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Abstract: The Internet of Things (IoT) is a rapidly evolving technology with a wide range of potential
applications, but the security of IoT networks remains a major concern. The existing system needs
improvement in detecting intrusions in IoT networks. Several researchers have focused on intrusion
detection systems (IDS) that address only one layer of the three-layered IoT architecture, which limits
their effectiveness in detecting attacks across the entire network. To address these limitations, this paper
proposes an intelligent IDS for IoT networks based on deep learning algorithms. The proposed model
consists of a recurrent neural network and gated recurrent units (RNN-GRU), which can classify attacks
across the physical, network, and application layers. The proposed model is trained and tested using
the ToN-IoT dataset, specifically collected for a three-layered IoT system, and includes new types of
attacks compared to other publicly available datasets. The performance analysis of the proposed model
was carried out by a number of evaluation metrics such as accuracy, precision, recall, and F1-measure.
Two optimization techniques, Adam and Adamax, were applied in the evaluation process of the model,
and the Adam performance was found to be optimal. Moreover, the proposed model was compared
with various advanced deep learning (DL) and traditional machine learning (ML) techniques. The
results show that the proposed system achieves an accuracy of 99% for network flow datasets and 98%
for application layer datasets, demonstrating its superiority over previous IDS models.
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1. Introduction

The Internet of Things (IoT) is a network of interconnected physical devices that are embedded
with sensors, software, and other technologies that enable them to collect and exchange data over the
Internet. IoT is a revolutionary technology that has a signicantlly positive impact on human
lives [1, 2]. IoT applications are surprisingly becoming more prevalent in our society, including smart
grids, smart retail, smart homes, smart cities, and smart health care [2–4]. The IoT is increasingly
being used in a variety of products, including wearables and smart homes, with the aim of enhancing
job productivity, living comfort, and entertainment [5]. The IoT architecture consists of three layers
(including perception, network, and application layer), as shown in Figure 1. The perception layer is
the first layer, and it consists of sensors that track, record or measure environmental factors related to
physical events in an environment, temperature, moisture, or levels of pollutants. The network layer is
built on top of the perception layer and comprises a variety of switches and routers that facilitate
connectivity, enabling the transmission of information shared by various smart devices. The
application is the last layer that consists of systems for processing and collecting data from detected
objects in order to produce meaningful information that may be used to make decisions. Using this
architecture, a number of essential applications have been developed, including smart grids, mobility,
distribution channels, agriculture, and healthcare systems [6–8].

It is always necessary to secure these systems in order to prevent cyber attacks that can lead to
service disruption, unauthorized access, data tampering, and illegal access [9]. Several researchers
have focused on intrusion detection systems (IDS) by utilizing different machine learning (ML) and
deep learning (DL) algorithms to detect malicious activities in IoT networks [10].

However, the existing systems are focused on a single layer of the three-layered IoT architecture,
which limits their effectiveness in detecting attacks across the entire network. Moreover, the existing
systems still need improvements in the detection process of cyberattacks. To overcome these
limitations, this paper proposes an intrusion detection framework for IoT networks that covers all
three layers in IoT architectures (including the perception layer, network layer, and application layer).
The proposed hybrid model consists of a recurrent neural network and gated recurrent units
(RNN-GRU), which can analyze sequential data effectively, making it a suitable choice for intrusion
detection in IoT environments. In addition, this work utilized data pre-processing techniques such as
cleaning, encoding, feature filtering, shuffling, and normalization. The significance of the proposed
model is further reinforced by utilizing the ToN-IoT dataset, which was specifically collected for the
three-layered IoT architecture. The following are the major contributions of this work:

• This paper proposes a hybrid deep learning intelligent intrusion detection framework for IoT
networks. The hybrid model consists of RNN and GRU algorithms.
• This study covers all three layers in the IoT architecture (including perception layer, network

layer, and application layer).
• Compared the performance of the proposed scheme with other existing advanced DL and

traditional ML techniques.

The remainder of the article is organized as follows. Section 2 discusses IoT layered architecture.
Section 3 presents intrusions in IoT networks. IDS and its sub-types are presented in Section 4. Section
5 discusses related work and presents a literature comparison. A step-by-step methodology of the
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proposed system is presented in Section 6. Section 7 provides a detailed analysis of the results and a
comparison with state-of-the-art models, and also presents the discussion. This work is concluded in
Section 8.

Figure 1. IoT three layers architecture.

2. IoT architecture

IoT networks require a flexible and layered design to link various devices, but there is no universal
reference model for IoT architecture. The 3-layered IoT architecture is widely accepted and used in
the literature, defining the IoT architecture in terms of the perception, network, and application layers.
It provides a clear and concise framework for designing IoT systems that is easier to understand than
a 5-layered architecture. However, the choice of architecture depends on the specific use case and
requirements of the system being designed. Figure 1 illustrates the three-layer architecture of IoT,
consisting of the perception layer, network layer, and application layer. The perception layer consists
of sensors, actuators, and other devices that interact with the physical environment. The network
layer is responsible for connecting the devices in the perception layer to the cloud or other back-end
systems. The application layer is where the data is processed, analyzed, and used to make decisions.
The importance of this figure in the present work is that it provides a high-level overview of the IoT
architecture, which helps in understanding the data flow and identifying potential attack surfaces in the
network. However, there are two more layers: The processing layer and business layer, in a five-layer
IoT model [11]. The IoT five-layer architecture is depicted in Figure 2, this figure is important because
it provides a more detailed view of the IoT network structure than the three-layer architecture. It helps
readers to understand the different layers of the IoT network and how they interact with each other,
each layer explains as follows.
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Figure 2. IoT five layered architecture.

2.1. Perception layer

The perception layer has a physical/hardware layer in an IoT architecture which includes real
objects of various sizes and forms. This involves components such as sensors, controllers, actuators,
and machines [12]. Information gathering, information processing, information storage, and object
identification are all handled by this layer. Naming and addressing IoT objects are done by this layer
of an IoT model. The devices in the IoT are tracked using digital identities. A Universal Unique
Identifier (UUID) is one way to give an object a special identity. Similar addressing techniques, such
as IPv6 and IPv4, are utilized to address objects in an IoT network [13].

2.2. Network layer

For transmitting data to processing systems, such as servers, the network layer of an IoT model
utilizes a variety of communication methods among physical smart devices. This communication could
only be done via secure connections through cables or wireless. This layer can handle a number of
technology types and can be extended for the transfer of sensor data. Several communication methods
for IoT devices are presented in the existing literature, this includes Wi-Fi, Bluetooth’s specialized
range, ZigBee for small areas, and 4G and 5G for broad IoT environments [14].
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2.3. Preprocessing layer

Middleware is another name for processing layer in an IoT model. Significant amounts of data
are sent to this layer via the network layer. After receiving the data, processing layer, as the name
suggests, evaluates, analyses, and saves the data in the associated cloud database. Network attacks at
this layer affect the security of databases and the cloud. The most well-known threats at this layer are
SQL injection (SQLi) attacks, browser attacks, and flooding attacks.

2.4. Application layer

The application layer of an IoT model serves as a global supervisor of the IoT application-specific
services. Home automation, intelligent agriculture, smart cities, intelligent healthcare, and smart
industry are a few examples of IoT applications that the application layer deals with.

