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Abstract: For wearable electrocardiogram (ECG) acquisition, it was easy to infer motion artifices and 
other noises. In this paper, a novel end-to-end ECG denoising method was proposed, which was 
implemented by fusing the Efficient Channel Attention (ECA-Net) and the cycle consistent generative 
adversarial network (CycleGAN) method. The proposed denoising model was optimized by using the 
ECA-Net method to highlight the key features and introducing a new loss function to further extract 
the global and local ECG features. The original ECG signal came from the MIT-BIH Arrhythmia 
Database. Additionally, the noise signals used in this method consist of a combination of Gaussian 
white noise and noises sourced from the MIT-BIH Noise Stress Test Database, including EM 
(Electrode Motion Artifact), BW (Baseline Wander) and MA (Muscle Artifact), as well as mixed noises 
composed of EM+BW, EM+MA, BW+MA and EM+BW+MA. Moreover, corrupted ECG signals 
were generated by adding different levels of single and mixed noises to clean ECG signals. The 
experimental results show that the proposed method has better denoising performance and 
generalization ability with higher signal-to-noise ratio improvement (SNRimp), as well as lower root-
mean-square error (RMSE) and percentage-root-mean-square difference (PRD). 
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1. Introduction 

Electrocardiogram (ECG) denoising is aimed at removing and suppressing baseline drift, motion 
artifacts, electromyographic interference, power line interference, Gaussian white noise, etc., in order 
to provide high-quality signals for subsequent feature extraction and classification work [1,2].  

The frequency analysis technique can convert a time-domain signal into a frequency-domain 
signal and be used for noise reduction analysis. Wavelet transform is a popular transform domain 
filtering method. The multi-resolution of wavelet transform can make the signal and noise in multi-
scale space, which can be used to process ECG denoising. Singh et al. [3] implemented ECG signal 
denoising using discrete wavelet transform (DWT) and non-local means (NLM) estimation which 
achieved better results. Hao et al. [4] proposed an improved multivariate wavelet denoising technique 
combining subspace and principal component analysis to improve the output SNR by projecting the 
observed signal into the subspace using the derived optimal orthogonal matrix and then applying the 
univariate wavelet shrinkage operator to the projected signal. Wang et al. [5] obtained optimized filter 
coefficients by approximating the amplitude-frequency response of an ideal filter in order to optimize 
the wavelets, effectively removing high-frequency noise from the ECG. However, due to the limitation 
of wavelet base function, fixed base function, constant multi-resolution, etc., makes wavelet analysis 
lack adaptivity.  

In addition, signal decomposition-based denoising methods decompose the signal into several 
frequency band components, and then determine the components to be retained based on the a priori 
information of the target signal, and finally use these frequency band components to reconstruct the 
target signal to achieve noise removal [6]. Denoising algorithms based on signal decomposition 
included empirical mode decomposition (EMD) [7,8], variational mode decomposition (VMD) [9,10] 
and singular spectrum analysis (SSA) [11,12], et al. In processing non-stationary and non-linear ECG 
signals, compared with wavelet decomposition, although EMD is not affected by the choice of wavelet 
base and decomposition level, EMD also has end effects and model mixing phenomena in 
decomposition. Moreover, in practical applications, EMD cannot effectively distinguish frequency-
similar bands, such as high-frequency noise and QRS complexes, or lower frequency P-waves and T-
waves, which can lead to distortion of the denoised signal. In contrast, the VMD is an adaptive signal 
decomposition method that uses a set of adaptive Wiener filters to estimate each mode at different 
center frequencies. Compared with the EMD method, VMD can effectively overcome the end effect 
and model mixing. However, the optimal values of the decomposed Intrinsic Mode Function k and the 
penalty factor α are difficult to set.  

Sharma and Sharma [13] achieved better denoising results by artificially adding baseline drift 
noise to the ECG and removing this noise using Hilbert vibration decomposition technique. Manju 
and Sneha [14] conducted a noise reduction comparison experiment between the Wiener filter and the 
Kalman filter for ECG signals, and the results showed that the Wiener filter has better noise reduction 
performance. Due to the high overlap of the motion artifact band range with the ECG signal, the signal 
decomposition-based denoising algorithms are difficult to remove the motion artifacts cleanly and 
sometimes destroy the main morphology of the ECG, and some of the algorithms can only remove for 
a certain kind of noise [15,16], which has poor generalization ability.  

