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Abstract: Various general and individual measures have been implemented to limit the spread of
SARS-CoV-2 since its emergence in China. Several phenomenological and mechanistic models have
been developed to inform and guide health policy. Many of these models ignore opinions about certain
control measures, although various opinions and attitudes can influence individual actions. To account
for the effects of prophylactic opinions on disease dynamics and to avoid identifiability problems, we
expand the SIR-Opinion model of Tyson et al. (2020) to take into account the partial detection of
infected individuals in order to provide robust modeling of COVID-19 as well as degrees of adherence
to prophylactic treatments, taking into account a hybrid modeling technique using Richard’s model
and the logistic model. Applying the approach to COVID-19 data from West Africa demonstrates that
the more people with a strong prophylactic opinion, the smaller the final COVID-19 pandemic size.
The influence of individuals on each other and from the media significantly influences the susceptible
population and, thus, the dynamics of the disease. Thus, when considering the opinion of susceptible
individuals to the disease, the view of the population at baseline influences its dynamics. The results
are expected to inform public policy in the context of emerging and re-emerging infectious diseases.
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1. Introduction

The COVID-19 pandemic caused by the novel coronavirus (SARS-CoV-2) has received increased
attention from both scientists and public health policymakers worldwide compared to previous epi-
demics such as the Spanish flu and MERS [1]. Indeed, since the first report of SARS-CoV-2 in late
2019, many governments have implemented stringent restrictions (both at the start of the pandemic
and repeatedly throughout) to limit the spread of the virus. These include general measures such as the
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ban of mass gatherings, travel restrictions, lockdowns and curfews, but also individual level measures
such as improved personal hygiene, social distancing, and face mask wearing [2–7]. A combination of
the rapid propagation of SARS-CoV-2, the related symptoms, the resulting deaths, and the responses
of public bodies across the world have inspired numerous studies into understanding the biology of the
pathogen [8–12], the numerous COVID-19 epidemic outbreaks [13–15], and damages to health, social
and economic activities among other aspects of human societies [16–19].

To inform and guide health policies, researchers use two general classes of models to understand
the dynamics of epidemic outbreaks: phenomenological (regression) models and mechanistic (com-
partmental) models [20]. The use of compartmental mathematical models, which currently prevails
for SARS-CoV-2 data [21], allows for the explicit structuring of a target population into epidemio-
logical states relevant to the studied pathogen and its effects on exposed and infected patients. One
major advantage of these compartmental models is the possibility to structure the target population
based on the attitudes of individuals regarding measurements such as personal hygiene, social distanc-
ing, face mask-wearing, and vaccination. As a result, these models can be used to simultaneously
model the dynamics of a pathogen’s spread and the opinions and attitudes related to prophylactic mea-
sures [22–30, 32, 33, 91]. Unfortunately, many of these models only incorporate vaccine opinions.
However, the dynamics of opinion and attitudes regarding other measures and their impact on disease
dynamics can substantively differ from the dynamics of vaccine opinions, mainly because these behav-
iors demand stronger engagement in the required frequency of opinion affirmation [34]. For instance,
in the context of the COVID-19 epidemic, individuals needed to regularly wash their hands when the
environment was full of potentially contaminated areas, wear face masks when traveling to any shared
public space, and maintain the minimum social distance when interacting with others. In the context
of insignificant variations of attitudes towards prophylactic measures, the use of approaches that disre-
gard the dynamics of such attitudes when building disease models remains sound. However, significant
shifts in attitudes toward prophylactic measures usually follow the outbreak of a disease [35–38], and a
failure to account for the feedback of opinion/attitude dynamics on modeled disease dynamics reduces
the reliability of findings and policies based on such models. In addition to these inherent changes in
opinions, once a disease outbreaks, the wide accessibility of populations to mass media, in particular
social media, can induce quite sharp variations in the distribution of opinions and attitudes because of a
rapid spread of evidence, as well as fake pieces of information on the disease, the underlying pathogen,
the related symptoms, the advocated barrier measures, and any available vaccines [39, 40]. Therefore,
integrating opinion dynamics in mathematical models for disease dynamics is a major point to consider
when building models to inform public health policies.

Aside from the largely studied dynamics of the spread of SARS-CoV-2, many studies have reported
on the adherence of exposed populations to prophylactic measures [41–50]. The potential or actual
effects of the implementation of barrier measures on the dynamics of the spread of SARS-CoV-2 have
also been investigated, to some extent [51–59]. In addition, many works have integrated attitudes
toward vaccines in either mechanistic or network models describing COVID-19 dynamics [23, 53, 60–
65]. However, so far, few studies have considered information on adherence to barrier measures into
the mechanism describing the propagation of the pathogen within a population [52, 55, 66–69].

The SIR-Opinion model of Tyson et al. [34] is a simple disease-opinion dynamics model appropriate
for joint modeling of COVID-19 dynamics and related prophylactic opinions over a short period. For
sound modeling of COVID-19 data along with the levels of adherence to prophylactic measures, we
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extend the SIR-Opinion model to account for the partial detection of infected individuals. Indeed, only
a small amount of SARS-CoV-2-infected individuals are generally identified and reported, mainly
because of the prevalence of asymptomatic infectious [70–72]. For inference in the resulting SIQR-
Opinion model, we consider the hybrid modeling technique introduced by Tovissode et al. [20], where
the identified SARS-CoV-2 infected individuals are first modeled using a growth curve, and the result
is added into the SIQR model framework to avoid identifiability issues when fitting the model. For
illustrative purposes, we use the proposed model to (i) determine the best growth curve to adjust for
the number of infected individuals infected and (ii) evaluate the effects of prophylactic attitudes on the
dynamics (as measured by the reproduction number) of COVID-19 in West Africa.

2. Materials and methods

2.1. Model framework

In this study, we developed a two-stage estimation model. The first is an extension of a disease
compartmental model. However, instead of estimating the infected individuals, I(t), with this compart-
mental model, we opted for a growth model.