2.5. Business layer

The creation of reliable and effective business models, the management of business regulations,
and the deployment of optimal investment are some of the major responsibilities of the business layer
in an IoT network. This is based on the fact that business models are created by evaluating the
effectiveness of current applications and services. The use of technology and the ways in which
services are presented to customers/clients may hence be used to measure the success of the IoT
system.

3. Intrusion in IoT network

An IoT-based network still suffers from various problems, such as security issues, that prevent such
systems from becoming widely used. Intrusion in IoT networks is a significant concern due to the
widespread use of IoT devices in various domains such as healthcare, transportation, smart cities, and
industrial automation. These devices are interconnected, and they continuously generate, process, and
transmit sensitive data. However, the inherent vulnerabilities of IoT devices and the lack of security
measures make them an easy target for cyber attackers.

IoT devices have limited processing power and memory, which makes it difficult to implement
traditional security mechanisms such as firewalls, IDS, and antivirus software. Moreover, IoT devices
often operate in hostile environments, such as outdoor locations and factories, which make them more
susceptible to physical attacks. The combination of these factors makes it challenging to secure IoT
devices from intrusions. Security vulnerabilities can be associated with each layer in IoT three/five-
layer architecture models.
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Figure 3. Attacks at layers of IoT.

3.1. Intrusion in IoT Layers

Several attacks associated with different layers of an IoT network are depicted in Figure 3. This
figure illustrates the different types of intrusions that can occur in each layer of the IoT network. The
perception layer can be attacked by physical tampering, the network layer can be attacked by
eavesdropping, denial of service (DoS) attacks, and routing attacks, and the application layer can be
attacked by malware and data manipulation attacks. These are presented based on IoT three-layer
architecture but can be easily extended to five-layer architecture. For example, attacks such as those
stemming from application layer vulnerabilities, e.g., code injection and buffer overflow, network
layer vulnerabilities, e.g., congestion and black hole attacks, and perception layer vulnerabilities, e.g.,
jamming and eavesdropping attacks, are explained as follows.

3.1.1. Application layer attacks

This layer operates on the information received from the network layer in order to deliver user
services. Data integrity, data dependability, customer confidentiality, and the capacity to safeguard
critical/private/sensitive information are security concerns associated with this layer. As the name
suggests, attacks on this layer are application-specific which will have a severe impact on the
application programs. The application layer threats include phishing assaults, buffer overflows,
manipulation of confidential data, and authentication and authorization attacks [12].

• Code injection: This attack involves injecting malicious content into a system by taking advantage
of programming mistakes. In order to launch a code injection attack, scanning is frequently
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employed to obtain details about a target system. Attackers take advantage of the public nature
of IoT software updates which will lead them to insert malicious code into such devices and take
control of an IoT network as a whole. Code injection can be employed for a number of reasons
such as data theft, gaining unauthorized access to a system, and worm propagation [15–17].
• Cross-site scripting (XSS): It is a cyber-attack in which a web application’s weaknesses are hunted

for inserting a malicious script. This suggests that phishing, cookie theft, or network attacks
against an entire company might all have an impact on user information [18].
• Buffer overflow: Since a predetermined memory layout is used by many applications to store

information and code chunks [16, 17]. In this attack, hackers used a system’s security
vulnerabilities to violate the limits of the system’s code and data block. Buffer overflow is one of
the most frequent attacks on applications and software. As an example, an automated production
program called WelinTech KinView 6.53 HistrySvr was vulnerable to heap buffer overflow [19].
• Phishing attack: In these attacks, an intruder poses as a genuine user or reputable organization

to steal personal/sensitive/critical information using email is phone calls are the most popular
tools used for such attacks [17, 20]. DDoS, password, or scanning attacks can be used to enable
phishing attacks, although they do not really start phishing attacks.
• Authentication and authorization: The protection of an IoT network’s confidentiality and safety

depends heavily on the authentication procedure [16]. An attacker can carry out illegal actions,
like opening a door in a smart home or stealing your bank account details using Amazon Alexa
due to the absence of a flawless authentication system [21].

3.1.2. Network layer attacks

In an IoT network devices connect to the data processing center via the network layer. The
intermediate layer of an IoT system, which is also the layer with the greatest vulnerabilities, plays an
important role in information coordination. There are various attacks attached to this layer such as
wormhole, replication, selective forwarding, hello flood, and black hole attacks. The network layer
vulnerabilities and countermeasures have received the most attention in the literature. Some of the
attacks associated with this layer are detailed as follows.

• DoS attack: A denial-of-service (DoS)/ distributed denial-of-service (DDoS) attack on a network
involves bombarding the target with queries, which creates a lot of communications overhead
[16, 17]. This kind of attack will exhaust the victim node and will lead to the legitimate users
being unable to access network services [16].
• Sinkhole attack: A sinkhole attack in an IoT network layer is a type of denial-of-service (DoS)

attack. In this attack, the hacker used the compromised node to draw data/information from its
surrounding nodes [16, 22]. An intruder may deploy a rogue node in such a network to capture
network activities and then manipulate sensor information afterward [22].
• Sniffing attack: As the name suggests, in this attack hackers gather network data via sniffer

sensors and programs to retrieve important/sensitive/critical information from the
network [16, 23].
• Man-in-the-Middle attack: Actual attacks of this kind happen when two susceptible nodes are in

communication. In order to interact between two target terminals, the attacker poses as a valid
node on one of the nodes [16, 23, 24].
• Replay attack: Attackers listen in on conversations between the sender and receiver to get data.
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The transmission couples periodically send the incoming signal, depleting the available
communication sources In this attack, hackers eavesdrop on the conversations between the
sender and the receiver to steal user information. The transmission couples periodically send the
incoming signal, draining the available resources [24,25], such as computing power and backend
database capacity [25]. It can be caused by various types of attacks, including DoS, XSS, and
scanning.

3.1.3. Perception layer attacks

Since this layer contains sensors and other data collection devices, sometimes it is also called sensor
layer. It’s crucial to provide secure connectivity for the devices in this layer. These devices, the majority
of which are wireless, are more complicated and have greater potential for security vulnerabilities. This
makes it challenging to apply the typical internet security rules to them. The various attacks in this
layer include jamming, eavesdropping, node manipulation, and hardware hacking [12, 15].

• Malicious node injection: An attacker can carry out a malicious node injection attack by
physically inserting a new malicious node among a group of nodes. The attacker then alters the
data and sends false information to other nodes. This type of attack is executed by the attacker
through multiple nodes [26].
• Physical damage: Physical damage to IoT system components can also lead to a denial of service

(DoS) attack. The attacker may physically access the device, power source, or data flow between
devices to cause damage [26].
• Eavesdropping: In this attack, hackers intercept the communication by listening in on the

devices and the physical layer nodes [16, 24]. For instance, unauthorized users may utilize an
antenna to capture information sent between two parties [12, 25]. A password attack can lead to
an eavesdropping attack in the IoT perception layer. An attacker who is able to access IoT
devices without authorization can listen in on communications if the passwords are easily
guessable or crack-able.
• Tag cloning: In RFID tag cloning, hackers copy the information of an RFID electronic tag or smart

card to a cloned tag. The clone tag will then have the same characteristics as the compromised
tag. An attacker can achieve this by querying it is deploying infrastructure or by using debugging
to gather necessary data [16,24,25]. Tag cloning attack in the IoT perception layer is caused by a
scanning attack.
• Spoofing attack: In this type of attack, hackers impersonate a legitimate tag in order to gain similar

access. It can be triggered by various attacks, such as DDOS, password, XSS, etc. [12, 16, 24].
Additionally, this kind of attack would force nodes to resend their data, thus ramping up network
packets. Additionally, it speeds up the node’s energy usage which leads to shortening the node’s
lifespan [12].

