WN18-IMG.
The fundamental reason is that the dataset FB15k-237-IMG is more sparse and complex than the
dataset WN18-IMG, with a greater variety of relationships between different entities. In addition, our
model performs better on Hits@1 than on Hits@3 or Hits@10, indicating a superior discriminative
ability in predicting unknown entities. In the MLSFF model, we use two single-modal encoders to
extract image and text information, followed by a multi-modal layer for interaction, which enables full
learning of semantic information for entity description. We introduce a sliding window in learning
the link features, which realizes ”scalable” path sampling and to some extent solves the problem of
complex graph structures.

Secondly, some traditional single-modal methods, such as RotatE, even outperform architectures
that use multi-modal features in overall performance. This suggests that a well-designed relationship
decomposition and learning rule are effective in solving complex graph problems, and fully utilizing
structural features can improve prediction accuracy. Therefore, after obtaining multi-modal encoding
information, our model not only uses the traditional graph convolutional method to obtain neighbor
node information, but also incorporates long-distance path features and borrows from recurrent neural
network structures used in processing text information to extract left and right node information from
selected paths. By adding certain ”vertical” features during the convolution process, our prediction
model can have better interpretability.

Finally, our model achieved significant improvements of 4.8 and 1.2% on the two datasets, respec-
tively. However, in the FB15k-237-IMG dataset, our model’s MR metric results were slightly inferior
to those of the RotatE model. This could be attributed to the FB15k-237-IMG dataset containing a
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larger number of entities and a more diverse set of relationships, resulting in a sparser and more com-
plex knowledge graph. While our model has improved its ability to learn about multi-hop path relation-
ships to some extent, it lacks similar operations on negative samples, as seen in the RotatE model. As
a result, this has impacted the overall accuracy. Overall, the experimental results demonstrate that our
model outperforms existing methods on most evaluation metrics, with even more significant improve-
ments observed on more complex knowledge graphs. This is because the MLSFF model learns more
comprehensive semantic features by fusing information from both image and text modalities, enabling
more comprehensive knowledge extraction from the graph. In addition, we employed convolutional
operations that capture neighborhood information and an LSTM structure that learns path-level fea-
tures to achieve a more comprehensive and three-dimensional feature encoding structure for learning
graph structural features, which is highly effective for processing large-scale knowledge graphs.

6. Further analysis

6.1. Ablation study

To investigate the actual effects of each component in the MLSFF model, we conducted ablation
studies by removing some of the components.
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Figure 4. Ablation on different components of the MLSFF.

w/o SinE: To investigate the effect of the single-modal encoders on understanding image and text
semantics, we aligned the one-dimensional vectorized image patches and text embeddings, calculated
their Hadamard product, and directly fed them into the multi-modal encoder for learning.

w/o Flt: To further investigate the actual effect of the unrelated filtering layer, we also experimented
with the meaning of the multi-modal fusion module by directly fusing the encoded image and text
features without the unrelated filtering layer.

w/o Swin: To demonstrate the positive effect of extracting path information on learning graph
structure features, we removed the sliding window encoding module and only used graph convolution
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operations to obtain structural embeddings.
From Figure 4, it can be seen that using single-modality encoders to extract image and text features

can effectively enhance semantic understanding and better learn human knowledge, thereby promoting
and improving the performance in KGC tasks. Although image features can assist in text understand-
ing, there is still some noise interference. Filtering out irrelevant information can further enhance the
fusion effect between multi-modal features and improve accuracy. In addition, when facing large-scale
and complex knowledge graphs, although graph convolutional operations can already fully learn struc-
tural information and capture neighbor features, the introduction of path and rule features can further
improve model interpretability and prediction ability. Specifically, when dealing with sparse graphs,
simple convolutional operations may lead to a certain decrease in accuracy, and learning path features
can also help improve model efficiency.

6.2. Hyperparameter analysis

Our connection prediction module is mainly implemented based on the GNN algorithm, which
aggregates neighbor information into the target node and then updates the target node based on the
integrated information. However, this approach is prone to the problem of over-smoothing, where the
representations of different nodes tend to become similar as the number of GNN layers increases during
training. To address this issue, we introduce ”longer-distance” path embeddings, which combine deep
features and breadth features to extract complex graph structure information.
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Figure 5. Impacts of the width on FB15k-237 and WN18RR.

We further explore effective graph processing structures by adjusting the number of convolutional
layers and the size of the sliding window. In this work, considering memory and computational capac-
ity, we conduct experiments with sliding window widths ranging from 1 to 3. As shown in Figure 5,
the model performs better when the sliding window width is set to 2.

When the sliding window width is set to 2, our model can learn more layers of graph structural fea-
tures and neighbor information. When the sliding window width is too small, that is, when the number
of subgraphs learned is too few, the information in the knowledge graph cannot be fully aggregated to
learn the structural information of the knowledge graph. In addition, some useful high-order neighbors
cannot be captured. When the number of subgraphs is too large, the node representation is overly
smoothed due to excessive noise.
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6.3. Complexity analysis

MLSFF: Denote the entity embedding dimension as de, the structural embedding dimen-
sion as dr, and the number of channels as T . The final output dimension for triplet en-
coding is denoted as m × n. The main complexity of our model can be represented as
O (|E| de + |R| dr + Tmn + Td (2dm − m + 1) (dn − n + 1)).

TransE: The scoring function of the TransE model is denoted as ‖h + r − t‖, and as a result, its
algorithmic complexity can be represented as O (|E| d + |R| d).

RED-GNN: As a GNN model in the traditional knowledge graph completion task, the RED-GNN
model has an algorithmic complexity denoted as O

(
d ·min

(
D̄L, |F | L

))
. In this context, D̄ represents

the average degree of the r-directed graph per layer. It can be observed that our model has a slightly
higher computational complexity. This is attributed to two main factors: first, the inherent complexity
of multimodal knowledge graphs; and second, the decision to incorporate a more extensive graph
feature learning scheme to enhance the interpretability of paths.

6.4. Study limitation

Despite the promising results and contributions of our study, there are some limitations that should
be acknowledged:

While our model aims to enhance interpretability by incorporating graph features and multi-hop
paths, the interpretability of the model’s predictions may still be limited. Explaining the reasoning
behind specific predictions or understanding the underlying decision-making processes can be chal-
lenging, especially in complex multimodal knowledge graphs.

In addition, the proposed model in this paper exhibits high complexity, which results in increased
demands for computational resources and significant time consumption. Furthermore, our model does
not consider the possibility of negative samples during the sampling process, which has an impact on
the overall accuracy of the prediction task.

7. Conclusions

We propose a MLSFF model which first uses two independent single-modality encoders to obtain
pre-trained embeddings for both image and text information. Then, after filtering out irrelevant in-
formation, the multi-modal features are fused to obtain a unified encoding vector. We utilize graph
convolutional algorithms to learn the structural information in the knowledge graph. In addition, we
introduce path-based feature information into the graph structural features to obtain richer relationship
representations. Our experimental results demonstrate that our model achieves better performance
in MKGC tasks. To address the issues of high complexity and the omission of negative samples in
our model, we will focus on the following areas for future research: (i) designing simpler and more
efficient scoring functions that are more streamlined and computationally efficient; (ii) considering
negative sample interference, thereby mitigating their impact on the accuracy of the prediction task;
(iii) incorporating additional modalities: to achieve a more comprehensive and diverse multimodal
fusion such as numerical features and enhancing the overall performance of the model.
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