Compared with traditional ECG noise reduction methods, deep learning-based denoising 
methods were widely used in ECG denoising recently. Deep learning-based methods have strong 
nonlinear modeling and representation abilities, which can learn more complex features in 
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electrocardiogram signals with good generalization capabilities [17−19]. CycleGAN [20] was used as 
a variant of GAN for image-to-image transformations on unpaired datasets. In terms of ECG denoising, 
Serkan et al. [21] proposed a one-dimensional operable CycleGAN for ECG denoising, which replaced 
the neurons in the convolutional layers of the model with Self-Organized Operational Neural Networks 
(Self-ONNs) [22,23]. Antczak [24] proposes a new method for denoising ECG signals using deep 
recurrent denoising neural networks, and the network is pre-trained with synthetic data generated from 
a dynamic ECG model through a transfer learning technique and fine-tuned using real data.  

The attention mechanism was first introduced in the recurrent neural network model by Mnih et 
al. [25] and can effectively improve the accuracy of image classification. The attention mechanism 
assigns different weights to different parts of the attention thing to reduce the role of other irrelevant 
parts. Qiu et al. [26] used a convolutional neural network to perform ECG denoising in two stages, 
with the first stage consisting of a one-dimensional U-Net for ECG denoising and the second stage 
using a one-dimensional DR-Net to correct the noise-reduced signal obtained in the first stage, adding 
SENet for further learning of detailed ECG features.  

In general, a wide range of noise types, including baseline drift, motion artifacts, myoelectric 
interference, industrial frequency interference, Gaussian white noise, etc., have varying characteristics. 
Most of the existing denoising methods are oriented to a single noise type and do not perform denoising 
experiments for mixed noise, with poor generalization ability. Moreover, the band range of motion 
artifacts is highly overlapping with the band range of the ECG signal, so it is difficult to remove motion 
artifacts by using signal decomposition denoising methods alone. To address these issues, the main 
work in this paper is outlined below:  

1) The combination of the ECA-Net and CycleGAN was proposed for ECG denoising. Using the 
local cross-channel interaction strategy to selectively emphasize informative features and suppress 
useless features, causes the effective feature map to be weighted more and the ineffective or small 
effect feature map to be weighted less, so that the critical input features in ECG were preserved and 
noise information was suppressed.  

2) The loss function of the Cycle-GAN was optimized to improve the ECG denoising performance. 
To further extract global and local features of ECG signals, the L1 norm is combined to minimize the 
distance between the generated denoised signal and the original signal. The maximum difference 
function is also incorporated to minimize the maximum difference between each sample point pair 
between the denoised signal and the original signal, which suppresses the maximum local error.  

3) Adding single and mixed noise to the MIT-BIH Arrhythmia database was proposed for training 
the CycleGAN based ECG denoising model, and some ablation experiments were also used to 
investigate the denoising performance of the proposed method.  

In the following, the proposed methodology will be explained specifically in Section 2. The 
experimental setting and results are presented in Section 3. Section 4 provides the conclusion. 

2. Proposed method 

2.1. ECA-Net 

The structure of the SENet is shown in Figure 1, where X denotes the input feature map, for any 
given transformation, trF : , ,H W C H W CX U X R U R′ ′ ′× × × ×→ ∈ ∈ , and X  denotes the final output feature 
map. The input is a three-dimensional feature tensor, where the first dimension is the height H, the second 
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dimension is the width W and the third dimension is the number of channels C. In SE-Net, sqF , exF  and 

scaleF  represent three different operations: Squeeze, Excitation and Scale respectively [27]. 

 

Figure 1. A Squeeze-and-Excitation block. 

ECA-Net is a very efficient attention mechanism to learn effective attention channels in a more 
efficient way, and some other studies have improved SE blocks by capturing more complex channel 
dependencies or by combining additional spatial attention [28].  

Figure 2 presents the diagram of ECA module, where GAP represents the global average pooling 
layer. It can be seen that, unlike SENet, ECA-Net first determines the convolution kernel size K  
adaptively by a function of the channel dimension C, and then performs a fast one-dimensional 
convolution of size K , before performing a Sigmoid function to learn channel attention. 