4. Intrusion detection system

Intrusion detection systems (IDS) are frequently used to maintain track of network activity,
identify malicious behaviour, evaluate its seriousness, and alert the administrator. People who steal
data or cause intrusions are referred to as intruders. The main invaders are Misfeasor (legitimate
user/insider), Masquerader (unauthorized user/outsider), and clandestine User
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(insider/outsider) [1, 2, 27]. The existing literature has described various types of IDS based on
different criteria such as information source, analysis process, detection technique, learning method,
and knowledge base. Figure 4 illustrates the different types of intrusion detection systems (IDS) that
can be used to detect network intrusions in the IoT network. The types of IDS include signature-based
IDS, anomaly-based IDS, and hybrid IDS.

4.1. Information source based IDS

Host-based, network-based, and hybrid-based IDS are the three primary categories of IDS
depending on information sources [28]. When implemented on a local host, the host-based intrusion
detection system (HIDS) may monitor and find intrusions. It relies on the file system, system calls,
and network events of the host to look for intrusions and notifies the system when the intruder tries to
engage in any harmful action. This type of IDS is only able to monitor attacks against the system that
they are installed on. Network-based intrusion detection system (NIDS) finds attacks by examining
network-related information such as network packets, broadcast domains of network protocols, traffic
volume, and IP addresses. A hybrid intrusion detection system (HIDS) is a combination of multiple
IDS types. The main goal in implementing HIDS is to achieve a real-time intrusion detection
mechanism [2, 29].

4.2. Detection based IDS

In principle, the two primary methods of intrusion detection systems are signature-based and
anomaly-based.

4.2.1. Anomaly based intrusion detection

An anomaly-based IDS also referred to as behaviour-based detection, mimics the behaviour of
users, computer systems, and networks. The intrusion detection system uses a variety of ways to build
a baseline from typical behavior patterns. Any major departure of the examined pattern from the norm
is marked as an anomaly. The term “intrusion” refers to a device’s activity that deviates from its usual
behaviour [2, 29, 30].

4.2.2. Signature based intrusion detection

An intrusion detection system that uses different signatures for anomaly detection is called
signature-based IDS. As the name implies, a signature-based IDS uses a database to record the
signatures or patterns of known attacks. To create a signature, the packet’s properties are extracted.
When an activity is detected, the IDS looks at its signature and compares it to the patterns that have
already been saved in the database. If the pattern of the captured network packet matches any known
signatures an alarm is set out to the system administrator. Although signature-based IDS are highly
good at seeing known attacks, it is ineffective at spotting unknown attacks (also known as zero-day
attacks/threats) [2, 30].
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Figure 4. Classification of intrusion detection systems.

IDS is essential in an attack detection process. When such behavior is found, the administrator
may also receive notifications. Various ML and DL techniques may be applied to effectively manage
and categorize intrusions. Modified K-Means, support vector machine (SVM), decision tree
(DT) [31], principle component analysis (PCA) [32], logistic regression (LR), random forest
(RF) [33], linear discriminant analysis (LDA) [34, 35], and artificial neural network (ANN) [35].
Additionally, there are classifier ensembles such as extreme gradient boosting (XGB) [36], gradient
boosted machine (GBM), and extremely randomized trees (ETC) [37]. These are a few of the ML
methods utilized for IDSs. Similarly, DL approaches such as convolutional neural network
(CNN) [38, 39], recurrent neural network (RNN) [39–43], long short term memory
(LSTM) [39, 43, 44], and gated recurrent unit (GRU) [39, 42, 43, 45] are also used in IDSs. However,
the DL technique has outperformed ML, especially for large datasets. Due to their support for
high-dimensional characteristics, DL algorithms are appropriate for certain IoT devices that generate
significant amounts of data. Additionally, DL algorithms perform better than machine learning
algorithms for rapid and accurate automatic identifying of unwanted attacks. Although the major
objectives of DL IoT data processing are security and privacy, it has also been extensively employed
for smart city applications, big data analytics, video processing, voice processing, and image
processing [46, 47]. Moreover, deep learning models outperform classical machine learning
techniques in terms of performance and accuracy because they can independently extract features
from large volumes of data [44].

Recent studies have also shown the effectiveness of deep learning algorithms, such as convolutional
neural networks (CNNs) [38,39] and recurrent neural networks (RNNs) [39–42], for intrusion detection
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in IoT networks. However, to the best of our knowledge, there is limited research on the use of a hybrid
of RNN and GRU for intrusion detection in IoT networks. Our proposed model combines the strengths
of these two deep learning algorithms and achieves superior performance in detecting different types
of attacks in IoT networks. As we utilized the hybrid of two deep learning models, RNN and GRU,
both have the ability to process sequential data in real-time, which is important in the context of IoT
systems where data is generated in real-time and in a continuous stream. These models can analyze
patterns in the data and detect anomalies in real-time, which is critical for timely responses to potential
security threats. Additionally the use of data engineering techniques (cleaning, normalization) can
further improve the performance of the model and make it more practical in real-time applications.
These techniques can help reduce noise in the data, improve model accuracy, and speed up model
training and prediction.

An RNN model is created to determine the sequential properties of data and then use the patterns
to forecast future events. The RNN models have an internal memory that constantly recalls the results
of calculations made in earlier phases. Any length of input may be handled by RNN. The model size
stays the same, regardless of how big the input is. RNNs’ internal memory, which enables them to
remember important data about the input they received, is what allows them to predict the future with
such accuracy. As a result, they are the preferred algorithm for sequential data, including time series,
speech, text, financial data, audio, video, and a wide variety of other forms. The vanishing gradient
problem is a significant flaw in the RNN model. LSTM and GRU are used to tackle the RNN’s
vanishing gradient problem. To establish whether the technique is more effective at resolving the
vanishing gradient problem, LSTM and GRU are compared for the initial phase of developing the
model in this study. The findings indicate that the accuracy of LSTM and GRU is about equal.
However, compared to the model with LSTM, the model with GRU required fewer training iterations
and less time for RNN to converge. RNN with GRU was consequently more appropriate for real-time
scenarios. GRU employs what is referred to as the update gate and reset gate to address the RNN’s
problem with vanishing gradients and also the response time of GRU is fewer [48]. This paper
proposes a novel approach to intrusion detection in IoT networks using a hybrid of deep learning and
intelligent intrusion detection framework that utilizes RNN and GRU algorithms. This approach can
analyze sequential data, making it suitable for intrusion detection in IoT environments where data is
often collected sequentially. Additionally, we explain the data pre-processing techniques we used,
including cleaning, encoding, feature filtering, shuffling, and normalization, which improve the
model’s performance.