2.1.1. The Disease Dynamics Models

Following Hethcote et al. [73], a susceptible–infectious–quarantined–removed (SIQR) model is
used to model the COVID-19 dynamic in West Africa. The four compartments considered in this
model are the susceptibles (S ), the infectious but undetected individuals (I), the quarantines (Q), and
the removed (R). The quarantine state Q stands for the detected active cases of SARS-CoV-2 infected
individuals. We assumed neglected births, net migrations, and the natural mortality rates associated
with each compartment, given the short period of each considered COVID-19 wave. At a given time
t > 0, the population size is given by:

N(t) = S (t) + I(t) + Q(t) + R(t). (2.1)

Figure 1. Transfer diagram for a SIQR model. S stands for susceptibles, I for infectives,
Q for detected active cases, i.e., individuals who tested positive and were placed in isolation
at a hospital or home, and R for those who contracted the illness, whether or not they were
detected and had it removed. Class R people are considered to have permanent immunity.
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The SIQR model is described at time t by the following system of differential equations:

Ṡ (t) = −λ(t)S (t), (2.2a)
İ(t) = λ(t)S (t) − αI(t) − δI(t), (2.2b)

Q̇(t) = δI(t) − γQ(t), (2.2c)
Ṙ(t) = αI(t) + γQ(t). (2.2d)

with the non-negative initial conditions, S (0) = S 0, I(0) = I0, Q(0) = Q0, and R(0) = R0 where
(S 0, I0,Q0,R0)T ∈ [0,∞)4.

In System (2.2), α is a rate that measures the removal of non-detected infectives, δ is the rate
of detecting new cases of infected people, γ stands for the removal of quarantined people, and
the force of infection is λ(t) =

βI(t)
N(t)−Q(t) , where β is the rate of contacts sufficient for SARS-CoV-2

transmission.

2.1.2. The Disease-Opinion Dynamics Models

Tyson et al. [34] identified four levels of prophylactic behavior (use of the mask, physical distance,
hand hygiene, coughing hygiene, and avoidance of touching the face) represented by the following
spectrum of prophylactic attitudes/opinions:

O = {−2,−1, 1, 2}.

Since the infected do not really have an opinion and the removals are not heard since they have recov-
ered from COVID-19, we considered just the opinion of the susceptible classes. From this spectrum,
we have i cases among susceptible individuals, S i symbolizes the susceptible with attitude i for any
opinion i ∈ O: S −2 represents individuals with the highest degree of prophylactic behavior (and thus the
least susceptible to disease) and S 2 corresponds to individuals with the lowest degree of prophylactic
behavior (and thus the most susceptible to disease). Individuals in the middle of the spectrum, S −1 and
S 1, exhibit moderate levels of prophylactic behavior. At any time t, the identity S (t) =

∑
i∈O S i(t) rep-

resents the susceptible population. The exchange of information about the prevalence of the disease, as
well as government control measures, can change an individual’s opinion. It is to this end that Tyson
et al. [34] insert the ”impact” and ”amplification” effects into their model, whereby attitudes/opinions
are updated in response to either biased assimilation or confirmation bias caused by contact between
susceptible individuals. The rates and directions of mutual opinion effects determine the dynamics of
opinions in the susceptible population in this framework. They defined the ”influence function” as the
rate ωi at which a sensitive individual S i influences the rest of the susceptible population. Tyson et
al. [34] incorporated linear and saturating impacts wi as functions of the proportion of the infectious
population (I). In terms of influence directions, when an S i individual impacts an S j individual, the
affected individual’s attitude is updated, and we have one of the two cases: opinion amplification with
probability φ or no opinion amplification with probability 1 − φ. Opinion amplification appears to
express the tendency to become more confident in one’s opinion after interacting with like-minded
individuals. It should be noticed that in the sensitive population, changes in opinion are reflected by
the rates χ(i, j)(t) of outgoing flows (opinion change i→ j), which are defined as follows:
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χ(2,1)(t) =
ω−2(t)S −2(t) + ω−1(t)S −1(t) + (1 − φ)ω1(t)S 1(t)

N(t) − Q(t)
, (2.3a)

χ(1,2)(t) =
φω1(t)S 1(t) + ω2(t)S 2(t)

N(t) − Q(t)
, (2.3b)

χ(1,−1)(t) =
ω−2(t)S −2(t) + ω−1(t)S −1(t)

N(t) − Q(t)
, (2.3c)

χ(−1,1)(t) =
ω1(t)S 1(t) + ω2(t)S 2(t)

N(t) − Q(t)
, (2.3d)

χ(−1,−2)(t) =
ω−2(t)S −2(t) + φω−1(t)S −1(t)

N(t) − Q(t)
, (2.3e)

χ(−2,−1)(t) =
(1 − φ)ω−1(t)S −1(t) + ω1(t)S 1(t) + ω2(t)S 2(t)

N(t) − Q(t)
. (2.3f)

Since the prevalence of the disease drives a shift in the susceptible population, we assume that the
influence functions, ωi = ωi(I), vary with the proportion of infected I in the population. To investigate
a range of potential epidemic responses, [34] defined four plausible influence functions. As shown in
Table 1, the functions considered are linear, saturating, fixed-order saturating, and reverse-order satu-
rating ωi(I) functions. As ωi(I) changes during the epidemic, these functions serve to either increase
or decrease the influence of each subpopulation S i. In Table 1, each function ωi(I) starts at the same
point, ωi(0) ≡ 0, and ”I” comes from equation (2.8). The parameters in Table 1 are described in Ta-
ble 2. The SIQR model is further detailed in Figure 2. The following system at time t describes the

Table 1. Influence functions.

ωi(I) Linear Saturating Fixed-order saturating Reverse-order saturating
ω−2(I) ω0 (1 + ωmaxI) ω0

(
1 + ωmax

I2

k2+I2

)
ω0

(
1 + ωmax

I
k+I

)
ω0

(
1 + 1

2ωmax
I

k+I

)
ω−1(I) ω0

(
1 + 1

2ωmaxI
)

ω0

(
1 + 1

2ωmax
I

k+I

)
ω0

(
1 + 1

2ωmax
I

k+I

)
ω0

(
1 + ωmax

I
k+I

)
ω1(I) ω0

(
1 − 1

2 I
)

ω0

(
1
2 + 1

2
I−1

k−1+I−1

)
ω0

(
1
2 + 1

2
I−1

k−1+I−1

)
ω0

(
I−1

k−1+I−1

)
ω2(I) ω0(1 − I) ω0

(
I−2

k−2+I−2

)
ω0

(
I−1

k−1+I−1

)
ω0

(
1
2 + 1

2
I−1

k−1+I−1

)
Source: Tyson et al. [34]. Ecological functional responses give the lead-up to the linear and saturating

influence functions. A modification to the saturating function, called the fixed-order saturating
function, prevents the influence functions’ ordering from changing for low levels of infection. When

some preventive behaviors are judged as socially unacceptable, and an inversion of the influence
ordering is possible, the reverse-order saturating influence function is used.