 

Figure 2. Diagram of ECA module. 

The convolution kernel size K  is a key parameter that determines the coverage of the interaction 
and is related to the channel dimension C, which is usually set to an integer power of 2. The mapping 
relationship between the two exists as follows: 

( ) K bC k xγφ × −= =                                     (1) 

The size K  of the adaptive local convolution kernel is calculated as:  
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Where odd
t  denotes the nearest odd number t . 

ECA-Net has no dimensionality reduction, and considers the correspondence between channels, 
outperforms SENet and CBAM and is designed for lightweight CNN architectures. In this paper, ECA-
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Net is added to the model to avoid dimensionality reduction while enabling the model to focus on ECG 
local features and reduce the interference caused by noise, thus improving the noise reduction capability 
of the model. 

While the attention mechanism helps to focus on key information, the ECA mechanism is an 
effective attention method with fewer parameters and better performance, which can enhance the 
attention to different pass information features and generate weights between different channels, and 
the inclusion of ECA can enhance the attention to the local information of ECG.  

2.2.  The proposed method framework 

The proposed ECG denoising framework was implemented by incorporating ECA-Net with 
Operational CycleGANs [21], as shown in Figure 3, which contains two generators and two 
discriminators. The generator A2B indicates to generate the corrupted ECG into a clean ECG in the 
state; the generator B2A means to generate the clean ECG into a corrupted ECG in the same state; 
discriminator A identifies real corrupted ECG or generated corrupted ECG; discriminator B identifies 
real clean ECG or generated clean ECG. The cycle consistency loss reduces the gap between the real 
corrupted ECG and the generated corrupted ECG and reduces the gap between the real clean ECG and 
the generated clean ECG. 

Generator
A to B

Generator
B to A

Generator
B to A

Generator
A to B

Discriminator
A 

Discriminator
B Decision[0,1]

Cycle Consistency Loss between noise signal

Cycle Consistency Loss between clean signal

Input

Decision[0,1]

Input

 

Figure 3. Overall architecture of the proposed denoising method. 

The ECG data is a discrete 1D time series, so a one-dimensional convolutional neural network is 
used to process ECG signal feature extraction, using Self-Organized Operational Neural Networks as 
convolutional layers of 1D Cycle-GAN. 

 

Figure 4. Generators architecture diagram. 
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Discriminator  

Figure 5. Diagram of the discriminator model. 

The architecture diagrams for the generator and discriminator are shown in Figures 4 and 5, 
respectively. The generator is a U-net structure, containing five cascades of down sampling, and 
mirrored five cascades of up sampling. Each up sampling block includes a convolutional layer, batch 
normalization, activation function and Dropout layer, and the down sampling block includes a 
convolutional layer, batch normalization and activation function. The batch normalization process 
ensures that all training data are normalized. The addition of activation functions to each 1D 
convolutional layer to achieve a normalized model that can better mine relevant features and fit the 
training data; The addition of a Dropout layer for solving the training overfitting problem; The use of 
skip connection facilitates the propagation of gradients during denoising training. The pooling layer 
performs the down sampling process by obtaining the maximum or mean value of a range from the 
mapping space, but the inclusion of the pooling layer also results in a lack of local feature information, 
so the pooling layer is not included in the model. 

In the generator, the corrupted ECG with dimension 4000 is taken as input, and after five layers 
of down sampling, each with a step size of 2 and a convolutional kernel size of 5, the number of output 
channels in each layer is 16, 32, 64, 128 and 128, respectively, followed by five up-samplings of the 
mirror image, each with a step size of 2 and a convolutional kernel size of 5 except for the last layer 
of 6. The final output is the clean ECG with latitude 4000, which is the noise reduction signal generated 
according to the extracted features. The MSE between the output of the discriminator and the label 
vector is calculated as the loss function of the discriminator, with an output dimension of 30. It should 
be noted that in order to address the problem of insufficient ECG feature extraction by existing methods, 
we added a layer of ECA-Net after each of the first four up samplings, and the model is optimized by 
calculating the attention probability distribution and highlighting the key input features. 