The proposed model aims to categorize attacks across all layers of the 3-layered IoT architecture,
namely the physical, network, and application layers. Intrusion detection in IoT requires analyzing data
from all layers to detect any potential threats. To validate the effectiveness of the proposed model, we
conducted experiments on the ToN-IoT dataset, which was specifically gathered for the three-layered
IoT architecture, making our results more reliable and applicable in real-world scenarios. Our results
demonstrate that the proposed hybrid model outperforms the baseline models in terms of accuracy,
precision, and recall, providing better security for IoT environments. This contribution is significant
for industries that rely on IoT devices, such as healthcare, finance, and logistics, as well as for the
broader security of critical infrastructure. Overall, our contribution is the proposal of a novel and
effective intrusion detection model that covers all layers of the IoT architecture, analyzes sequential
data, and employs hybrid deep learning algorithms.
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5. Related works

IoT has received a lot of academic attention across the world. IoT applications are surprisingly
becoming more prevalent in all spheres of society, including smart grids, smart retail, smart homes,
smart cities, and health care [7]. It is always necessary to secure these systems to prevent service
disruption, unauthorized access, and possible cyberattacks such as tampering, illegal access, or others
in order to guarantee adequate accuracy of the data and the appropriate operation of the processes in
them. The development of IDS frequently employs machine learning and deep learning (ML/DL) [43].
An intrusion detection system (IDS) is a security tool used to identify and stop unauthorized network
access or attacks. An IDS is used in the context of IoT networks to shield connected devices and
systems from potential threats that can jeopardize their security and functioning. It is impossible to
overestimate the significance of IDS in IoT networks, which are increasingly widespread in our daily
lives and frequently involved in vital infrastructure like healthcare, transportation, and energy systems.
Network administrators can utilize intrusion detection systems to discover security risks in real time,
respond to them, and get crucial information that can be used to stop and mitigate possible attacks.

The creation of intrusion detection systems (IDS) for Internet of Things (IoT) networks has become
more and more common in recent years. These algorithms have shown to be successful at identifying
patterns and anomalies in network traffic that might point to a possible intrusion. Such algorithms’ use
for intrusion detection in IoT networks has been addressed in a number of studies. To investigate the
security aspects of IoT networks different ML algorithms like DT, RF, NB, etc., and DL algorithms
such as LSTM, RNN, CNN, GRU were proposed [54] which we cover in the subsequent paragraphs.
However, the DL approach has performed better in terms of accuracy than ML, particularly for huge
datasets. Researchers creating ML algorithms must be clever and only extract features that can enhance
the model since choosing features takes a lot of time and they won’t know which features are valuable
until they train and test their model. Thus, working with datasets with various dimensions is a problem
for ML because it is not always easy to extract the most predictive features [49]. Furthermore, deep
learning models are more accurate and perform better than traditional machine learning methods since
they can independently extract characteristics from huge amounts of data [44].

Authors in [7] utilized an ensemble-based voting classifier, where the final forecast was obtained by
combining the conventional ML algorithm with voting on its predictions. A study in [8] suggest that
IoT devices become more capable of spotting anomalies in IoT networks when they use a stacking-
based ensemble model. To increase the ensemble-based IDS’s effectiveness and precision, [27] utilized
ensemble-based IDS with XGBoost, which improves the accuracy.

In [50], authors discussed an overview of several machine learning techniques that can be employed
to spot any harmful or out-of-the-ordinary data and present the most effective approach for two datasets,
the first dataset was created from data exchanged between sensors and the second is UNSW-NB15.
In [37], they examine the potential of machine learning classifying methods to protect their IoT from
DoS attacks. The Classifiers are evaluated using well-known datasets such as CIDDS-001, UNSW-
NB15, and NSL-KDD. To achieve ML features for cyber-security, including IoT, some cyber security
experts have modified deep learning components. Aside from that, DL can develop new features that
allow for problem-solving without the involvement of a person [51].
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Table 1. Literature comparison.

Reference
Model/

Attack Detection Mechanism
Dataset IoT Layer Targeted Evaluation Measures

[7] Ensemble Voting Classifier ToN-IoT Telemetry Dataset IoT Perception Layer
Accuracy, Precision, Recall,

F1-Score

[8] Stacking based Ensemble Model ToN-IoT Telemetry Dataset IoT Perception Layer
Accuracy, Precision, Recall,

F1-Score

[27] Ensemble Based IDS using XGBoost KDDCup99 IoT Network Layer
Accuracy, Precision, Recall,
F1-Score, Confusion Matrix

[37] ML Classifiers (RF, AB, XGB, GBM, ETC)
CIDDS-001, UNSW-NB 15,

NSL-KDD
IoT Network Layer

Accuracy, False positive Rate,
AUC, Sensitivity

[53] Deep Convolutional Neural Network IODIT20 IoT Perception Layer
Accuracy, Precision, Recall,

F1-Score

[54] DL-IDS(SMO with SDPN) NSL-KDD IoT Network Layer
Accuracy, Precision, Recall,

F1-Score

[53] Hybrid DL Based Model (LSTM-GRU)
CIC DOS, CI-CIDS 2017 and

CSE-CIC IDS 2018
X

Accuracy, Precision, Recall,
F1-Score

[45] ReliefF-Based IDS (MNN, WKNN, SVM) ToN-IoT Windows 10 Dataset IoT Application Layer
Confusion Matrix, Accuracy,
Precision, Recall, F1-Score

[57] DT , NB TON-IoT Network Flow Dataset IoT Network Layer Confusion Matrix

[58] GraphSage Based IDS ToN-IoT Network Flow Dataset IoT Network Layer
Accuracy, Precision, Recall,

F1-Score

[59] DFF, CNN, RNN, DT, LR, NB
UNSW-NB15, CSE CIC-IDS2018,

ToN-IoT Network Flow
IoT Network Layer

Accuracy, F1-Score, Detection Rate,
False Alarm Rate

[60] CNN -Based IDS ToN-IoT Network Flow Dataset IoT Network Layer
Accuracy, Precision, Recall, Loss,

F1-Score

Proposed Study RNN-GRU

ToN-IoT (
Telemetry dataset,

Network Flow dataset,
windows 7 &10 dataset )

IoT Perception Layer
IoT Network Layer

IoT Application Layer

Accuracy, Precision, Recall,
F1-Score

Models:- RF - Random Forest. AB - Adaa Boost. XGB- Extreme Gradient Boost.
GBM - Gradient Boosted Machine. ETC - Extremely Randomized Trees.

SMO - Spider Monkey Optimization. SDPN - Stacked Deep Polynomial Network.
LSTM- Long Short-Term Memory. GRU - Gated Recurrent Unit.

MNN- Medium Neural Network. WKNN- Weighted KNN. SVM - Support Vector Machine.