SIQR-Opinion dynamics model:

Ṡ 2(t) = χ(1,2)S 1(t) − (χ(2,1) + λ2)S 2(t) (2.4a)
Ṡ 1(t) = χ(2,1)S 2(t) − (χ(1,2) + λ1)S 1(t) (2.4b)
˙S −1(t) = χ(1,−1)S 1(t) − (χ(−1,1) + λ−1)S −1(t) (2.4c)
˙S −2(t) = χ(−1,−2)S −1(t) − (χ(−2,−1) + λ−2)S −2(t) (2.4d)

İ(t) = λ2S 2(t) + λ1S 1(t) + λ−1S −1(t) + λ−2S −2(t) − αI(t) − δI(t) (2.4e)
Q̇(t) = δI(t) − γ(t)Q(t) (2.4f)
Ṙ(t) = αI(t) + γ(t)Q(t) (2.4g)
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Figure 2. Flow-chart of a SIQR-Opinion dynamics model showing the flow of humans
between different compartments. S is the class of susceptibles, I is the class of infectives,
Q is the class of detected active cases, and R is the class of individuals who contracted the
disease, were detected or not, and have removed. The individuals in class R are considered
permanently immune. For simplicity of the model, births and net migrations and natural
mortality rates are assumed to be negligible.

with the non-negative initial conditions S i(0) = S 0i, I(0) = I0,Q(0) = Q0, and R(0) = R0 where
(I0,Q0,R0)> ∈ [0,∞)3, and S 0i ≥ 0 for i ∈ O.

In the system (2.4), we assume that a person’s attitude affects their susceptibility to infection and
the force of infection for S i individuals has the form

λi(t) =
βiI(t)

N(t) − Q(t)
, (2.5)

where, for i ∈ O , βi is the rate of contacts sufficient for transmission for a S i susceptible. For simplicity,
the infection rate is modeled as a function of attitude using a single parameter a > 1 [34]. We assume:

β2 = β0, β1 =
1
a
β0, β−1 =

1
a2β0, β−2 =

1
a3β0, (2.6)

where β0 represents the baseline infection rate, and each increase in prophylactic behavior results in a
factor a discounting of the infection rate. In the system (2.4), the dots represent partial derivatives with
respect to time (t), and the constant rate parameters of the model are described in Table 2. We allow

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12955–12989.



12961

the removal rate of quarantined people γt from Qt to be time-variable, as previously performed in [20]
do, and it takes the logistic form.

γt =
[
1 + e−(κ0+κt)

]−1
. (2.7)

This is reasonable when the reported positive cases per unit of time are supplemented by removals.
To avoid identifiability problems, we followed the approach described by Tovissode et al. [20] to
determine the infected.

2.1.3. Growth model

The growth curve that is fitted to the SARS-CoV-2 infected individuals in West Africa is developed
in this section. Following Tovissode et al. [74], the number of infected persons in a target population
has the following form:

I(t) = δ−1 ˙C(t), (2.8)

where
˙C(t) =

dC(t)
dt

, (2.9)

is the number of cases detected at time t (i.e., the number of infected, detected, and isolated cases) and
δ ∈ (0, 1] is the detection rate assuming constant during the epidemic. In (2.9), C(t) represents the
cumulative SARS-CoV-2 infected individuals and then the growth curve to be fitted. The generalized
logistic model (GLM), also known as Richards’ model, can improve the fit of SARS-CoV-2 data well
since, for real-time outbreak prediction, this empirical function has made major marvellous coinci-
dences with real SARS, Zika, and Ebola epidemic data [75–77]. Based on population biology, this
model assumes an initial exponential growth phase that saturates as the number of cases increases due
to ongoing control efforts and newly acquired human behaviors.

At time t, the dynamics of C can be represented as:

C(t) = K
((

1 + e−ut
)− 1

ν

)
, (2.10)

with ut = νω (t − τ), K > 0 is the carrying capacity or maximum cumulative case incidence, ν > 0
is a growth acceleration parameter, ω > 0, the growth rate constant, and τ is a constant of integration
determined by the initial conditions of the epidemic (see Tovissode et al. [20] for more information).
The expression of the growth curves ˙C(t) and ¨C(t) can be found in Table A1 within the appendix.

2.1.4. Reproduction Number

We calculated the fundamental reproduction number, R0, to determine how the COVID-19 epidemic
is impacted by introducing an opinion dynamic. The basic reproduction number is the expected number
of secondary cases resulting from a single susceptible individual’s infection. To calculate the control
reproduction number of the model, we followed the Diekmann et al. [78] next-generation’s approach.

At the start of the epidemic, we have S 0 = N0 − 1, I0 = 1,Q0 = 0,R0 = 0. The disease-free
equilibrium point of the model is given by (S 0, 0, 0, 0).

At the infection-free steady state, I = R = 0, hence S = N − Q.

İ(t) = β2I(t) + β1I(t) + β−1I(t) + β−2I(t) − (α + δ)I(t), (2.11a)
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Q̇(t) = δI(t) − γ(t)Q(t). (2.11b)

Let M be the next generation matrix (NGM) for all new infections and T + Σ be the jacobian of the
infection subsystem (2.11). The matrix transmissions T, the transitions matrix Σ, and the NGM M are
the following:

T =

(
β2 + β1 + β−1 + β−2 0

0 0

)
,

Σ =

(
α + δ 0
δ −γt

)
.

M = − TΣ−1

=

(
β2 + β1 + β−1 + β−2 0

0 0

)
×

( 1
α+δ

0
−δ

γt+(α+δ)
−1
γt

)
M =

( β2+β1+β−1+β−2
α+δ

0
0 0

)
.

The dominant eigenvalue of M is

R0 =
β2 + β1 + β−1 + β−2

α + δ
, (2.12)

R0 =
β0

a3(α + δ)
+

β0

a2(α + δ)
+

β0

a(α + δ)
+

β0

(α + δ)
. (2.13)

The number of people in a population who can contract an infection from a single person at any one
time is often referred to R. By multiplying the basic reproduction number by the proportion of the host
population that is susceptible, one can get the effective reproduction number (R). Thus we have

Rt =
∑
i∈O

S i(t)
N(t) − Q(t)

R
(i)
0 ;

Thus
Rt =

∑
i∈O βiS i(t)

(α + δ)(N(t) − Q(t))
.

