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Abstract: Biomedical data analysis is essential in current diagnosis, treatment, and patient condition 
monitoring. The large volumes of data that characterize this area require simple but accurate and fast 
methods of intellectual analysis to improve the level of medical services. Existing machine learning 
(ML) methods require many resources (time, memory, energy) when processing large datasets. Or they 
demonstrate a level of accuracy that is insufficient for solving a specific application task. In this paper, 
we developed a new ensemble model of increased accuracy for solving approximation problems of 
large biomedical data sets. The model is based on cascading of the ML methods and response surface 
linearization principles. In addition, we used Ito decomposition as a means of nonlinearly expanding 
the inputs at each level of the model. As weak learners, Support Vector Regression (SVR) with linear 
kernel was used due to many significant advantages demonstrated by this method among the existing 
ones. The training and application procedures of the developed SVR-based cascade model are 
described, and a flow chart of its implementation is presented. The modeling was carried out on a real-
world tabular set of biomedical data of a large volume. The task of predicting the heart rate of 
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individuals was solved, which provides the possibility of determining the level of human stress, and is 
an essential indicator in various applied fields. The optimal parameters of the SVR-based cascade 
model operating were selected experimentally. The authors shown that the developed model provides 
more than 20 times higher accuracy (according to Mean Squared Error (MSE)), as well as a significant 
reduction in the duration of the training procedure compared to the existing method, which provided 
the highest accuracy of work among those considered. 

Keywords: cascading; data analysis; biomedical data; Ito decomposition; ensemble model; linear 
Support Vector Machine; non-linear input extension; prediction tasks 
 

1. Introduction 

The modern development of the post-industrial society requires providing high-quality and timely 
service for potential consumers. Largely, this also applies to medical services, where the amount of 
information received about the patient significantly affects the accuracy of the decisions made by the 
doctor. However, large volumes of various types of data that need to be processed considerably affect 
the quality of such decisions [1]. In the Big Data era, the tasks of increasing the accuracy of the medical 
diagnosis, treatment, or monitoring of the patient’s condition are entirely based on the intellectual 
analysis of biomedical data. Such data can be collected in different ways. Still, the increased computing 
power, the appearance of a large number of portable devices, and broadband internet access in recent 
years provide the possibility of collecting biomedical data precisely with the Internet of Medical 
Things (IoMT) [2]. This approach has many advantages in medicine, especially for remote monitoring 
of the patient’s condition. However, it is also accompanied by significant risks, the main of which can 
be reduced to the problems of accurate and fast data processing. The effective solution to both problems 
is the key to using the IoMT in practice. 

When we consider the task of intellectual analysis of large sets of numerical data, the most optimal 
solution in terms of their processing speed is the use of linear ML methods [3]. Effective use of such 
models can also occur hardware-wise, particularly for the implementation of Edge- and Fog computing 
due to the low computational complexity of their work. This approach will reduce the load on the 
server where data processing takes place and energy costs for data transfer, replacing it with the transfer 
of current knowledge. 

Despite the high speed of operation, linear models do not always provide sufficient accuracy of 
intelligence analysis results for their practical use. The use of non-linear models eliminates this 
drawback. They significantly increase the accuracy of solving applied regression/classification tasks 
when processing large sets of biomedical data. However, they require considerably higher resources 
for the implementation of training procedures. It will significantly slow down the functioning of 
applied medical diagnostics or monitoring systems, which imposes several restrictions on their 
practical application. 

Based on this, a contradiction arises between preserving the speed of system operation due to 
linear data analysis models and ensuring the high accuracy of intellectual analysis, which only non-
linear models allow obtaining. To solve it, we proposed to use a linear model (SVR with the linear 
kernel) with a non-linear expansion of inputs (second-degree Ito decomposition). This approach is 
justified by Cover’s theorem [4] which says that the transformation of data into a space of higher 
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dimensions increases the probability of correct classification of data by linear methods [5]. In addition, 
it will significantly increase prediction/classification accuracy with a slight increase in the duration of 
training procedures. 

Even with increased accuracy, solving applied intellectual analysis tasks using single models does 
not always provide a sufficiently effective result. In this case, one effective way to improve 
prediction/classification accuracy may be to use ensembles from such models. Among the four classes 
of ensemble methods: boosting, bagging, stacking, and cascading, it is the last one that provides the 
highest accuracy of work. However, the composition of cascading methods can be different, as well as 
the principles based on them [6]. Depending on this, the general model can demonstrate high/low 
accuracy and be very slow in operation. 