Authors in [52] presented a DL technique to find anomalies on IoT nodes in a household
environment. In order to boost efficiency while using less computing power an IDS based on a deep
convolutional neural network is proposed in [53]. In order to identify malicious attacks in IoT
contexts, [54] presents a novel DL-based intrusion detection system to address the issues of protecting
IoT nodes. The spider monkey optimization (SMO) algorithm and the stacked deep polynomial
network (SDPN) are combined in their suggested model to obtain the best detection and recognized
rates. SMO chooses the best attributes from the datasets, and SDPN categorises the output as normal
or abnormal. Authors in [55] presents a novel ReliefF-IDS that uses ML and DL methods to uncover
new attacks that existing systems are unable to prevent in an IoT network. [56] recommended using
DL to identify intrusions using recurrent neural networks (RNN-IDS). They show through their
experimental results that RNN-IDS is ideally suited for producing IDS with good accuracy and that it
outperforms conventional ML both binary and multi-class techniques.

We are committed to studying various intrusion detection systems, or IDS, in-depth in this work in
order to identify unusual activity in IoT networks at various layers. Although previous studies have
proposed ML and DL algorithms for intrusion detection in IoT networks, they have not considered
the three-layered architecture of IoT, and have focused on only one layer of the IoT architecture and
have not addressed the challenges of detecting intrusions across multiple layers, which is the focus of
our proposed hybrid approach. Moreover, previous studies have either focused on ML or DL, but not
a combination of both, as proposed in our work. Therefore, our proposed approach fills the gap in
the literature by addressing the shortcomings of the previous studies. Additionally, we can provide a
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comparative analysis of the performance of our proposed hybrid approach with the previous studies.
This will help to further demonstrate the superiority of our proposed approach. We proposed a hybrid
and intelligent intrusion detection framework by using two DL algorithms: RNN and GRU which
outperforms the baseline models. We conclude this section with a tabular review of the most current
and pertinent findings that have been published in the literature and are shown in Table 1.

6. The proposed framework

IDS employs various approaches and frameworks to detect attacks, which are the essential elements
of modern cyber-security techniques. IoT IDS has recently benefited from advancements in artificial
intelligence (AI), including ML and DL approaches [61]. The RNN has proven to perform well with
a sequence of data that has different input lengths. It remembers the past and therefore centers its
decisions on what it has learned from the past. This indicates that RNNs utilize the data from their
previous state as a source for their most recent prediction. It is possible to continue this procedure for
an unlimited number of iterations in order to enable a network to transmit data across time using its
hidden state [56].

RNN is the earliest algorithm that remembers its input because of its internal memory, which makes
it perfect for machine learning problems requiring sequential data. The vanishing gradient problem,
a significant flaw in the RNN model, hinders it to be correct. LSTM and GRU are used to tackle the
RNN’s vanishing gradient problem. GRU employs what is referred to as an update gate and reset gate
to address the conventional RNN’s problem with vanishing gradients. Additionally, in comparison with
RNN, the response time of GRU is less. GRUs are an enhanced form of the traditional recurrent neural
network (RNN) [48]. To establish which technique is more effective in resolving the vanishing gradient
problem, LSTM and GRU are compared for the initial phase of the proposed model development in this
study. The findings indicate that the accuracy of LSTM and GRU is about equal. However, compared to
the model with LSTM, the model with GRU required fewer training iterations and less time for RNNs
to converge. RNN with GRU was consequently more appropriate for real-time scenarios. Therefore,
we proposed a three-layer hybrid deep learning model by combining RNN and GRU. We first initialize
our Sequential model before including the layers. RNN is the first layer, dense with activation function
relu is the second layer, and GRU with softmax as the activation function is the third layer that we
added to our model as shown in Figure 5. This figure illustrates the proposed model for intrusion
detection in the IoT network. It shows the different steps involved in the proposed model, including
preprocessing the dataset, splitting the dataset into training and testing datasets, training the model
using RNN, Dense, and GRU layers, and testing the model using the testing dataset. This figure is
important because it provides readers with an overview of the proposed model and the steps involved
in the model.
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Figure 5. Proposed model.

The architecture of the RNN consists of a sequence of repeating neural network modules that
operate on a sequence of inputs. At each time step t, the RNN takes an input xt and a hidden state ht

from the previous time step and produces an output ot and a new hidden state ht+1. This process is
mathematically represented in Eqs (6.1) and (6.2).

ht+1 = f (Wxh ∗ xt +Whh ∗ ht + b) (6.1)

ot = g(Woh ∗ ht+1 + bo) (6.2)

where Wxh, Whh, and Woh are the weight matrices for the input-to-hidden, hidden-to-hidden, and
hidden-to-output connections, respectively, b and bo are the bias terms. f and g are the activation
functions used in the hidden and output layers, respectively. The dense layer connects all the neurons
of the previous layer to the current layer. The activation function used in the dense layer is ReLU,
which is defined in Eq (6.3). The output of the dense layer is represented mathematically in Eq (6.4).

f (x) = max(0, x) (6.3)

h = f (Wh ∗ x + b) (6.4)
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where Wh is the weight matrix for the dense layer, x is the input to the dense layer, and b is biased. The
architecture of the GRU is similar to that of the RNN, but it uses a gating mechanism that allows the
model to selectively update or forget information from the previous time step. The GRU has two gates,
a reset gate and an update gate, which control the flow of information. The activation function used
in the GRU is softmax, which is used to convert the output of the GRU into a probability distribution
over the possible outputs. The GRU operations are mathematically represented in Eqs (6.5)–(6.8).

z = sigmoid(Wxz ∗ x +Whz ∗ h + bz) (6.5)

r = sigmoid(Wxr ∗ x +Whr ∗ h + br) (6.6)

h′ = tanh(Wxh ∗ x +Whh ∗ (r ∗ h) + bh) (6.7)

h = z ∗ h + (1 − z) ∗ h′ (6.8)

where Wxz, Whz, Wxr, Whr, Wxh, Whh are the weight matrices for the input-to-update gate,
hidden-to-update gate, input-to-reset gate, hidden-to-reset gate, input-to-hidden, and hidden-to-hidden
connections, respectively. bx, bh, br, and bz are the bias terms.

The input data to the model is a sequence of features that are extracted from the IoT network traffic.
These features can include source and destination IP addresses, port numbers, packet size, and protocol
type. Before feeding the data into the model, it is preprocessed, including normalization and scaling.
The data is then divided into training, validation, and testing datasets.

During the model’s training process, the weights are updated using backpropagation, which
leverages gradient descent to minimize the loss function. The loss function evaluates the disparity
between the predicted output and the actual output. The gradients are calculated with respect to the
weights, and the weights are updated using the Adam optimization function. This can be achieved by
analyzing data from each of the different layers and utilizing this information to identify patterns and
anomalies that could signify an intrusion. The workflow of the model is as follows:

• To find patterns and anomalies, the first layer, RNN evaluates sequential data from the physical,
network, and application layers.
• The output of the first layer is processed by the second layer, a dense layer, that learns features

from it and uses them to identify patterns and anomalies.
• In order to further enhance the detection of patterns and anomalies, the third and final layer, GRU,

analyzes the output of the second layer and learns long-term dependencies in the data.

The number of inputs to these layers varies depending on the features of the datasets for the three
layers of the IoT network. For instance, in the telemetry dataset, we remove the date, time, and
timestamp, and feed the remaining four features to the model. In the network dataset, we feed the
source port, destination port, IP address, and other features to the model. Similarly, for the OS log
files (such as Windows 10 or Windows 7), features are selected using the ReliefF method and
provided to the model.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13491–13520.