2.2. Parameter estimation

The parameters of the system (2.3) are assumed to be known and constant, and they are derived
from the literature [34] (Table 2). As for those of equation (2.4), some are assumed to be known and
are extracted from [20] and [79]. To obtain the recovery rate γt, the logistic regression parameters
in equation (2.15) are adjusted on the new removal Rt. Knowing the new infected case Yt and the
active case Qt−1, logistic regression models with probability mass functions (pmf) are used to model
the number of new removals (Rt):

fG (Rt | θ,Qt−1,Yt) =

(
Qt−1 + Yt

Rt

)
γRt

t (1 − γt)Qt−1+Yt−Rt , (2.14)
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where
γt =

[
1 + eκ0+κt]−1

, (2.15)

with θ = (K, ω, ν, τ, σ, κ0, κ)>. In equation (2.14), we considered the number of known active cases
Q0 = 0 at t = 0.
The maximum likelihood (ML) is used to estimate the parameters K, ω, ν, and τ in (2.10). To do this,
each new confirmed infected case Y1,Y2, · · · ,Yn is given an appropriate statistical distribution with an
expectation of λt = Ċt and a dispersion parameter σ > 0 [74]. The inference under Poisson, negative
binomial and log-normal distributions was discussed.
Poisson distribution: Since we are dealing with the counts’ incidence, Yt can be assumed to follow
the Poisson distribution, and we have Yt ∼ Pois

(
Ċt

)
with pmf

fY (Yt | θ) =

(
λYt

t exp−λt
)

Yt!
. (2.16)

The incidence case Yt has an expectation E [Yt] = λt and variance Var [Yt] = λt.
Negative binomial distribution: It can be assumed that Yt follows the negative binomial distribution
as new confirmed cases are counts, and we have Yt ∼ NB

(
Ċt, σ

)
with pmf

f (Yt | θ) =
Γ (Yt + 1/σ)

Γ (Yt + 1) Γ(1/σ)

(
σλt

σλt + 1

)1/σ (
1

σλt + 1

)Yt

. (2.17)

The expectation E [Yt] = λt and variance Var [Yt] = λt(1+σλt) are then established for the new detected
case Yt.
Log-normal distribution: Since zero incidence cases are common in epidemic data, the logarithmic
function is often applied to the shifted cases (Yt + 1), and we consider the log-normal distribution
assumption, where Yt + 1 ∼ LN (Yt + 1, σ) with pdf

fY (Yt | θ) =
1

σ (Yt + 1)
√

2π
exp

−1
2

[
log (Yt + 1) − log (λt + 1)

σ
+
σ

2

]2 , (2.18)

the mean E [Yt] = λt and the variance Var [Yt] = (λt + 1)2
(
eσ

2
− 1

)
.

Let’s consider two components , `Y(θ) and `G(θ), representing the log-likelihood function for new in-
fected case Yt and new removal Rt, respectively. The conditional maximum likelihood estimates θ̂ of θ
can be produced using an optimization technique to maximize the log-likelihood function ` [20]:

`(θ) = `Y(θ) + `G(θ),

where `Y(θ) =

n∑
t=1

log fY (Yt | θ) ,

`G(θ) =

n∑
t=1

log fG (Rt | θ,Qt−1,Yt) .

(2.19)

The maximum likelihood estimates of the components θY = (Ω, ω, ν, τ, σ)> and θG = (κ0, κ)> of the
parameter vector θ =

(
θ>Y , θ

>
G′

)>
can be produced by maximizing `Y and `G, respectively. We consider
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the common deviance statistic used in generalized linear models to assess the goodness-of-fit of the
binomial model associated with Rt and the log-normal models associated with Yt because both the
binomial and the log-normal distributions are members of the exponential family [20]. The likelihood
ratio statistic is considered while choosing the concise model that best fits the observed data.

Table 2. Table of fixed and fitted parameter.

Parameter Description Values Unit Source
a Factor discounting of the infection rate estimated
α Removal rate of non detected infectives 1/10 - Assumed
φ Baseline probability of opinion amplifica-

tion
estimated -

w0 Baseline influence rate (when disease is
not perceived)

0.1 percentage−1 Tyson et al.
[34]

w∞ Skewness parameter of influence func-
tions

estimated -

k Half-influence saturation constant estimated day−1

δ Rate of detecting new cases of infected
people

0.009 Honfo et al.
[79]

β0 Baseline transmission rate by I infectious estimated day−1

βi Transmission rate by infectious with
opinion i

estimated day−1

γ Removal rate of quarantined people estimated
K carrying capacity or maximum cumula-

tive case incidence
estimated ind.

ν growth acceleration parameter estimated
ω the growth rate constant estimated day−1

τ constant of integration determined by the estimated
initial conditions of the epidemic. day−1

2.3. Data source and study period

The sixteen countries of Western Africa (Benin, Burkina Faso, Cape Verde, The Gambia, Ghana,
Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone,
and Togo) had been considered for this study. Information about these countries are in Table B1. Based
on the latest United Nations estimates (worldometers.info), this region has a current population of ap-
proximately 5.16% of the world’s population and includes nine of the 25 poorest countries in the world.
The first case of Covid-19 in West Africa was recorded at the end of February 2020 (oecd). Imple-
mentation of prophylactic measures against the spread of COVID-19 in most West African countries
began in March (Table B1). We considered the beginning of the pandemic expansion in West Africa
(February 28, 2020) as our starting date for our data. The final date considered is February 23, 2021,
which represents the last date before vaccine implementation in West Africa (Ghana received 600,000
doses on February 24, 2021, and Ivory Cost received 504,000 doses two days later (unicef portal)).

We aggregated the data of newly detected cases, population, recoveries, and death by date. As of
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February 24, 2021, there were approximately 4.19E+08 humans, among which 397826 were detected
cases, 44958145 were recoveries cases, and 5314 were deaths in West Africa (Table B2). The newly
detected cases and population data were obtained from the OWID data portal [80]. As for the quar-
antine recovery data, it was taken [81]. This period corresponds approximately to the first and second
waves of the COVID-19 pandemic in West Africa (fig 3).

Figure 3. Daily new detected of COVID-19 in West Africa.

2.4. Data Analysis

2.4.1. Growth model

We fitted the Bertalanffy-Richards growth curve to Y ′t ’s new daily infections based on Poisson,
negative binomial and log-normal distributions for each wave. The R software’s optim function was
used to maximize the log-likelihood. Using likelihood ratio tests, we additionally fitted Bertalanffy-
Richards. We used the Arkaike Information Criterion (AIC) and the R2 values based on the cumulative
detected case to pick the best model. To obtain the recovery rate of quarantined people γt, we used
the R procedure glm [82] with the family specification ”family = binomial(logit)”. We integrate the
quadratic interaction in the logistic model. The parameters K, ω, ν, τ, σ in Table 2 are estimated using
the R software.