This paper aims to develop an effective cascading model based on the linear ML algorithm with 
the non-linear expansion of inputs. This model is based on the principle of response surface 
linearization by considering the outputs from the previous cascade level to the following one. 
Therefore, it will provide high accuracy during the analysis of large biomedical tabular datasets with 
a slight increase or even decrease in the duration of its training procedure compared with analogs. 

The main contribution of this paper can be summarized as follows: 
 We have created a new ensemble model based on Ito decomposition and linear Support Vector 

Machine (SVM) for improving the prediction accuracy of biomedical data processing. It is based on 
the idea of cascading and the principles of the response surface linearization; 

 We have studied and chosen optimal parameters of the proposed non-linear SVR-based 
cascade model that provide the best prediction accuracy using different performance indicators; 

 We have compared our model with other ML-based methods from different classes and showed 
its effectiveness when solving biomedical data analysis tasks in case of large tabular data processing. 

The structure of the paper is as follows. The second section provides an overview and analysis of 
existing approaches to solving the stated problem. Section 3 contains a detailed description of the 
proposed model and the method for its implementation. Section 4 presents simulation results based on 
a real-world dataset. A comparison with existing approaches and a discussion on the effectiveness of 
using the proposed model is given in Section 5. Conclusions are given in Section 6. 

2. State-of-the-arts 

The applied problem that was solved in this paper consists of predicting heart rate based on a 
large volume biomedical data set. Its primary purpose is to determine a person’s stress level. That is 
why the review of existing works focused on linear, non-linear and ensemble ML methods for solving 
the stated task. 

The paper [7] considered the problem of heart rate prediction based on multiple regression. The 
dataset contained a set of physiological and demographic indicators. The authors obtained a high 
prediction accuracy based on various accuracy indicators. However, the shortcoming of this study is 
the small dataset on which the simulation took place. 

The review [8] analyzes linear and non-linear ML methods for solving the stated task. The authors 
selected studies that use various tools to solve the heart rate prediction task by solving classification 
or regression tasks using datasets of different volumes. The results of the analysis show that linear 
methods provide high prediction accuracy only in the case of processing small datasets. Therefore it is 
advisable to use non-linear methods to analyze other volumes of data. 
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Research [9] is dedicated to solving the classification task for heart rate prediction. The authors 
suggested using Bayesian Inference Federated Learning for its solution. The modeling of the proposed 
method took place using a real-world dataset collected by the IoMT device. The results regarding the 
accuracy of the work based on the author’s errors look satisfactory. However, this approach requires setting 
a large number of parameters. That is why it is computationally inefficient to solve the stated problem. 

The authors of [10] carried out a study on the evaluation of the effectiveness of using linear and 
ensemble ML methods to solve the stated task. In this case, the authors used many time series collected 
for different intervals. The results demonstrate the high accuracy of all linear methods, among which 
SVR stands out. In addition, ensemble methods and long-short-term memory did not provide sufficient 
accuracy and an unstable result, especially when using different sliding windows. 

In [11], the task of early diagnosis of heart diseases is considered. The authors used a large medical 
dataset to solve the classification task. Synthetic Minority Over-sampling Technique (SMOTE) 
algorithm was used to balance the dataset. The effectiveness of single models, homogeneous and 
heterogeneous ensembles, was investigated. The basis of each of the considered approaches is the use 
of AdaBoost. The simulation results showed that the highest accuracy was obtained using a 
heterogeneous ensemble. However, the disadvantage of this approach is the need to adjust all optimal 
parameters of each heterogeneous ensemble member. It requires a lot of resources. 

Research [12] is devoted to applying a boosting strategy to increase the accuracy of solving the 
heart rate prediction task. Such a strategy provides sufficient prediction accuracy with satisfactory time 
performance of the model. To increase the prediction accuracy, the authors suggested using an 
approach to feature selection called recursive feature elimination. The modeling results confirmed the 
higher accuracy of using the hybrid approach compared to the basic Gradient Boosting Regressor. 

The authors of [13] proposed a two-step model for solving the stated task. It is based on the use 
of both numerical datasets and images. Patient’s data was collected by authors of [13] using IoMT 
device. In the first stage, numerical data is classified using hybrid linear discriminant analysis with 
the modified ant lion optimization. If the results do not meet the specified criteria, a second stage 
is added-processing the echocardiogram by deep learning tools based on an extensive known 
dataset. This approach demonstrated good prediction accuracy but required many resources for its 
practical implementation. 

