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Abstract: Motor imagery (MI) is a traditional paradigm of brain-computer interface (BCI) and can 
assist users in creating direct connections between their brains and external equipment. The common 
spatial patterns algorithm is the most popular spatial filtering technique for collecting EEG signal 
features in MI-based BCI systems. Due to the defect that it only considers the spatial information of 
EEG signals and is susceptible to noise interference and other issues, its performance is diminished. 
In this study, we developed a Riemannian transform feature extraction method based on filter bank 
fusion with a combination of multiple time windows. First, we proposed the multi-time window data 
segmentation and recombination method by combining it with a filter group to create new data samples. 
This approach could capture individual differences due to the variation in time-frequency patterns 
across different participants, thereby improving the model’s generalization performance. Second, 
Riemannian geometry was used for feature extraction from non-Euclidean structured EEG data. Then, 
considering the non-Gaussian distribution of EEG signals, the neighborhood component analysis 
(NCA) algorithm was chosen for feature selection. Finally, to meet real-time requirements and a low 
complexity, we employed a Support Vector Machine (SVM) as the classification algorithm. The 
proposed model achieved improved accuracy and robustness. In this study, we proposed an algorithm 
with superior performance on the BCI Competition IV dataset 2a, achieving an accuracy of 89%, a 
kappa value of 0.73 and an AUC of 0.9, demonstrating advanced capabilities. Furthermore, we 
analyzed data collected in our laboratory, and the proposed method achieved an accuracy of 77.4%, 
surpassing other comparative models. This method not only significantly improved the classification 
accuracy of motor imagery EEG signals but also bore significant implications for applications in the 
fields of brain-computer interfaces and neural engineering. 
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computer interface (BCI); filter banks; neighborhood component analysis 
 

1. Introduction 

Using assistive technologies, the Brain Computer Interface (BCI) can establish communication 
and control between the human brain and computers or other electronic equipment. 
Electroencephalogram (EEG) can measure the scalp electrical activity generated by the brain and is 
non-invasive, low cost and has a high temporal resolution [1]. EEG signals commonly used in BCI 
systems include motor imagery (MI) [2], the P300 evoked potential [3] and the steady-state visual 
evoked potential (SSVEP) [4]. Among them, P300 and SSVEP are EEG signals based on the evoked 
patterns of external environmental stimuli. The difference is that MI is completely spontaneous. 
Therefore, the application prospect of MI is more extensive. BCI systems based on motor imagery 
EEG signals can help users establish direct channels between the brain and external devices for tasks 
such as manipulating two-armed robots, controlling drones and driving virtual cars [5]. 

When studying the brain activity during motor imagery, it is observed that the time-frequency 
patterns of oscillatory activity, which refer to the patterns of oscillatory activity across different time 
and frequency ranges, exhibit high variability across different participants [6]. Moreover, the event-
related desynchronization (ERD) can vary significantly across individuals and be easily obscured 
during the data averaging process [7]. Therefore, accurate identification of the exact timing of MI 
occurrence is crucial for precise classification results. However, few studies have explored the 
impact of selecting different time windows for MI tasks on classification accuracy. In addition, the 
training set is relatively small due to the time-consuming and demanding nature of EEG data 
acquisition [7]. Therefore, data augmentation can assist the classification model in handling noise 
and outlier data, improving generalization capability and reducing overfitting. Based on this, we 
segmented the EEG signals into distinct time windows corresponding to the occurrence of MI tasks 
and subsequently recombined them. This strategy facilitated the capture of the specific time periods 
in which MI tasks transpired, effectively addressing the challenge of individual differences in MI-
BCI. Furthermore, it broadened the training set, enabling the model to learn from an increased 
diversity of samples. 