13507

6.1. Dataset

The dataset is created by assembling data from a variety of sources. IoT-based datasets are
important for assessing IoT security and several researchers utilize them for their experiments. Many
datasets are provided in the existing research for measuring the performance of IDS. For example,
DARPA (1998), KDD-CUP99 (1998), NSL-KDD (2009), BOT-IOT(2018), CIC-IDS (2017),
UNSWNB (2015), ISCX (2012), CIC-IDS (2017), and TON-IoT (2020). The existing datasets don’t
adequately capture crucial IoT/IIoT properties. For example, many IoT/IIoT services do not have a
variety of normal and attack events, nor do they incorporate heterogeneous data sources. Furthermore,
these datasets are not intended for three-layer architecture, in particular, [1, 62]. We used TON-IOT
datasets for the evaluation because this dataset is specifically designed for three-layer architecture.
The data in this dataset was acquired from the telemetry data of IoT/IIoT services, Windows and
Linux operating system datasets, and network traffic datasets. They were created under a variety of
attack scenarios. Moreover, the data within these datasets are distinct from one another. This is
because the collected datasets are coming from many sources [1, 2]. The utilized TON IoT dataset
statistics is shown in the Table 2.

The TON IoT dataset was created by the cyber range and IoT labs at UNSW Canberra using a
realistic model of a regular-size network in Australia. It comprises telemetry data of IoT/IIoT services,
network traffic, and pperating systems logs of the IoT network. The comparison of the Ton-IoT dataset
is presented in Table 3.

Table 2. Dataset statistics.

IoT
Layers

Dataset
Files

Total
Record

Normal
Instances

Scanning
Attack

DOS /
DDOS
Attack

Ransom-
ware

Attack

Backdoor
Attack

Injection
Attack

XSS
Attack

Password
Attack

Total
Attacks

Physical
Layer

IoT Fridge
Sensor

59,944 35,000 0 5000 2902 5000 5000 2042 5000 24,944

Physical
Layer

IoT Garage
Door Sensor

59,587 35,000 529 5000 2902 5000 5000 1156 5000 24,587

Physical
Layer

IoT GPS
Tracker

58,960 35,000 550 5000 2833 5000 5000 577 5000 23,960

Physical
Layer

IoT Modbus
Sensor

51,106 35,000 529 0 0 5000 5000 577 5000 16,106

Physical
Layer

IoT Motion
Light Sensor

59,488 35,000 1775 5000 2264 5000 5000 449 5000 24,488

Physical
Layer

IoT
Thermostat
Sensor

52,774 35,000 61 0 2264 5000 5000 449 5000 17,774

Physical
Layer

IoT Weather
Sensor

59,260 35,000 529 5000 2865 5000 5000 866 5000 24,260

Network
layer

Network
Flow

461,043 300,000 18,615 19,986 13,738 18,710 19,964 14,516 19,847 161,043

Application
Layer

windows 10 21,104 10,000 0 4608 15 447 612 1269 3628 11,104

Application
Layer

windows 7 15,980 10,000 226 2134 82 1779 998 4 757 5980

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13491–13520.



13508

Table 3. Comparison of the proposed dataset with existing state of art dataset.

Dataset
Attack
Labels

Diverse Attack
Scenarios

Separate Dataset
for Each

IoT Layer
Year

KDDCUP99 Yes No No 1998
NSL-KDD Yes No No 1998
LWSNDR Yes No No 2010
UNSW-NB15 Yes Yes No 2015
AWID Yes Yes No 2015
ISCX Yes Yes No 2017
UNSW-IOT Yes Yes No 2018
BOT-IOT Yes Yes No 2019
RPL-NIDDS17 Yes Yes No 2017
CICIDS2017 Yes Yes No 2017
ToN-IoT Yes Yes Yes 2020

6.2. Preprocessing of datasets

Before applying any machine learning approach to the dataset, it is essential to preprocess the raw
data to ensure high accuracy and improve the machine learning process. In this study, we performed
several preprocessing steps on the ToN-IoT dataset, including removing duplicates, handling missing
values, and scaling the data to ensure all features are on the same scale. These steps were applied to
ensure the dataset is appropriately formatted and suitable for training and testing our proposed mode.
To prepare the ToN-IoT dataset for the evaluation of the proposed model, we go through the following
steps:

• Cleaning: Before training an ML model, a dataset must be examined for blank and undefinable
entries. Any records with empty or undefinable values will cause problems during model
training. There are several methods for cleaning datasets with empty and undefinable entries. In
this experiment, we employed the ToN-IoT datasets that included physical layer/telemetry,
network traffic, and OS logs. We leveraged Python libraries, including Pandas and NumPy, to
verify the datasets for missing and/or infinite values as part of the cleaning process. Boolean
functions were used to check for missing and/or unending values. False indicates that the dataset
is clean, whereas true indicates the presence of missing or infinite values. The first layer of the
dataset did not contain any empty or undefined entries, whereas the second and third layers of
the datasets had missing value records. To address the issue of missing values, we filled in the
missing values using the median of each feature.
• Features encoding: Feature encoding is the process of transforming categorical attributes into

numerical ones. The label encoding (LE) technique is employed where each categorical attribute
value is converted to numeric values.
• Features filtering: Each dataset has a different set of features, and certain features may cause

over-fitting or under-fitting, leading to a negative impact on the model’s performance. Therefore,
some features should be excluded from the dataset. Another issue is the time complexity
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associated with these features, particularly for datasets with numerous features, including
insignificant ones that cannot affect the output label. For feature selection, there are primarily
three techniques: intrinsic, wrapper, and filter methods. For the telemetry dataset, we remove the
date, time, and timestamp features. According to [62], these three features may contribute to the
issue of over-fitting while the dataset is being trained using ML algorithms. Timestamp, source
port, destination port, and IP address were removed from the network layer data of the dataset
because they had the potential to cause over-fitting of ML algorithms during the training phase.
For the OS log files, such as Windows 10 or Windows 7, the features were selected using the
ReliefF method. The Windows 7 dataset contained 133 features, including two additional
class-label features for either normal or attack data. The twenty-five most important features
were selected using the ReliefF method. Similarly, the Windows 10 dataset contained 125
features along with the class label and attack type parameters [62]. Twenty important features
were selected for the Windows 10 dataset using the ReliefF method, which were then fed into
the model.
• Balancing strategies: Each dataset comprises numerous records. We need to ensure that each

class has the same amount of occurrences or small changes before training and testing the
model. Under-sampling and over-sampling are the two main strategies for balancing the number
of instances in each class. For balancing the network dataset and OS log files dataset, we utilized
synthetic minority oversampling technique (SMOTE) method [63, 64]. This is applied to attack
classes. The SMOTE technique eliminates the over-fitting problem by offering artificial minority
class samples. For the scientific community in unbalanced classification, SMOTE pre-processing
approach became a pioneer. In ML and data mining, SMOTE is regarded as one of the most
important data pre-processing/sampling methods [63].
• Normalization: Scaling, mapping, and other pre-processing techniques are examples of

normalization. It involves transforming the data to create a new data range based on an existing
one. Normalization can be quite beneficial for prediction or forecasting purposes as it helps to
remove any variations or biases in the data, making it easier for the model to learn the underlying
patterns and relationships [65]. In the normalization process, data is adjusted to fit within a
specific range, typically between 0 and 1. If the dataset already has values in a similar range,
normalization may not be necessary. However, for datasets with values that are vastly different in
range, such as one feature having values between 0 and 1 while another has values between 100
and 1000, normalization becomes crucial to ensure the model is properly trained. One of the
most commonly used techniques for normalization is the Min-Max Scaler approach [66]. In this
paper, we standardized values between 0 and 1 using this approach to scale our research data.