The two-step multistage model, which is essentially a cascade, was developed in [14]. The authors 
used a General Regression Neural Network (GRNN) as the fundamental element of the cascade. At 
the first level of the cascade, the desired value is predicted. The second level of the cascade is designed 
to predict the errors of the first one. The results of using this approach have demonstrated their 
effectiveness but are limited to the use of not only small datasets. This is explained by the peculiarities 
of GRNN operation, which becomes very slow and significant in analyzing large datasets. 

A multistage model was also developed in [15]. However, unlike in the previous study, the user 
chooses an arbitrary number of levels of the cascade model. The basis of the model is using the 
principle of response surface linearization by taking into account the outputs of the previous cascade 
in the next one. SVR with the radial basic functions (RBF) kernel was used as weak regressors. It 
eliminates the need to apply additional procedures for the non-linear expansion of inputs. However, 
the simulation results did not demonstrate a significant increase in the accuracy of the model in 
comparison with the classic SVR with the RBF kernel. In addition, due to the use of non-linear SVR, 
the developed model requires a lot of time to implement the training procedures. Overcoming these 
limitations is the basis of the cascade developed in this paper, which demonstrates a significant increase 
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in accuracy with a small duration of the training procedure. 

3. A nonlinear SVR-based cascade model 

3.1. SVR 

The SVM is one of the most effective and flexible ML methods that was developed in the 1960s 
and 1970s. The basis of the method is the need to build an optimal hyper-surface, which draws the 
border between data clusters with the most significant distance to them. Even though this technique 
was developed for solving classification tasks, it has been successfully adapted and is widely used for 
solving regression tasks. SVR is the same algorithm but it is used for solving regression task. 

The learning process of this method boils down to solving a quadratic programming problem with 
a unique solution. This method remains a somewhat effective linear model even when processing large 
datasets. In addition, SVR ensures efficient use of RAM as it uses only a subset of support points in 
the objective function. Detailed mathematical descriptions of the implementation of linear SVR are 
given in [16]. 

Generalization of the method for the case of non-linear response surfaces analysis is based on 
several kernel functions. Their main essence consists in mapping the primary space of input data in the 
space of a higher dimension in order to build a better separating hypersurface. Even in this case, the 
SVR learning algorithm does not change significantly, which ensures the flexibility of this method 
when solving various classification or regression tasks. 

3.2. Ito decomposition 

The Wiener polynomial or Kolmogorov-Gabor polynomial or Ito decomposition [17] is a discrete 
analog of the Voltaire series. It was developed in parallel by several scientists from different countries 
to solve various approximation tasks, particularly for synthesizing a non-linear prediction filter [18]. 

Ito decomposition of the second degree can be written as follows: 

1 ,
1 1

( ,..., )
n n n

n i i i i j i j
i i j i

Y x x a a x a x x
  

    , (1) 

where 1,..., nx x  are independent variables; Y  is a function from independent variables; ia  are the 

coefficient of this decomposition, 1,i n . 

The peculiarity of this non-linear decomposition is its high approximation properties, which 
ensure its use when solving several applied problems [19]. 

In this paper, we will use second-order Ito decomposition for non-linear expansion of the input 
data space. It will ensure an increased approximation accuracy by linear models (justified by Cover’s 
theorem). Higher degrees of this decomposition should not be considered when processing large 
volumes of data. It is due to a significant increase in the number of attributes of the dataset for 
processing, which will increase the complexity of calculations and the training time of the selected ML 
model. In addition, a higher degree of Ito decomposition can cause overfitting of the chosen ML model, 
especially when processing large datasets. 
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3.3. SVR-based cascade model 

In this paper, we developed a new SVR-based cascade model. It is based on one of the approaches 
to the ensemble of ML methods, namely cascading. Cascading provides the most accurate prediction 
or classification results when solving various applied tasks among the four ensemble strategies. 

The training sample division accompanies the developed model’s implementation into several 
subsamples with the same or almost the same number of vectors. The number of subsamples will 
determine the levels numbers of the developed SVR-based cascade model. 