2.3. Loss function 

For the ECG denoising network in this paper, the input is the corrupted ECG signal x  and the 
output is the denoised clean ECG signal x̂ . G is responsible for generating a pseudo-sample that 
retains the main features of the ECG signal in the output, recovering the original clean ECG signal x  
from corrupted noisy ECG. D tries to distinguish the difference between the generated samples and 
the actual data samples. The training process of G is to maximize the probability of D making an error. 
The objective function is to learn the mapping relationship from the data distribution of the noisy signal 
x X∈  to the data distribution of the clean data x̂ Y∈ . The two sets of mapping relations X YG →  and 

Y XG →  in the network are learned according to adversarial loss [29] and cycle consistency loss [30], 
respectively, the former makes the mapped data distribution close to that of the target domain, and the 
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latter ensures that the two learned mappings do not contradict each other. It is known from the 
Operational CycleGANs that X YG →  denotes the generator from the corrupted ECG signal to the clean 
ECG signal with an adversarial loss as: 

( , , ) ( - ( ( ( ))))
m

adv X Y Y X Y X Y X
i

Loss G D X D G X i
m→ →

=
=  21 11 1                   (3) 

Similarly, Y XG →  denotes the generator from the clean ECG signal to the corrupted ECG signal 
with an adversarial loss as: 

( , , ) ( - ( ( ( ))))
m

adv Y X X Y X Y X Y
i

Loss G D X D G X i
m→ →

=
=  22 11 1                 (4) 

The cycle consistency loss is: 
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The identity loss is: 
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where XX and XY are corrupted and clean ECG signal segments, DY is used to distinguish the real 
noise-free signal from the generated pseudo-noise-free signal, and DX is used to distinguish the real 
noise-containing signal from the generated pseudo-noise-containing signal. 

In order to better solve the ECG denoising problem under non-parallel data, the following two 
partial optimizations are made on the basis of the loss function of Operational CycleGANs in this paper. 
The first part distl is to reduce the difference between the denoised sample and the original sample [31]. 
The second component, maxl , represents the maximum differential function which is utilized to learn 
the local characteristics of a signal, maintain consistency of local features and thereby enhance the 
overall quality of the signal [32]. distl  and maxl  are defined by the following equations: 

( ( ))

     ( ( ))
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The final objective function is derived as follows: 

maxtotal adv adv cyc ide distLoss Loss Loss Loss Loss l lλ λ λ λ= + + + + +1 2 1 2 3 4        (9) 

where N is the number of samples and the hyperparameter ( 1,2,3,4)i iλ =  is used to adjust the weights 
of the components in the objective function. When tuning hyperparameters, the appropriate weights of 
each loss function are used to balance the magnitudes of different loss functions. Then, after parameter 
sweeping, the hyperparameter values with the best denoising performances are used as the weights of 
the components in the objective function. 

2.4. Performance metrics 

In quantitative analysis, the metrics used are: signal-to-noise ratio improvement (SNRimp), 
percentage-root-mean-square difference (PRD) and root-mean-square error (RMSE). Ideally, the 
larger the SNRimp value, the greater the difference between the SNR of a clean ECG signal and the 
SNR of a corrupted ECG signal: 
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where N is the length of the ECG signal, x  is the original clean ECG signal, x  is the corrupted ECG 
signal and x̂  is the denoised ECG signal. 

Lower RMSE and PRD values indicate that the closer the denoised signal is to the original signal, 
the lower the distortion and the better the denoising performance: 
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2.5. Experimental setup 

In order to obtain the best noise reduction results, we determined the values for each parameter 
after several experiments. The batch size was equal to 8, the epoch was equal to 2000, the lr was equal 
to 0.00001, the optimizer for both the generator and discriminator was Adam, and the learning rate 
optimization strategy was Cosine Annealing. To speed up the convergence of the model and to fit the 
stylized migration task, Instance Normalization was chosen to do the normalization within a channel 
and Tanh was used for the activation function. 

The datasets from standard MIT-BIH Arrhythmia database were used to investigate the 
proposed method. Each ECG record was sampled at 360 Hz and contains 650,000 sampling points. 
The database contains 48 half-hourly ECG records from different patients. All records consisted of 
two leads, most of which were present in the lead MLII. Noise data EM, BW, MA from the MIT-
BIH Noise Stress Test database. All experiments used signals from MLII leads as the original data 
set, used as a clean training distribution and were divided into two groups: the training set and the test 
set. The training set used 80% of the data set and the rest was used for the test set. The models in this 
paper were built on python 3.7 and PyTorch 1.8 and trained on an NVIDIA GeForce RTX 3090 
graphics card. 