2.4.2. SIQR dynamics model

A recent study on the adherence of the West African population to prophylactic measures [83]
revealed that there are individuals who support but do not apply the prophylactic measures and those
who support and fully adhere and apply them. This is consistent with the -2, -1 attitude levels defined
by [34]. The opinion parameters β0 in Table 2 are estimated using Matlab R2021a. We exclude
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1% of the population and set S0 = 0.01 ∗ N0 because COVID-19 rarely affects children and people
living in rural areas in the majority of African countries. We then set S 0i = zi ∗ S 0 with zi being the
population’s susceptible class proportion in 2.3. According to PERC(2022) [83] , z1 = 66%, z2 = 24%
(z1 + z2 = 90%), z3 = 5%, and z4 = 5% (equitable distribution of the remaining 10% between z3 and
z4) for wave1 and z1 = 63%, z2 = 25% (z1 + z2 = 88%), z3 = 7%, and z4 = 7% (equitable distribution
of the remaining 14% between z3 and z4) for wave 2. We used the Matlab function datasample to
estimate the initial conditions of each of the model’s state variables. On the first day of the pandemic’s
expansion, we assume there was only one active person. We then define Q0 to equal 1. The integrated
ODE45 function of Matlab was used to obtain the solutions of (2). The parameters K, ω, ν, τ estimated
in R are used to find the new detected parameters in (2). The target of the fitting included finding
the optimal set of parameter values that minimizes the root mean square differences between the new
daily detected COVID-19 cases observed in West Africa and the new daily detected COVID-19 cases
predicted from our model. This was done using the nonlinear least squares method in Matlab R2021a,
with the function ”fminsearchbnd”. Since minimization in a multivariate framework uses starting
values, we used a cross-validation technique to ensure both the explanative and predictive power of
the model. We ran 1000 simulations of starting values considering 90% and 10% for training and test
datasets, respectively. Considering 50 simulations, the starting values related to the minimum RMSE
(RMSE1) were used to compute the minimum RMSE for the test sets (RMSE2). We found 375.13
and 244.10 for RMSE1 and RMSE2, respectively, for the first wave and 428 and 509 for wave2.
Additionally, we determined the estimated parameters’ 95% confidence interval.

3. Results

At this stage, we numerically analyzed the model to assess the effect of prophylactic behavior
on the COVID-19 dynamic in West Africa. Therefore, using estimated parameters and the initial
circumstances of the model, we calculated the values of the effective reproduction number Rt, and the
basic reproduction number R0, and we simulated some scenarios on Rt in order to analyze the impact
of opinions on the dynamic of COVID-19.

3.1. Fitted model and estimated parameter values

3.1.1. Growth model

Table 3 indicates that the growth model involving Richard’s growth curve under the assumption
of the negative binomial distribution has the lowest AIC value for the cumulative COVID-19 case for
the first wave and behaved well for the second wave. Therefore, we considered Richard’s negative
binomial distribution curve for the adjustment. From Figure C1 in the appendix, we observed that our
model was well-fitted to the new and cumulative detected cases for West Africa. Figure C1c shows
the probabilities of removals from actives (quarantined) and the fitted values based on the logistic
regression models for removal probabilities. The logistic model doesn’t fit the removals of COVID-19
in West Africa well for both waves. However, we have kept it since the adjustment of active cases is
good (Figure C2d-C3d).
Results obtained with Richard’s model (Table 4) indicate that the maximum case size is estimated at

206746 people (CI= [205800; 207700]) for wave 1 and 238299 people (CI= [236800; 239800]) for the
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Table 3. AIC results comparing the Richard growth model among three distributions.

Wave Selection criterion Richards-Poisson Richards-Nbinomial Richards-Lognorm
Wave1 AIC 17177.84 3105.51 3149.41

R2(Y) 0.83 0.79 0.79
R2(cumul(Y)) 0.99 0.99 0.99

Wave2 AIC 13268.57 1798.62 1794.54
R2(Y) 0.82 0.82 0.82
R2(cumul(Y)) 0.99 0.99 0.99

Tablenote: Akaike Information Criterion AIC; New infected detected Y; cumul as cumulative

wave 2. At the outbreak (t = 0), the probabilities of recovery are γ̂0 =0.009 and γ̂0 = 0.147 for wave 1
and 2, respectively. In the first wave, an increase in the number of days is associated with an increase
in the likelihood of belonging to the COVID-19 removal class (κ1 = 0.01), and in the second wave, a
decrease in the likelihood of being removed from active case COVID-19 (κ1 = −0.007).

Table 4. Estimate, standard error (SE), Wald test statistic (z-value), p-value (P(> |z|)), and
95% confidence interval (CI 95%), using West African COVID-19 data from February 28,
2020, to February 23, 2021, for the parameters of the Richard growth curve fitted to daily
positives case and logistic regression parameters fitted to the daily number of removals.

(a) First wave

Parameter Estimate Std.Error z P ( >— z — ) CI
K 206746 495.5 417.154 <0.001 205800 207700
ω 0.093 0.002 46.500 < 0.001 0.089 0.099
ν 0.266 0.008 33.250 <0.001 0.2505 0.282
τ 72.730 1.625 44.757 <0.001 69.550 75.920
κ0 -4.612 0.026 -177.21 <0.001 -4.663 -4.561
κ1 0.016 0.0003 45.390 <0.001 0.015 0.017
κ2 -4.2E-05 1.125E-06 -37.45 <0.001 -4.434E-05 -3.993E-05

(b) Second wave

Estimate Std.Error z P ( >— z — ) CI
K 238299 771.3 308.959 <0.001 236800 239800
ω 0.027 0.0002 135 <0.001 0.027 0.027
ν 3.05 0.066 46.212 <0.001 2.923 3.183
τ 350.4 0.207 1692.754 <0.001 350 350.8
κ0 -1.913 0.227 -8.416 <0.001 -2.358 -1.467
κ1 -0.007 0.002 -4.917 <0.001 -0.010 -0.004
κ2 1.26E-05 2.404E-06 5.238 <0.001 7.878E-06 1.730E-05

Table notes: ind. is individuals, K > 0 is the ultimate pandemic size (detected) or maximum cumulative case incidence, ν > 0 is a
growth acceleration parameter, ω > 0 ( day −1

)
is the ”intrinsic” growth rate constant and τ is a constant of integration determined by

the initial conditions of the epidemic, κ0 and κ are the logit-scale intercept and slope for the daily probability γt that an active case
recovers at time t

(
γt = 1/

(
1 + e−(κ0+κt)

))
, Z-value was computed at logarithmic scale for positive definite parameters (K, ω, ν, τ), so that

a p-value < 0.05 indicates significant difference from 1 at 5% level.
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3.1.2. Compartmental model

a. First wave
The initial sensitive population estimate is about 100% of the study population size (see Table 5).