At the input of each cascade level, the dataset is normalized and subjected to a non-linear 
transformation using the Ito decomposition. This step maps the original input data space (each 
subsample) into a higher dimensional space to obtain a higher prediction accuracy. In addition, the 
predicted value from the previous level of the cascade model is used by the next level as an additional 
attribute for prediction. The principle of the response surface linearization underlying this approach 
also increases the accuracy of the approximation of a current dataset. 

A SVR with a linear kernel was chosen as the basic regressor of the developed model. Its use as a 
weak learner at each cascade level has several significant advantages. First, according to Cover’s 
theorem, using SVR with a linear kernel during non-linear data analysis increases the 
classification/prediction accuracy [4]. In addition, this regressor will search for the optimal global 
solution with a limited number of support vectors, which results in low computational complexity [20]. 

Let us consider the main steps of the training procedure, which are visualized in Figure 1 in 
more detail: 

1) We divide the dataset into parts with the same or almost the same number of observations; 
2) At the first level of the cascade model, we perform a non-linear transformation of each vector 

of the first subsample and learn the first SVR with a linear kernel; 
3) We expand the second subsample with the Ito decomposition and apply it to the pre-trained 

SVR_1 at the first level. We get the predicted values, which we add to the same sample as an additional 
attribute and send the modified dataset to the cascade model’s second level. At the second level, we 
perform a non-linear transformation of the already extended by one attribute of the second subsample 
and train the second SVR_2 with a linear kernel; 

4) The third subsample is expanded by the Ito decomposition and applied to the pre-trained 
SVR_1 of the first cascade level. We get the predicted output, which we add as an additional feature 
to this subsample and pass to the second level of the cascade model. At the second level, we perform 
a non-linear transformation of the third subsample extended by one attribute and apply it to SVR_2. 
We get the predicted output, which we add as an additional attribute to the third subsample and pass 
to the third level of the cascade. At the third level, we perform a non-linear transformation of the third 
subsample extended by one attribute and train SVR_3. 

5) We use the same logic to train all subsequent cascade levels using the following subsamples 
that remained after the first step of the training algorithm. 
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Figure 1. Flow chart for the training process of the proposed non-linear SVR-based cascade model. 

In the application mode, one test dataset (or one data vector) is specified, and the number of pre-
trained levels of the cascade model is determined. We apply the test dataset to the SVR-based cascade 



13405 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 13398–13414. 

model by performing all the procedures for the training algorithm (for the last level of the cascade). 
For example, for the SVR-based cascade model, which will contain three cascade levels, the 

application procedures will be as follows: we expand the test subsample of the data with the Ito 
decomposition and apply it to the pre-trained SVR_1 of the first level of the cascade. We get the 
predicted output, which we add as an additional feature to this sample and pass to the second level of 
the cascade model. At the second level, we perform a non-linear transformation of the test sample 
extended by one attribute and apply it to SVR_2. We get the predicted output, which we add as an 
additional attribute and pass to the third level of the cascade. At the third level, we perform a non-
linear transformation of the extended by one feature of the third subsample and apply it to SVR_3. We 
get the predicted value of the sought value. 

4. Modeling and results 

This section describes the modeling process on real-world data and obtained results. We used 
such performance indicators for evaluation the accuracy of the proposed SVR-based cascade scheme: 

Mean absolute error: 
1 N true pred

i i
i

MAE y y
N

  , (2) 

Mean square error:  21 N true pred
i i

i
MSE y y

N
  , (3) 

Maximum residual error:  max true pred
i iME y y  . (4) 

4.1. Dataset description 

This paper investigated the heart rate prediction task based on the dataset of large volumes. The 
biomedical dataset for solving the stated task was taken from an open repository [21]. It contains 18 
attributes derived from the signals that were measured from the ECG (electrocardiography). These, 
selected by the author of the dataset 18 features, have a significant but different effect on each individual’s 
heart rate at a certain moment (Table 1). The dataset consists of 369,289 unique observations. 

The dataset is pre-cleaned and ready for use, so it does not contain missing or abnormal values. 
It ensures the avoidance of many preliminary processing procedures and the possibility of directly 
performing the experimental part of the research on building a prediction model of increased accuracy by 
ML tools. The researched dataset was divided into training and test samples in a ratio of 70% to 30% to 
implement modeling procedures. Thus, the training sample contained 258,503 observations, and the 
test sample included 110,787 observations. 

The practical value of solving this task can provide the possibility of determining the level of 
human stress [22]. That is why constructing a highly accurate heart rate prediction model will 
allow highly precise identification of a person’s stress level, which is critical in various application 
areas [23–25]. 
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Table 1. Training and test errors for different levels of the SVR-based cascade model. 