In order to achieve the goal of optimal mapping relationship of signals from noise-bearing space 
to noise-free space, two types of sample data, noise-bearing and noise-free signals, need to be 
constructed. Ten records were selected as the original ECG data, including numbers 103, 105, 111, 116, 
122, 205, 213, 219, 223, 230. Using the sliding window technique, a sample was set to contain 4000 
sampling points, 250 training samples were taken for each record with an overlap rate of 50%, and a 
total of 2500 training samples were available for the 10 records. The corrupted ECG signal is generated 
by adding noise to the original ECG signal, and finally the clean ECG and noisy ECG signals are 
generated as a matrix of size (2500, 4000) and used as the training set. On the test set, the test data are 
fed into the generator for noise reduction experiments. The test set is generated in the same way as the 
training set, and there is no data overlap between the test and training sets. To accelerate convergence, 
the ECG signals were normalized to between 0 and 1 as follows: 

min

max min

-( )
-

n
n

x xNormalized x
x x

=                                (15) 

where maxx  and minx  denote the maximum and minimum values in each sample, respectively. 

3. Experimental results and discussion 

3.1. Experimental results 

The denoising performances of a single noise is evaluated, and the proposed noise reduction 
method is quantitatively compared and analyzed with the method proposed in [21] in three evaluation 
indexes. The smaller the SNR of the input noise, the greater the damage to the original signal and the 
more difficult it is to remove the noise. In the experiment, adding noises with different SNR can explore 
the comprehensive performance of the ECG denoising methods. The 5 and 10 dB EM, BW and MA 
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noise were added to the original clean ECG signal as corrupted ECG, and the average value was taken 
for multiple experiments, and the specific quantitative comparison data are shown in Tables 1−3. 

Table 1. Noise reduction effect of the model on MA noise. 

Records 

Operational CycleGANs [21] Proposed method 

SNRimp RMSE PRD SNRimp RMSE PRD 

5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 

103 15.69 17.20 0.0182 0.0153 9.47 7.90 18.84 19.91 0.0125 0.0110 6.47 5.72 

105 14.06 15.75 0.0292 0.0237 12.18 9.84 18.58 19.97 0.0160 0.0137 6.68 5.69 

111 14.35 15.85 0.0365 0.0306 11.14 9.29 19.72 21.25 0.0192 0.0161 5.85 4.91 

116 14.86 16.46 0.0296 0.0238 10.98 8.79 19.84 21.09 0.0152 0.0132 5.79 5.01 

122 17.32 18.52 0.0181 0.0160 7.79 6.82 19.62 20.73 0.0137 0.0121 5.90 5.20 

205 12.69 14.70 0.0524 0.0456 15.36 12.70 19.46 20.70 0.0144 0.0125 6.23 5.40 

213 15.22 16.52 0.0352 0.0305 10.00 8.63 20.58 21.97 0.0185 0.0158 5.30 4.51 

219 14.97 16.20 0.0266 0.0233 10.38 9.01 18.47 19.74 0.0173 0.0150 6.79 5.87 

223 13.71 14.87 0.0374 0.0324 12.21 10.69 19.10 20.44 0.0177 0.0151 6.31 5.41 

230 15.08 16.90 0.0446 0.0359 10.33 8.36 22.80 24.29 0.0174 0.0146 4.12 3.47 

Average 14.83 16.32 0.0323 0.0276 10.94 9.22 19.67 20.95 0.0160 0.0138 5.95 5.15 

From Tables 1−3, it can be seen that when the input SNR is low, the SNRimp of the generated 
noise reduction signal will be smaller and the RMSE and PRD will be larger. With the increasing of 
SNR, the SNRimp gets a relatively larger value and the RMSE and PRD will be relatively smaller. In 
all the test records, the SNRimp obtained by the proposed method in this paper is significantly higher 
than that of the comparison method, and the average values of RMSE and PRD are significantly lower 
than that of the comparison method. It can be concluded that the proposed ECG denoising method 
performs better than that of the compared method in the case of single input noise. 

Table 2. Noise reduction effect of the model on BW noise. 