Each infected transmits the disease to about one individual at the beginning of the disease, indicating
a moderate transmission rate, while the reduction factor ”a” is weak. Opinion amplification occurs
in only 7% of interaction cases (φ=0.07). When there is no control measure, the estimated average
number of secondary infections is highly greater than one (R0−2 = 5.35), and depends more on the
reproduction number of prophylactic classes. Regarding the basic reproduction number, it is about
5.35 for the whole model and is more dependent on the reproduction number of the less susceptible
population.

Table 5. Estimated parameter of opinion dynamics using the system (2.4).

(a) First wave.

S0 β0 k φ ωmax a
LB 3.95 0.87 0.15 0 3.74 1.07
Estimate 4.19 1.1 0.38 0.07 3.98 1.3
UB 4.42 1.33 0.62 0.31 4.21 1.53

(b) Second wave.

S0 β0 k φ ωmax a
LB 3.67 1.22 0 0 2.72 0.82
Esimate 3.95 1.49 0.13 0.01 2.99 1.1
UB 4.23 1.78 0.41 0.29 3.28 1.38

Figure C2a shows the evolution trend of each state of the SIQR-opinion model. Given that the
susceptibles with prophylactic levels (-1;-2) are a minority in the population, their dynamics are low.
When it has the dynamics of the infected, it is symmetric and reaches a peak of about 50% of the
population. The effective reproduction number was less than one from April 2020 and depended more
on the number of reproductions in the least susceptible classes.

b. Second wave
About 94% of the target population is represented by the initial population estimate (Table 5). Each

infected person will transmit the disease to about two other persons at the beginning of the disease
while the reduction factor ”a” is too weak. When two opinions of the same nature arise, the chance
of an amplification, φ, is estimated to be 1%. Note that the initial proportion of the most prophylactic
individuals decreased from the first to the second wave, and the probability of opinion amplification
was very low. R0 values for different susceptible classes indicate that classes (-2 and -1) need less
attention to control disease expansion, while classes (1 and 2) require the highest level of prophylactic
measures to control the disease (Table 6). The SIQR-opinion model’s evolution trend for each state is
shown in Figure C3a. A peak of around 60% (higher than those of the first wave) of the population is
reached by the asymmetric dynamics of the infected. The time-varying effective reproduction number
has fallen since the period’s inception (C3b).
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Table 6. Basic reproduction numbers for both waves.

R0−2 R0−1 R01 R02 R0

Wave1 0.50 0.39 1.43 3.03 1.36
Wave2 0.88 0.8 2.60 5.78 1.7

4. Effect of some parameters

4.1. Opinion effect

If there is no adherence to prophylactic behaviors, there is no opinion on the prophylactic levels
to consider. When there is no opinion, the epidemic lasts longer (Rt decreases from 4.5 to 1 in about
23 days (Figure C3a2)); however, the peak is lower compared to when there is a prophylactic opinion
(Imax = 0.48%S at t = 14 days) (Figure C2a-C3a). Thus, the prophylactic opinion, amplifies the
size of the epidemic but better controls its spread. The duration of the epidemic is greater when
the population’s prophylactic opinion intervenes (Figure 8). The progression of the susceptible (S ),
infected (I), quarantined (Q), and removed (R) in a population where an individual’s opinion does not
influence another (C3b1) indicates that the peak infection rate is 49% of initial susceptibles at t =

14 days. The influence increases the maximum number of infected but decreases the duration of the
pandemic. The reproduction number has decreased from 2.5 to 1 (Figure C3b2).

4.2. Effect of initial proportion of adherence to prophylactic measures

We simulated five cases to show the effect of the initial proportion of adherence to prophylactic
measures on the dynamics of the pandemic (Table 6). In the case where we considered that 70% of
the initial susceptible population is more prophylactic, the peak of new infections is 55% of initial
susceptibles at t = 12 days. The initial effective reproduction number is 1.8, but the measures are
only effective after 36 days. This indicates that the measures taken to reduce transmission are effective
but take some time to have an impact. In the case where 98% medium prophylactic is considered
(z2 = z3 = 0.49), the peak of newly infected individuals is 0.60% of initial susceptibles at t = 11 days.
The initial Rt, which is 3.5, becomes less than one about 34 days after the beginning of the pandemic.
This indicates that the disease is spreading rapidly despite the prophylactic measures. When 49% of
the initial susceptibles population is on one side of the opinion spectrum, the peak of new infections is
0.48 on day 10, and the reproduction number starts around three before decreasing to 1 after 34 days.
This suggests that an individual behavior plays an important role in the spread of disease, with some
individuals being more susceptible to infection than others.

The initial proportion affects the maximum number of infected that could be obtained, and the
most plausible scenario for a minimal number of infected is to have more prophylactics than non-
prophylactics. The number of new cases decreases as the proportion of more prophylactics increases
until it reaches a given threshold. However, we notice that as the proportion of the most susceptible
increases, the time to reach the peak increases.
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Figure 4. Simulations of some models and its response on time-varying reproduction number
for (a) without opinion, i.e. all susceptible individuals are in the S 2 population (S 2 = 0.99,
S i = 0 ∀ i , 2), (b) no influence (wi = 0). Parameter values are the fixed estimated ones in
Table 5 and the population are assumed to be 90% prophylactic.

4.3. Amplification opinion effect

In Figure 7, we compared the distributions of susceptible, infected, and quarantined individuals
and their recoveries when φ is low (0.10) and when φ is high (0.40) in a predominantly prophylactic
population. The φ increases the size of the predominantly opinion (S 2), especially regarding the most
positive one; however, it does not affect the number effective reproduction number. Since it increases
the size of the less susceptible, the maximum size of the newly infected when φ is high is greater than
the peak time for the newly infected when φ is low. In the second case, we compared the distributions
of susceptibles, infected, quarantines, and recoveries when φ is low (0.10) and when φ is high (0.40),
in a non-prophylactic predominantly population (Figure 7). An increase in the probability of opinion
amplification leads to an increase in the susceptible S −2 but in a small proportion compared to most
prophylactic cases. The majority opinion outweighs the minority.