Attribute Title Min Value Std Mean Value Max Value 
Mean of RR intervals (MEAN_RR) 547.595 124.485 845.914 1322.01 
Median of RR intervals (MEDIANR_R) 517.51 132.003 841.156 1653.12 
Standard deviation of RR intervals (SDRR) 27.2406 76.8158 109.26 563.48 
Root mean square of successive RR interval 
differences (RMSSD) 

5.53346 4.12688 14.9808 26.6232 

Standard deviation of successive RR interval 
differences (SDRR) 

5.53336 4.12688 14.9801 26.623 

Ratio of SDRR/RMSSD 2.66038 5.12581 7.38995 54.3399 
Percentage of successive RR intervals that 
differ by more than 25 ms (pNN25) 

0 8.20845 9.84384 39.4 

Percentage of successive RR intervals that 
differ by more than 50 ms (pNN50) 

0 0.9921 0.86997 5.4 

Kurtosis of distribution of successive RR 
intervals (KURT) 

−1.8947 1.78593 0.52599 62.6724 

Skew of distribution of successive RR 
intervals (SKEW) 

−2.1363 0.69987 0.044 6.56471 

Mean of relative RR intervals 
(MEAN_REL_RR) 

−0.0012 0.00016 −0.001 0.00123 

Median of relative RR intervals 
(MEDIAN_REL_RR) 

−0.0044 0.00087 −0.0005 0.0021 

Standard deviation of relative RR intervals 
(SDRR_REL_RR) 

0.00899 0.00547 0.01859 0.03654 

Root mean square of successive relative RR 
interval differences (RMSSD_REL_RR) 

0.00322 0.00392 0.00972 0.02695 

Standard deviation of successive relative RR 
interval differences (SDSD_REL_RR) 

0.00322 0.00392 0.00972 0.02695 

Ratio of SDRR/RMSSD for relative RR 
interval differences 
(SDRR_RMSSD_REL_RR) 

1.18126 0.37551 2.005 3.70231 

Kurtosis of distribution of relative RR 
intervals (KURT_REL_RR) 

−1.8947 1.78593 0.52599 62.6724 

Skew of distribution of relative RR intervals 
(SKEW_REL_RR) 

−2.1363 0.69987 0.044 6.56471 

Heart rate of the patient at the time of data 
recorded (HR) 

48.7372 10.3811 74.0103 113.727 

4.2. Scalers 

As studied in [26], data normalization significantly affects the accuracy and speed of ML methods 
when processing large volumes of medical and biomedical data [27]. Accordingly, the selection of the 
correct normalization method will allow increasing the efficiency of the work of the SVR-based 
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cascade model developed in this paper. When applying SVR to the entire dataset, the authors 
investigated three well-known normalization methods (MAX-ABS scaler, MIN-MAX scaler, and 
Standard scaler). 

The obtained results for the training and application modes are shown in Figure 2. 

 

Figure 2. MAE and MSE values for training SVR on whole data using different scalers. 

As shown in Figure 2, the MAX-ABS scaler demonstrated the most significant errors (MAE and 
MSE) in the SVR operation. Somewhat better results were obtained when using the MIN-MAX scaler. 
The best results in prediction accuracy were obtained when using the STANDARD scaler (data 
normalization by Standard scaler means subtracting from each vector components the mean value of 
current feature and dividing the result using standard deviation). This normalization method reduced 
both accuracy errors of the SVR application mode. In particular, the scaler used by MSE will provide 
a 12 times more minor error in the application of the method compared to the MAX-ABS scaler. For 
MAE, the error is more than three times smaller. That is why, during the practical implementation of 
the developed SVR-based cascade model, we used the STANDARD scaler to normalize data at each 
cascade level. 

4.3. Cascade levels 

The developed SVR-based cascade model is based on the ensemble of ML methods approach, 
namely cascading [28,29]. In addition, the principle of response surface linearization is used here [30]. 
In theory, all this will increase accuracy with each new level of the cascade [17]. However, the process 
of growing accuracy will occur until a certain point. The possible accumulation of errors from the 
previous levels of the cascade will affect the accuracy of the prediction at its following levels, and it 
will decrease. Therefore, an essential parameter for the practical application of the developed model is 
the number of its cascades. Determining the optimal value of the number of cascades of the SVR-based 
model will not only ensure obtaining the sought-after highest accuracy of solving the stated problem 
but also the possibility of using a model with lower computational complexity and with less training 
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time (in particular, by using a smaller number of cascades) 
That is why, experimental studies were conducted to select the optimal value of this parameter. 