Records 

Operational CycleGANs [21] Proposed method 

SNRimp RMSE PRD SNRimp RMSE PRD 

5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 

103 16.04 18.84 0.0172 0.0125 8.95 6.47 19.79 21.93 0.0112 0.0087 5.82 4.55 

105 15.40 18.58 0.0244 0.0160 10.21 6.68 20.44 22.73 0.0130 0.0100 5.42 4.17 

111 15.95 19.72 0.0298 0.0192 9.07 5.85 21.32 23.67 0.0160 0.0122 4.88 3.72 

116 16.24 19.84 0.0243 0.0152 9.13 5.79 20.65 23.06 0.0149 0.0105 5.68 4.01 

122 18.29 19.62 0.0161 0.0137 6.92 5.90 21.19 23.24 0.0115 0.0091 4.94 3.91 

205 14.78 19.46 0.0342 0.0144 11.31 6.23 20.77 23.18 0.0124 0.0094 5.37 4.05 

213 16.52 20.58 0.0300 0.0185 8.51 5.30 21.73 23.95 0.0163 0.0126 4.66 3.61 

219 15.70 18.47 0.0242 0.0173 9.35 6.79 19.77 22.27 0.0150 0.0113 5.85 4.38 

223 15.20 19.10 0.0295 0.0177 9.99 6.31 20.44 22.87 0.0152 0.0115 5.42 4.09 

230 17.54 22.80 0.0329 0.0174 7.67 4.12 23.70 25.80 0.0157 0.0123 3.71 2.91 

Average 16.18 19.67 0.0259 0.0160 9.11 5.95 20.96 23.26 0.0139 0.0106 5.18 3.94 
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Table 3. Noise reduction effect of the model on EM noise. 

Records 

Operational CycleGANs [21] Proposed method 

SNRimp RMSE PRD SNRimp RMSE PRD 

5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 

103 13.93 14.69 0.0220 0.0202 11.43 10.46 16.39 19.22 0.0165 0.0119 8.58 6.19 

105 12.64 13.36 0.0343 0.0315 14.28 13.06 16.42 17.96 0.0205 0.0172 8.54 7.16 

111 11.55 12.42 0.0498 0.0449 15.14 13.64 17.57 19.19 0.0245 0.0204 7.48 6.22 

116 12.95 13.76 0.0364 0.0319 13.63 11.86 17.80 19.99 0.0192 0.0149 7.30 5.69 

122 15.86 16.12 0.0214 0.0209 9.17 8.93 17.43 19.24 0.0176 0.0143 7.58 6.15 

205 12.34 12.84 0.0455 0.0450 14.81 14.18 17.11 19.30 0.0190 0.0146 8.05 6.34 

213 11.15 13.14 0.0588 0.0447 16.48 12.63 18.31 20.60 0.0240 0.0185 6.85 5.27 

219 11.50 12.32 0.0413 0.0369 15.49 13.94 16.00 17.91 0.0231 0.0185 9.00 7.22 

223 10.98 11.61 0.0503 0.0476 16.58 15.56 16.54 18.45 0.0238 0.0190 8.45 6.80 

230 13.28 14.03 0.0549 0.0498 12.73 11.56 20.44 22.88 0.0228 0.0172 5.39 4.08 

Average 12.70 13.53 0.0406 0.0363 13.87 12.44 17.36 19.44 0.0208 0.0164 7.74 6.13 

 

(a) The denoising effect of MA noise 

 

(b) The denoising effect of BW noise 

Continued on next page 
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(c) The denoising effect of EM noise 

Figure 6. Noise reduction for different single types of input noise at 10 dB input SNR. 

In Figure 6, the noise reduction effect of the noise reduction method proposed in this paper is 
shown for different noises with an input SNR at 10 dB, taking record 213 as an example. For the 
convenience of display, only 2000 sampling points are plotted for each sample, and in the subplots, 
from top to bottom, are the original ECG signal, the corrupted ECG signal, the noise reduction 
signal of Operational CycleGANs and the noise reduction signal output of the proposed method in 
this paper, respectively. It can be seen from the figure that the P-wave amplitude is generally 
relatively small, but there is a strong correlation with atrial fibrillation. The noise mainly destroys 
the P-wave and T-wave of the ECG signal, and the EM noise destroys the main morphology of the 
ECG, while the denoised signal output from the model trained with the method proposed in this 
paper is closer to the morphology of the original clean ECG signal, and the characteristic 
information of the P-wave and T-wave is obviously recovered, which is more medically valuable. 
The noise reduction signal generated by the Operational CycleGANs method will contain high-
frequency noise that is not present in the original signal. This is most obvious when the input noise 
is EM, and many detailed features of the signal are not generated, and the average value of the 
metrics obtained from the test samples is low, and the difference in the noise reduction effect is 
very large between different samples. 