Since as the size of the less susceptible increases, the epidemic’s size decreases, it is natural that
an amplification of the more prophylactic side would reduce the size of the infection. The maximum
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Figure 5. Simulations of the response of Susceptible S , Infected I, Quarantined Q and
Removal R to variation of amplification probability in five cases for (a) 70% majority pro-
phylactic, i.e. z1 = 0.10, z2 = 0.20, z3 = 0.30; (b) 99% middle prophylactic, i.e. z1 = 0.01,
z2 = 0.49; (c) 49% majority prophylactic and non-prophylactic, i.e. z1 = z3 = 0.49; (d)
70% majority non-prophylactic, i.e. z1 = 0.40, z2 = 0.30, z3 = 0.20 and (e) 25% of each
prophylaxis level, i.e. z1 = z2 = z3 = z4 = 0.25. All other parameter values are fixed and
available in Table 5.
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Figure 6. Effective reproduction number (Rt) when varying amplification probability and
initial proportion of adherence to prophylactic measures.

number of infected decreases when φ increases (more than in the absence of the influence of one
individual on another)(Figure 8). When φ increases, the duration of the epidemic increases as the level
of prophylaxis is high in the susceptible population (Figure 8).

4.4. Influence function effect

As the initial proportion of the most prophylactic class increases, the influence functions reduce
the size of the pandemic compared to the case without the influence function, and the linear function
reduces the final size of the pandemic at best (Figure 8a). The saturating function decreases the wave’s
final size less when the susceptible population is less prophylactic (Figure 8b). Fixed and reversed
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(a) Predominantly prophylactic population.

(b) Predominantly non-prophylactic population.

Figure 7. Simulations of the effect of amplification on susceptible population Infected I,
Quarantined Q, Removal R dynamics and effective reproduction number when there is: (a)
Prophylactic majority initial distribution ; (b) Non-prophylactic majority initial distribution.
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(a) Epidemic size

(b) Epidemic duration

Figure 8. (a) Simulation of infected pic size when varying φ and influence function; (b)
Simulation of infection duration when varying φ and influence function.

influence functions increase the duration of the epidemic’s wave more quickly in a population with a
high prophylaxis level. In a population with a low prophylaxis level, the outcome is the same for all
influence functions (Figure 8).

4.5. Effect of reduction parameter

We noticed from Figure 9 that the basic reproduction number is below 1 when the reduction param-
eter a is two, and the pandemic can be controlled (Rt < 1).
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Figure 9. Simulation of time-varying reproduction response with varying reduction factor a.

5. Discussion

Opinions and compliance with prophylactic measures have a significant impact on epidemic dynam-
ics [34]. Modeling their effects on the dynamics of an epidemic is crucial for effective decision-making.
In this study, we developed a mathematical model to assess the effect of individual behavior towards
prophylactic measures on the dynamics of the COVID-19 pandemic in West Africa. For this purpose,
we used COVID-19 data from the first case detected in West Africa until the day before the introduction
of vaccination. This period corresponds to the first two COVID-19 waves in the region. To avoid iden-
tifiability problems when dealing with a large number of parameters [21], we have adjusted the daily
infection case data to Richard’s growth curve. The unknown parameters were estimated using the max-
imum likelihood technique. Overall, the Richard model fits the new daily number of confirmed cases
well. Despite the lack of fit in the logistic regression, it fits the observed active cases well. The param-
eters estimated from the Richard and logistic curves are then used to determine the opinion parameters
in the SIQR computational model to have more precision due to the lack of fit in phenomenological
model estimation [84]. This is a two-step estimation process since the new infections were fitting by
minimizing the deviation from the real data while taking the estimated parameters of the growth curve
as a basis. Consequently, these estimates of new infections depend on the degree of bias in Richard’s
model estimates.

To assess the effect of prophylactic behaviors on the disease, we compute the opinion parameter,
the basic and effective reproduction numbers. There is a discrepancy between the basic reproduction
numbers of the two waves obtained. Our results show the effect of opinions and prophylactic behavior
on the dynamics of the disease through the increase in the infection rate from the first to the second
wave, which is accompanied by a decrease in the probability of opinion amplification and a decrease
in the weight of more prophylactic individuals. These results are consistent with the study of Tyson et
al. [34], which showed the importance of opinions in the process of reducing an epidemic. The increase
in the infection rate would be the basis of the largest peak observed in the second wave. The decrease
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in weight and proportion of less susceptible individuals were noticed after the first wave, where West
Africans lost confidence in the severity of COVID-19 on the continent and relaxed their prophylactic
behavior (Coccia et al. [85]). This relaxation resulted in a larger peak of infection in the second wave.

Our simulations demonstrated that the opinions of susceptible individuals have an impact on the
epidemic spread (the R0 and Rt of a population without opinions are higher than those of a population
with opinions) [86]. It is worth noting that our simulation was carried out at the beginning of the
pandemic when the transmission rate was already high. There are many research works on the spread
of SARS-CoV-2, but few have taken into account the opinion of individuals, even though it seems to
determine the course of the spread at the beginning of a pandemic. Although the opinion model seems
simple, many factors are still difficult to handle (e.g., the correlation between geographical location,
gender, age group, and opinion evolution) [87]. Our opinion dynamics model assumes that persuasion
is the process by which opinions are changed but that persuasion is also sensitive to information about
infection risk. This can also capture the results of knowledge amplification after it circulates on social
media. Whatever the relationship between the media and public opinion, it might be more nuanced
than we thought.