7. Results and discussion

The experimental findings and comparisons of the suggested model with state-of-the-art approaches
in several layers are presented in this section.

7.1. Experimental setup

The proposed model’s effectiveness was tested on a machine used for testing that had an Intel (R)
Core (TM) i5 CPU with a clock speed of 3.20 GHz, 8 GB of RAM, and was running on the Windows
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10 Pro operating system. The model was implemented using Python 3.0 programming language in
VScode and Jupyter notebook with ipynb support. VScode is a popular code editor, and Jupyter
notebook is an interactive computing environment that allows for easy experimentation with code.
The fact that the model outputs results after each cell of the code is important because it allows for
easy debugging and troubleshooting. TensorFlow’s Keras package was used for implementing the
model. Keras is a high-level neural network API that makes it easy to build and train deep learning
models. The use of Keras simplifies the implementation of the model and can save time and effort.

7.2. Evaluation procedure

True positive (TP), true negative (TN), false positive (FP), and false negative (FN) values are used to
evaluate the performance of a model. In addition to these values, existing research has used precision,
recall, F1-score, and accuracy to evaluate the performance of the model. Therefore, we have used all
these metrics to evaluate our proposed model and compare our results with existing work.

7.3. Results

Our proposed model was tested through three experiments. The first experiment focused on the
Telemetry or physical layer dataset. The second experiment examined the network traffic or network
layer dataset of ToN-IoT, while the third experiment evaluated the OS log files of both Windows 10
and Windows 7 datasets. The model was trained over ten epochs, utilizing the binary-cross entropy
function for loss. We used two optimization functions including Adam and Adamax optimizers to test
the proposed model.

7.3.1. Binary classification results on perception layer data of ToN-IoT Dataset

The Perception layer plays a critical role in gathering data from a variety of IoT devices and sensors.
To assess the performance of the proposed model for binary classification of cyberattacks, we utilized
the Perception layer data of the ToN-IoT dataset, which includes data from seven different IoT devices.
To evaluate the proposed model’s performance on heterogeneous sensor data, we combined the seven
individual sensor data into a single CSV file, and the results for the merged file are shown alongside
the individual files in Table 4. The results indicate that Adam performs better than Adamax. Table
5 compares the binary classification results of the proposed model with the most recent approaches.
According to the results, the proposed Hybrid model outperforms existing models for the majority of
the data files from individual IoT sensors.
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Table 4. Binary classification results on IoT perception layer data files.

Dataset
Files

Optimizer Accuracy Precision Recall F-Measure

IoT Fridge Adam 1.0 1.0 1.0 1.0
Sensor Adamax 1.0 1.0 1.0 1.0
IoT Garage Door Adam 1.0 1.0 1.0 1.0
Sensor Adamax 1.0 1.0 1.0 1.0
IoT GPS Tracker Adam 1.0 1.0 1.0 1.0
Sensor Adamax 1.0 1.0 1.0 1.0
IoT Modbus Adam 0.85 0.85 0.8 0.78
Sensor Adamax 0.83 0.82 0.79 0.76
IoT Motion Adam 0.8 0.8 0.78 0.8
Light Sensor Adamax 0.75 0.78 0.75 0.74
IoT Thermostat Adam 0.98 0.99 0.98 0.98
Sensor Adamax 0.93 0.95 0.91 0.93
IoT Weather Adam 0.8 0.83 0.86 0.84
Sensor Adamax 0.78 0.79 0.82 0.81

7.3.2. Binary classification results on network layer data of ToN-IoT dataset

The proposed hybrid model has been evaluated for binary class classification on the network layer
data of the ToN-IoT dataset. We conducted experiments using the Adam and Adamax optimization
functions, and the assessment results are presented in Table 6. Based on the results evaluations, the
Adam optimizer performance is optimum for the selected dataset. For the network layer dataset, the
proposed model delivers excellent classification performance, achieving a 99% accuracy, 98%
precision, 99% recall, and 98% F1-Measure score. Comparison of the proposed model with the
existing solutions, as shown in Table 7. The results indicate that the proposed hybrid model
outperforms existing techniques.

7.3.3. Binary classification results on application layer data of ToN-IoT Dataset

The proposed hybrid model has been evaluated for binary classification on the application layer
data of the ToN-IoT dataset. The evaluation results of our experiments using the Adam and Adamax
optimization functions are presented in Table 8. The results show that the model achieved optimal
performance on Adam optimizer with 98% accuracy, 98% precision, 97% recall, and 98%
F1-Measure score for the windows 10 log files. Similarly, for the windows 7 log files dataset, the
binary classification performance achieved 84% accuracy, 85% precision, 84% recall, and 87%
F1-Measure. The performance of the Adam optimizer was found optimal for windows 10 data files
based on the result assessments. The findings of the evaluation indicate that the Adam optimizer
yields the best results for the selected dataset. Table 9 show binary classification results of the
proposed model are compared with those of the latest approaches. The outcomes indicate that the
proposed hybrid model performance is optimum as compared to the existing techniques.
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Table 5. Results comparison with existing models on binary classification of perception layer
dataset.

Dataset Files Reference Models Accuracy Precision Recall F-Measure
IoT Fridge Sensor [4] , [24] LR 0.57 0.34 0.58 0.43

LDA 0.77 0.79 0.77 0.77
RF 0.97 0.97 0.97 0.97
NB 0.5 0.53 0.51 0.51
SVM 0.81 0.86 0.82 0.8
LSTM 1 1 1 1
Proposed Study 1 1 1 1

IoT Garage Door [4] , [24] LR 0.86 0.88 0.86 0.87
LDA 0.86 0.88 0.86 0.87
RF 0.85 0.85 0.85 0.85
NB 0.84 0.86 0.85 0.86
SVM 0.86 0.88 0.87 0.87
LSTM 0.87 0.89 0.88 0.88
Proposed Study 1 1 1 1

IoT GPS Tracker [4] , [24] LR 0.86 0.88 0.86 0.87
LDA 0.86 0.88 0.86 0.87
RF 0.85 0.85 0.85 0.85
NB 0.84 0.86 0.85 0.86
SVM 0.86 0.88 0.87 0.87
LSTM 0.87 0.89 0.88 0.88
Proposed Study 1 1 1 1

IoT Modbus Sensor [4] , [24] LR 0.67 0.46 0.68 0.55
LDA 0.67 0.46 0.68 0.55
RF 0.97 0.98 0.98 0.98
NB 0.67 0.46 0.68 0.55
SVM 0.67 0.46 0.68 0.55
LSTM 0.68 0.47 0.68 0.55
Proposed Study 0.85 0.8 0.78 0.8