Considering the acquisition process of ECG signals, the same segment of data should contain 
multiple noises, i.e., mixed noise EM+BW, EM+MA, BW+MA and EM+BW+MA. Therefore, the 
denoising of the hybrid noise is also evaluated in this paper, and the specific quantitative comparison 
data are shown in Table 4. It can be seen that the proposed method has better SNRimp, RMSE and PRD 
under different test noise conditions, and also has good noise reduction ability for mixed noise and 
better generalization ability. 

Figure 7 shows the noise reduction effects of different noises when the input SNR is 7.5 dB. 
It can be seen that the P wave and T wave have also been severely damaged and lost effective 
medical features. After denoising through the model of this paper, the obtained close to the original 
ECG signal. 
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Table 4. Average noise reduction results obtained by denoising the mixed noise. 

  Operational CycleGANs [21] Proposed method 

  EM+BW EM+MA BW+MA EM+BW+MA EM+BW EM+MA BW+MA EM+BW+MA 

5 dB SNRimp 13.16 13.17 15.78 13.38 17.64 17.70 21.23 17.76 

RMSE 0.0384 0.0386 0.0278 0.0374 0.0202 0.0200 0.0134 0.0199 

PRD 13.16 13.15 9.66 12.82 7.51 7.47 5.00 7.42 

7.5 dB 

 

SNRimp 13.39 13.96 15.89 14.01 19.03 18.77 21.15 19.303 

RMSE 0.0372 0.0344 0.0277 0.0340 0.0172 0.0177 0.0135 0.0167 

PRD 12.72 11.90 9.56 11.80 6.42 6.61 5.04 6.2312 

10 dB SNRimp 14.25 14.46 15.59 14.32 18.71 19.75 21.96 19.05 

RMSE 0.0334 0.0329 0.0316 0.0334 0.0179 0.0158 0.0124 0.0172 

PRD 11.51 11.29 10.23 11.44 6.63 5.92 4.59 6.40 

15 dB SNRimp 14.38 14.82 16.02 15.52 19.32 19.23 22.98 19.83 

RMSE 0.0321 0.0301 0.0290 0.0276 0.0166 0.0169 0.0110 0.0157 

PRD 11.16 10.60 9.54 9.72 6.20 6.26 4.07 5.84 

        

(a) EM+BW+MA noise reduction effect   (b) EM+BW noise reduction effect 

        

(c) EM+MA noise reduction effect     (d) BW+MA noise reduction effect 

Figure 7. Noise reduction for different mixed type of input noise at 7.5 dB input SNR. 
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Some traditional signal processing methods were used to denoise ECG signals, especially for 
processing Gaussian white noise. In order to fully verify the noise reduction performance of the 
proposed method in the face of different complex situations, the Gaussian white noise reduction 
experiment is also investigated, and as a comparison with the existing work of AFD method [33]. 

The test results are clearly shown in Figure 8. After all test records are output by the noise 
reduction model, the SNR has been significantly improved. The noise reduction effect of the method 
in this paper is more significant, at least 9.45 dB higher than the AFD method at 1.25 dB, at least 8.13 
dB higher than the AFD method at 5 dB. 

 

(a) 1.25 dB Gaussian white noise reduction effect 

 

(b) 5 dB Gaussian white noise reduction effect 

Figure 8. Noise reduction effect of Gaussian white noise. 

In all test cases, qualitatively, the noise reduction signal obtained by the method in this paper 
is smoother, does not generate additional noise, has a higher degree of restoration and is closer to 
the original ECG signal; quantitatively, the method in this paper can obtain good noise reduction 
effects for all test samples, and the average values of metrics are better than those of the 
Operational CycleGANs. 