The results obtained from our simulations suggest that opinion dynamics can have a profound ef-
fect on the progression of disease in a population [88, 89], and they illustrate the importance of the
proportion of opinions at the onset of the epidemic, as well as the relative dynamic speeds of opinions
and disease [86]. We simulated several scenarios to highlight the effects of three characteristics of
opinion dynamics: influence functions, the initial distribution of opinions along a spectrum, and the
degree of opinion amplification. In some simulated scenarios, opinion dynamics significantly reduce
the fraction of the population that will be infected and the size of the epidemic’s peak. In other sce-
narios, it is the reverse. We deduce that the intensity of the initial proportion of the less susceptible
reduces the propagation dynamics. The most plausible scenario would be to have an equal proportion
of all opinions, or more than 50 percent on the more prophylactic sides of the opinion spectrum [68].
Our findings indicate that the initial proportion of susceptible opinions toward disease outbreaks has a
major influence on how an epidemic expands, but the effectiveness of those responses doesn’t depend
solely on them [29]. These simulations also show that the opinion types can interact with each other
and the disease dynamics and affect the final size of the epidemic [90]. This result is also consistent
with the conclusion of [91] that infectious disease dynamics are often influenced by social and behav-
ioral factors that may interact with each other and with disease dynamics. Different types of influence
functions can have varying effects on the spread of pandemics. For example, some types of influ-
ence functions will lead to more rapid population responses to the initial increase in infections [92].
In particular, ”fixed-order saturating” influence functions may lead to a rapid response. On the other
hand, if the initial dominant behavior is not prophylactic, some influence functions, such as linear or
reversed order, will lead to the greatest reduction in the final pandemic size [91]. In other words, dif-
ferent influence functions can significantly impact the final outcome of an epidemic. Our results are,
therefore, consistent with previous work, highlighting the interaction between opinion and disease dy-
namics. However, this complexity presents significant challenges for dynamic capture and prediction
of epidemics, and our model may under- or overestimate the size of the epidemic peak. As pointed
out by Comomdari [93], communication strategies to encourage prophylactic behaviors must take into
account social and cultural factors to be effective. Also, adherence to a prophylactic opinion does not
imply strict compliance with prophylactic behavior. The proof is that even with 66% adherence at the
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beginning of the first wave, the transmission was greater than 1. Our work sheds light on how opinion
dynamics and influence functions relate to disease dynamics and informs the future development of
reliable media and communication functions.

6. Conclusion

By first fitting curves to observed data (confirmed positive cases, recoveries), this study suggests a
hybrid modeling framework combining three approaches: opinions, compartmental, and phenomeno-
logical models to assess the effects of prophylactic behaviors on an epidemic dynamic. This model
then provides an overall view of the epidemic dynamics by integrating the fitted curves into an opin-
ion dynamics-compartmental model. The proposed method enables estimation of the basic and time-
varying reproduction numbers, as well as the peak size of new infections and final epidemic size, and
the ability to quickly change the opinion parameter. Application to COVID-19 data from West Africa
suggested that its dynamic is heavily influenced by public opinion and behavior. Moreover, contrary to
popular belief, the initial proportion of those considering COVID-19 as a severe threat to human health
and that of the followers of the prophylactic behavior are decisive in controlling COVID-19 dynamics.
The initial proportion of prophylactics in the population, as well as the force of propagation and infor-
mation sharing, can determine the issue of an epidemic. As a result, it is essential for West African
governments to implement control strategies that emphasize public awareness through the media and
sensitization.
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Covid-19 dynamics: A systematic and critical review of modelling techniques, Infect. Disease
Model., 6 (2021), 258–272. https://doi.org/10.1016/j.idm.2020.12.008

22. C. Giambiagi Ferrari, J. P. Pinasco, N. Saintier, Coupling Epidemiological Models with Social
Dynamics, Bull. Math. Biol., 83 (2021), 74. https://doi.org/10.1007/s11538-021-00910-7
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Appendix A. Richard growth model

Table A1. Richard model and their derivated.

Population size C(t) Population rate ˙C(t) Population acceleration ¨C(t)
K (1 + e−ut)−1/ν Kωe−ut (1 + e−ut)−

ν+1
ν νωe−ut

(
ν+1
ν

e−ut

1+e−ut − 1
)

˙C(t)
Table notes: ut = [1 + ωνρ(t − τ)]−1/ρ; Source: Tovissode et al. [20].
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Appendix B. Cumulative, Death, Recovery cases and Population size

Table B1. Date of prophylactic measures implementation in some of the West African coun-
tries.

Countries Date of the first implementation of prophylactic measures
Burkina Faso 27 April 2020
Ivory Coast 23 March 2020
Ghana 13 March 2020
Guinea 27 March 2020
Nigeria 27 April 2020
Senegal March 2020
Benin 8 April 2020
Mauritania 14 May 2020

Source:https:
//hsfnotes.com/africa/2020/05/22/covid-19-initial-responses-of-certain-african-countries/#page=1

Table B2. Cumulative confirmed COVID-19 cases, deaths, population size and recoveries in
West Africa between February 28, 2020, and February 24, 2021.

Countries Cumulative cases Deaths Population Recoveries
Benin 5643 70 12996895 561362
Burkina Faso 11868 141 22100683 839192
Ivory Cost 32158 188 27478249 4629735
Cabo Verde 15089 144 587925 1768788
Ghana 80759 582 32833031 11298593
Guinea 15487 87 13531906 2617480
Gambia 4712 146 2639916 569375
Guinea-Bissau 3156 47 2060721 421487
Liberia 1999 85 5193416 298618
Mali 8324 348 21904983 830340
Mauritania 17130 437 4614974 2037288
Niger 4744 172 25252722 445668
Nigeria 153187 1875 213401323 14227914
Senegal 33242 832 16876720 3445409
Sierra Leone 3862 79 8420641 448026
Togo 6466 81 8644829 518870
West Africa 397826 5314 4.19E+08 44958145
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Appendix C. Observed and fitted curve

Appendix C.1. New infected, Cumulative infected and Removal case fitted to growth curve

Figure C1. (A) Graphs illustrating Richard’s model fit to newly detected confirmed COVID-
19 cases; (B) Graphs illustrating Richard’s model fit to cumulative detected confirmed
COVID-19 cases for West Africa; (C) Observed removals (daily recovery and death) and
the fitted values based on the logistic regression models for removal probabilities of COVID-
19 in West Africa. 1 is for the first wave and 2 for the second wave.
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Appendix C.2. Susceptible, Infected, Quarantined, Removed dynamics and Effective reproduction
number

Figure C2. (a) Fitted Susceptible, Infected, Quarantined, Removed dynamics; (b) Effective
reproduction number plot for the first wave; (c) New daily positive cases It and (d) active
cases of COVID-19 from West Africa (28 February to 24 October 2020). The fitted curves
of I(t) are based on a combination of an SIQR-opinion model and a Richard growth model.
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Figure C3. (a) Fitted Susceptible, Infected, Quarantined, Removed dynamics and (b) effec-
tive reproduction number plot for the second wave ; (c) New daily positive cases It and (d)
active cases of COVID-19 from West Africa (25 October 2020 to 23 February 2021). The
fitted curves of I(t) are based on a combination of an SIQR-opinion model and a Richard
growth model.
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