IoT Motion Light [4] , [24] LR 0.58 0.34 0.59 0.43
LDA 0.58 0.34 0.59 0.43
RF 0.58 0.34 0.59 0.43
NB 0.58 0.34 0.59 0.43
SVM 0.58 0.34 0.59 0.43
LSTM 0.59 0.35 0.59 0.44
Proposed Study 0.8 0.78 0.78 0.8

IoT Thermostat Sen [4] , [24] LR 0.86 0.88 0.86 0.87
LDA 0.86 0.88 0.86 0.87
RF 0.85 0.85 0.85 0.85
NB 0.84 0.86 0.85 0.86
SVM 0.86 0.88 0.87 0.87
LSTM 0.87 0.89 0.88 0.88
Proposed Study 0.91 0.91 0.92 0.9

IoT Weather Sen [4] , [24] LR 0.58 0.6 0.59 0.53
LDA 0.6 0.59 0.6 0.53
RF 0.84 0.84 0.84 0.84
NB 0.69 0.72 0.69 0.67
SVM 0.63 0.68 0.63 0.55
LSTM 0.82 0.82 0.81 0.8
Proposed Study 0.99 0.97 0.96 0.95

Combined [4] , [24] LR 0.61 0.37 0.61 0.46
Data Files LDA 0.68 0.74 0.68 0.62

RF 0.85 0.87 0.85 0.85
NB 0.62 0.63 0.62 0.51
SVM 0.61 0.37 0.61 0.46
LSTM 0.81 0.83 0.81 0.8
Proposed Study 0.83 0.86 0.86 0.83
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Table 6. Binary classification results on IoT network traffic data files.

Dataset Files Optimizer Accuracy Precision Recall F1-Measure
Network Flow Adam 0.99 0.98 0.98 0.99
Dataset Adamax 0.97 0.96 0.95 0.96

Table 7. Comparison of network dataset results with existing models.

Dataset Files Reference Models Accuracy Precision Recall F-Measure
Network
Traffic

[25] DT 0.97 0.96 0.96 0.95

RF 0.96 0.95 0.97 0.93
KNN 0.97 0.98 0.95 0.94
XGB 0.98 0.97 0.94 0.92
Proposed
Study

0.99 0.99 0.98 0.97

Table 8. Binary classification results of application layer datasets.

Dataset Files Optimizer Accuracy Precision Recall F1-Measure
Windows 10 Adam 0.98 0.98 0.97 0.98

Adamax 0.94 0.95 0.94 0.95
Windows 7 Adam 0.99 0.95 0.94 0.96

Adamax 0.94 0.89 0.86 0.84

Table 9. Comparison of application layer datasets results with existing models.

Dataset
Files

Reference Models Accuracy Precision Recall F-Measure

Windows 7 [12] KNN 0.92 0.68 0.95 0.79
SVM 0.75 0.006 0.006 0.006
Proposed
Study

0.98 0.97 0.98 0.97

Windows 10 [19] RF 0.9 0.94 0.92 0.91
NB 0.92 0.82 0.85 0.87
DT 0.93 0.94 0.92 0.9
Proposed
Study

0.88 0.94 0.96 0.9

7.3.4. Results of multi-class classification in the IoT perception layer

The proposed model is employed for multi-class classification using the Perception layer data files
of the ToN-IoT datasets. The ToN-IoT dataset includes a feature known as “type”, which contains 7
unique names for IoT attacks. The type of attack that occurs is determined through
multi-classifications. The results of the multi-classification for perception-layer data files are
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presented in Table 10, indicating that the Adam optimizer outperforms Adamax.

Table 10. Multi-class classification results of perception layer dataset.

Dataset Files Optimizer Accuracy Precision Recall F-Measure
IoT Fridge Sensor Adam 0.78 0.79 0.76 0.68

Adamax 0.75 0.72 0.7 0.62
IoT Garage Door Adam 0.85 0.83 0.85 0.85

Adamax 0.78 0.77 0.79 0.76
IoT GPS Tracker Adam 0.95 0.95 0.95 0.95

Adamax 0.88 0.87 0.85 0.85
IoT Modbus Sensor Adam 0.98 0.97 0.97 0.98

Adamax 0.91 0.9 0.91 0.89
IoT Motion Light Adam 0.76 0.75 0.78 0.76

Adamax 0.72 0.69 0.71 0.68
IoT Thermostat Adam 0.86 0.87 0.88 0.87

Adamax 0.76 0.8 0.81 0.79
IoT Weather Adam 0.98 0.99 0.99 0.97

Adamax 0.95 0.96 0.93 0.94

7.3.5. Results of multi-class classification in the IoT network layer

The proposed hybrid model was evaluated for multi-class classification on the network layer data of
the ToN-IoT dataset. We conducted experiments using the Adam and Adamax optimization functions
and present the assessment results in Table 11. Based on the evaluation results, it is observed that
the Adam optimizer outperforms the Adamax optimizer for the selected dataset. The proposed model
delivers excellent multi-class classification performance for the network layer dataset, achieving 99%
accuracy, 98% precision, 98% recall, and 97% F1-Measure score.

Table 11. Multi-classification results of network traffic.

Dataset Files Optimizer Accuracy Precision Recall F-Measure
Network Traffic Adam 0.99 0.99 0.98 0.97

Adamax 0.96 0.95 0.97 0.93

7.3.6. Results of multi-class classification in the IoT application layer

Table 12 presents the proposed model results on application layer data of the utilized dataset. The
results indicate that our proposed model achieved optimal results using the Adam optimizer, delivering
excellent multi-class classification performance for the windows 7 log files dataset in the application
layer. The model achieved an 88% accuracy, 86% precision, 97% recall, and 88% F1-Measure score.
Similarly, for the windows 10 log files dataset, the multi-class classification performance achieved 84%
accuracy, 85% precision, 84% recall, and 87% F1-Measure.
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Table 12. Multi classification results of application layer datasets.

Dataset Files Optimizer Accuracy Precision Recall F-Measure
Windows 7 Adam 0.88 0.86 0.87 0.88

Adamax 0.81 0.8 0.79 0.8
windows 10 Adam 0.84 0.85 0.84 0.87

Adamax 0.78 0.79 0.78 0.79

7.4. Discussion

In order to evaluate the performance of our proposed system, we conducted a comparative analysis
with existing research that was developed for the same ToN-IoT 2020 dataset. To assess the
effectiveness of our model, we employed several evaluation criteria, including accuracy, precision,
recall, and f1-measure, and compared the results with those obtained by existing systems from the
literature.

8. Conclusions

This study proposes a novel intrusion detection system for IoT based on a hybrid RNN and GRU
model. The proposed approach is validated on the ToN-IoT datasets, demonstrating its effectiveness
in detecting a range of common attacks and outperforming existing state-of-the-art approaches. This
work has important implications for the field of intrusion detection in IoT, as it showcases the
potential of DL techniques for improving the accuracy and effectiveness of existing systems. By
optimizing the proposed approach through extensive data engineering, we achieved significant
improvements in performance, which could have important implications for real-world applications of
intrusion detection in IoT. However, there are still some limitations to the proposed approach that
should be addressed in future research. For example, the proposed system heavily relies on the
ToN-IoT dataset, which may not fully capture the range of attacks that might be encountered in
real-world scenarios.
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