In all, the denoised signal obtained by the ECG noise reduction method proposed in this paper is 
very close to the original signal, with high SNRimp, low RMSE and PRD, and can effectively remove 
four single noises of EM, BW, MA and Gaussian white noise, and four mixed noises of EM+BW, 
EM+MA, BW+MA and EM+BW+MA. 
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3.2. Ablation experiment results and discussion 

In order to further investigate the role of the proposed method for ECG denoising, ablation 
experiments are conducted for different models in this paper. The specific scheme of the model design 
is shown in Table 5, where ‘√’ indicates that this item is included in the model. The loss function of 
Operational CycleGANs is 1 2 1 2adv adv cyc ideLoss Loss Loss Lossλ λ+ + + , and new loss is listed as shown 
in Eq (9). Since the mixed noise is the most common and difficult to remove in ECG, this experiment 
adds 5, 7.5, 10, 15 dB of mixed noise EM+BW+MA to 10 original ECG records respectively to get 
the corrupted ECG signal. 

Table 5. Objects included in different models. 

Model Operational CycleGANs ECA-Net new Loss 
A √   
B √ √  
C √  √ 
D √ √ √ 

Figure 9 shows the average SNRimp, RMSE and PRD values of the test data at 5, 7.5, 10, 15 dB 
input SNRs. When the input signal-to-noise ratio is small, the noise reduction effect of Model C is 
better than that of Model B. As the input SNR gradually increases, the denoising performance of Model 
B has a faster improvement, and the performance exceeds that of Model C at 10 dB. The noise 
reduction performance of Model C is slightly better than that of Model A, but not nearly as good as 
that of Model D. 

All in all, adding only ECA-Net or new Loss under different input noise conditions does not lead 
to a good optimization of the model. Compared with Model A, the proposed method, Model D, has a 
significant improvement and achieves the optimum in all metrics, with 32.74% relative SNRimp 
improvement, 46.79% relative RMSE reduction and 42.12% relative PRD reduction at an input SNR 
of 5 dB. 

Embedding ECA-Net or optimizing the loss function in the model can slightly improve its 
performance. When both methods are used simultaneously, they can complement each other and 
further improve the overall performance of the model, achieving better denoising effects. In ECG 
signal denoising, attention mechanisms can help the model to focus on the key information in the 
signal, paying more attention to key signal features such as QRS complex, which can accurately 
separate noise from the signal while retaining important signal characteristics. Optimizing the loss 
function can enable the model to better learn the features of the data, ensure a better fit with real data, 
reduce the risk of overfitting and further improve the denoising performance. Therefore, when 
attention mechanisms and optimized loss functions are used simultaneously, the model can better learn 
the key features in the signal, achieving better denoising effects. 
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(a) SNR at different input SNR levels        (b) RMSE at different input SNR levels 

 

(c) PRD at different input SNR levels 

Figure 9. Comparison of denoising performance of different models at different input SNRs. 

In this paper, the model generalization performance resulting from manual data screening is 
approximate to the clinical setting, and it might not be appropriate to use in clinical practice directly. 
Therefore, in the future work, intra-patient testing protocols will be further verified in clinic practice. 
Some quantitative metrics, such as SNRimp, PRD and RMSE, have been provided to assess the 
superiority of the designed modules. However, the influence of training strategy and model complexity, 
have not been considered in this work. We will conduct further analysis in subsequent work on the 
impact of various training strategies on model performance and explore model complexity under 
different circumstances. 

4. Conclusions 

In this paper, we propose a fusion of ECA-Net and CycleGAN for ECG signal noise reduction. 
The model uses data from the MIT-BIH Arrhythmia database and the MIT-BIH Noise Stress Test 
database, which constitute the original and corrupted ECG samples. A one-dimensional convolutional 
neural network was used to extract the time-domain features of ECG data, and the model optimization 
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was achieved by ECA-Net highlighting the key features and introducing a new loss function to further 
extract the global and local ECG features. The qualitative and quantitative experimental results show 
that the proposed ECG denoising method can remove a variety of single or mixed noises with higher 
SNRimp, as well as lower RMSE and PRD, and has a good reduction of both global and local features 
with stronger generalization ability. Moreover, the proposed effective end-to-end ECG denoising 
method is of practical significance and clinical value, which can prevent potential diseases such as 
stroke and sudden death caused by arrhythmias in a timely and early manner. 
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