We built the SVR-based cascade model with the number of cascades from 1 to 6. The SVR parameters 
for all cascades were the same (kernel = ‘linear’, gamma = ‘scale’, coef0 = 0.0, tol = 0.001, C = 1.0, 
epsilon = 0.1, max_iter = −1). The results of this experiment for both training and application modes 
using MSE and MAE are shown in Table 2. 

Table 2. Training and test errors for different levels of the SVR-based cascade model. 

SVR-based cascade 
level  

MAE* MSE* MaxE* 

Training mode  

2 0,03668 0,00195 0,13377 
3 0,03413 0,00181 0,16356 
4 0,03522 0,00193 0,74910 
5 0,03836 0,00218 0,41678 
6 0,03853 0,00227 0,51560 
Test mode  

2 0,0368 0,00202 1,06643 
3 0,03449 0,00187 0,78698 
4 0,03543 0,00195 0,88296 
5 0,03828 0,00225 1,94576 
6 0,03851 0,00238 0,82189 

*MAE = Mean Absolute Error, MSE = Mean Squared Error, MaxE = Maximum Residual Error 

Table 2 clearly shows that the both errors (training and test) SVR-based cascade model with two 
cascade levels significantly decreased in comparison with processing the whole dataset. It is explained 
by the principle of response linearization and the high approximation properties of the Ito 
decomposition. The best results were obtained when building a model with three cascade levels. In 
particular, the MSE error has decreased by more than 30 percent compared to the first level of the 
studied model. It should be noted that when using a four-level cascade, the model does not demonstrate 
overfitting. Testing errors are higher than training errors. However, this difference is insignificant, 
showing the developed model’s high generalization properties. In addition, constructing a three-level 
cascade is significantly more efficient regarding computational complexity and training time than a 
model with a larger number of cascades. 

It is also clear from Table 1 that the studied model, when using four or more cascade levels shows 
an increase in error in both modes. Moreover, starting from level 5, overfitting of the model is observed. 
Two reasons explain this. First, the rise in input attribute number is due to considering the output 
signals of all previous levels and the Ito decomposition. Secondly, the accumulation of errors at the 
earlier cascade levels and their impact on the subsequent levels of the developed model. That is why 
the optimal number of cascades of the developed model when solving the stated task is 3. 
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5. Comparison and discussion 

To evaluate the effectiveness of the developed SVR-based cascade model, we compared its work 
with several linear, non-linear, and ensemble methods used to solve the stated problem. 

Linear models are chosen because they are pretty fast when processing large datasets, non-linear 
because they provide increased accuracy compared to linear ones, and boosting ensemble methods are 
very similar to the developed cascade model. Performance indicators (MSE and MAE) and the duration 
of the training procedure were selected as efficiency criteria. 

Therefore, the comparison was made with the following methods: 
1) Linear Regression [7]; 
2) Ridge Regression [8]; 
3) Automatic Relevance Determination (ARD) Regression [8]; 
4) Bayesian Ridge Regression [9]; 
5) SVR with different kernels [10] 
6) Ada Boost Regressor [11]; 
7) Gradient Boosting Regressor [12]. 
The results of applying all the methods studied in this paper are summarized in Table 3. It should 

be noted that Table 2 shows the MSE and MAE errors of the methods in the application mode. 
When analyzing Table 3, it can be seen that all linear models provide almost the same level of 

prediction accuracy based on both performance indicators. Interesting results were obtained for SVR 
with non-linear kernels. Non-linear SVR with RBF kernel shows 16 times higher accuracy than SVR 
with linear kernel. Despite this, non-linear SVR with a polynomial kernel shows the lowest prediction 
accuracy of all the studied methods. It can be explained by the significant increase in the number of 
attributes of a given large dataset due to the non-linear expansion of the inputs. As a result, this model 
has significantly lower generalization and approximation properties. 

Table 3. Comparison with different ML-based methods. 

Method MAE* MSE* 

SVR (linear) 1,065 3,007 
SVR (rbf) 0,063 0,041 
SVR (poly) 1,652 5,928 
Proposed SVR-based cascade model 0,035 0,002 
GradientBoostingRegressor 0,343 0,264 
AdaBoostRegressor 1,585 3,359 
ARDRegression 1,121 2,677 
BayesianRidgeRegression 1,121 2,677 
LinearRegression 1,121 2,676 
RidgeRegression 1,122 2,678 

*MAE = Mean Absolute Error, MSE = Mean Squared Error. 

If we consider boosting ensembles, the results here are also twofold. Despite selecting optimal 
operating parameters, AdaBoost demonstrates significantly lower accuracy than linear models. At the 
same time, Gradient boosting makes it possible to obtain an acceptable predicted result, particularly 
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regarding the accuracy of the approximation of the current dataset. 
The highest prediction accuracy was obtained using the developed cascade model (that are baseon 

Ito decomposition and SVR with linear kernel). If we analyze the MSE errors from Table 2, the 
developed SVR-based cascade model provides more than 3000 times minor errors than SVR with the 
polynomial kernel; more than 1500 times minor errors than SVR with the linear kernel; and more than 20 
times minor error in comparison with SRV with the RBF kernel. It is explained both by the high 
approximation properties of Ito decomposition, which is used at all cascade levels, and by the 
principles of response surface linearization, which are the basis of the developed model. 

The main disadvantage of methods based on cascading is the lack of parallel data processing, as, 
for example, when using the stacking strategy of assembling ML methods. That is why, in this paper, 
we also compared the duration of the training procedure of all studied techniques. The experiments 
was conducted on the PC with following characteristics: processor Intel Core i5-8250U CPU @ 1.60 
GHz, RAM: 16 GB DDR4 2400 MHz. The results are summarized in Figure 3. 

As expected (Figure 3), linear models are the fastest ones. Boosting methods demonstrate a 
significant increase in accuracy compared to linear algorithms. But some of the latter, in particular 
Gradient boosting, shows a substantial increase in prediction accuracy compared to linear models. The 
developed SVR-based cascade model requires five times more time than Gradient boosting (however, 
it provides 135 times higher MSE-based accuracy than this method). It considers the non-linear 
expansion of inputs due to Ito decomposition, which significantly increases the duration of the developed 
model’s training procedure and is not used during modeling by the Gradient boosting algorithm. 

 

Figure 3. The training time for all investigated methods. 

SVRs with different kernels show the highest training time. It is explained by the fact that these 
methods processed the entire large dataset, while the developed model worked with its parts separately. 
Despite this fact, in the perspective of further research, one should focus on reducing the duration of 
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the developed model’s training procedure while maintaining its operation’s accuracy. In particular, it 
is worth using a neural network variant of Principal Component Analysis (PCA) at each level of 
the cascade model to reduce the dimensionality of the input data space and, as a result, to reduce the 
duration of the training procedure [31]. Among other options, one should consider using non-
iterative artificial neural networks [32] instead of SVR as weak elements for each level of the 
developed cascade model. 

In addition, the proposed method can be used to analyse large volumes of data in other fields [33–35]. 
Moreover, it can be adapted to solve the classification task. 

6. Conclusions 

This paper is devoted to solving the problem of increasing the accuracy of approximation of 
biomedical datasets of large volumes. The authors developed a new SVR-based cascade model. It is 
based on the principles of cascading ML methods. Each subsequent level of the cascade of the 
developed model takes into account (as an additional feature) the output of the previous one. In 
addition, at each level of the cascade, non-linear expansion of the inputs due to Ito decomposition is 
implemented. This provides increased prediction accuracy due to the principle of response surface 
linearization. The authors used SVR with the linear kernel as the weak regressors. 

The paper describes the training and application algorithms of the developed model. A flow chart 
of its implementation is also provided. 

The modeling was based on a real-world biomedical dataset. The authors solved the task of heart 
rate prediction of individuals based on more than 350,000 observations. We found the high efficiency 
of proposed cascade scheme through a comparison with existing methods based on different 
performance indicators. 

The shortcoming of the proposed approach is the impossibility of its parallelization due to the use 
of cascading principles. It determines the need for considerable time and resources to implement the 
training procedure. That is why, in the prospect of further research, it is planned to use non-iterative 
artificial neural networks as fundamental elements for each level of the developed cascade model. It 
will also be considered the possibility of using the neural network variant of PCA to reduce the 
space of input data of each level of the developed cascade model while maintaining the high 
accuracy of its operation. 
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