The EEG signals have low amplitude and low signal-to-noise ratio [5]. To extract EEG features, 
the most common solution is the application of the common spatial patterns (CSP) algorithm [8]. For 
binary MI task, the CSP algorithm maximizes the variance difference between the two types by using 
an optimal set of spatial filters to maximize the extraction of effective features. However, the 
performance of a conventional CSP algorithm depends mainly on the selection of a suitable operating 
band and time windows, which limits the classification accuracy [9,10]. Ang et al. [11] proposed the 
filter bank common spatial pattern (FBCSP), which extracted CSP features from each band after the 
EEG signal was bandpass filtered into multiple bands, and then, a feature selection algorithm was used 
to automatically select the recognition bands and the corresponding CSP features. However, the 
process had high computational costs. To overcome this problem, Thomas et al. [12] proposed the 
adaptive filter bank common spatial patterns (AFBCSP), which was based on the FBCSP. The 
AFBCSP selected the main band based on the time-frequency map of the Fisher ratio of the 
dichotomous motion imagery pattern. The results showed that the accuracy was similar to that of 
FBCSP, but the number of filters and the complexity of the computational method could be reduced. 
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Additionally, the covariance matrix constructed by the CSP method was susceptible to noise 
interference, which resulted in poor generalization performance of the CSP. This problem can be 
solved by Riemannian approaches [13] that use the knowledge of Riemannian geometry to directly 
manipulate the spatial EEG signal covariance matrix. Compared to Euclidean geometry, it introduces 
a more accurate approximation distance on smooth surfaces. Barachant et al. [14] improved the CSP 
algorithm based on the Riemannian mean. The Riemannian metric is better than the Euclidean metric 
in portraying the relevant information about class membership [13]. The CSP algorithm has a large 
bias in finding the mean point of the covariance matrix in the Euclidean space, and using the 
Riemannian centroid instead of the Euclidean mean point provides greater accuracy and better results. 
Nguyen et al. [15] used a multicore support vector machine to classify Riemannian features with an 
accuracy of 70.3%. Although the application of Riemannian geometry for EEG signal analysis led to 
several recent breakthroughs, a problem still needs to be solved. When a positive definite symmetric 
matrix is projected into the Euclidean space using the Riemann tangent space projection method, the 
dimensionality of the resulting vectors is frequently very high. Statistical bias might result from high-
dimensional data. Thus, it is necessary to use the dimensionality reduction method to overcome the 
problem of excessive dimensionality. Principal component analysis (PCA) [16] and linear discriminant 
analysis (LDA) [17] are widely used for reducing the dimensionality of features. Notably, PCA and 
LDA may not be optimal for dimensionality reduction of data samples with non-Gaussian distributions. 
In contrast, the neighborhood component analysis (NCA) feature selection algorithm does not require 
specific assumptions about the distribution of the sample space. The NCA algorithm is more suitable 
for processing EEG signals.  

Although the above methods achieved partly satisfactory results, they did not solve the problems 
of the individual variability in MI tasks and noise interference at the same time. In this study, we 
proposed an MI-BCI classification method based on the Riemannian transform with fused EEG 
spatiotemporal features. By segmenting the entire EEG data into time windows and subsequently 
combining them with spectral segmentation, we enhanced and reassembled the data. This process 
allowed us to extract features using Riemannian transformation and fuse them to ensure effective 
extraction of personalized ERD-related features. Our results indicated that the selection and 
combination of different time segments significantly impacted accuracy, and our proposed model 
effectively localized the ERD time periods, achieving accurate classification results. Then, after 
selecting features using the NCA feature selection algorithm, they were then fed into a SVM classifier 
to reduce model complexity and improve computational speed. 

Notably, the method presented in this paper demonstrated an accuracy of 89% on the BCI 
Competition IV dataset 2a, surpassing existing state-of-the-art models, such as the lightweight multi-
dimensional attention network, LMDA-Net, proposed by Miao et al. [18]. The LMDA-Net model 
combined two channel attention modules and depth attention modules, achieving an average 
accuracy of 78.8%. In comparison, our method significantly outperformed LMDA-Net in terms of 
classification accuracy. 

Furthermore, in our laboratory dataset, our method achieved an accuracy of 77.4%, 
outperforming other comparative models. These findings highlighted the distinct superiority of our 
approach in addressing MI-BCI classification challenges, substantially enhancing the classification 
accuracy of motor imagery EEG signals, and providing robust support for research and applications 
in related fields. 
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2. Methods 

A new structure was proposed in this study, and the framework of the method is shown in 
Figure 1. The method consisted of five stages, including temporal division, spectral division, 
Riemannian feature generation, NCA feature selection and support vector machine classification. The 
EEG data were initially segmented into predefined sub-time windows, followed by spectral 
segmentation within each sub-time window. The processed data were then combined to expand the 
training dataset and enhance the model’s generalization performance. Subsequently, Riemannian 
features were computed for the data. To mitigate the high dimensionality of data after Riemannian 
feature extraction, feature selection methods were employed to reduce dimensionality, with the aim of 
reducing the model’s complexity and minimizing computational costs. Finally, an optimal parameter 
combination for the four-class SVM classifier was determined through grid search and used to classify 
the EEG signals. 

 

Figure 1. Flowchart of the proposed method. 

2.1. Feature extraction 

First, we calculated the covariance matrix of the EEG signal, which was processed by time 
segmentation and spectral segmentation. Next, the iterative gradient descent algorithm was used to 
calculate the Riemannian mean between n covariance matrices, and the Riemannian mean was used 
to calculate the Riemannian distance between multiple covariance matrices. Finally, the computed 
eigenmatrices were vectorized. 

2.1.1. Multi-time segmentation 

In the MI-based BCI system, subjects were asked to follow a cue to perform the corresponding 
MI task. Although the cueing time was known in the experimental paradigm, the reaction time of the 
brain to the MI task is usually unknown and may even be intermittent. In the MI paradigm, 0−1 s 
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after the cue is usually considered to be the imaginal preparation phase, while the time between 3.5 
and 4 s is usually considered to be the imaginal end phase. Therefore, the selected EEG time window 
should be sufficient to cover the period when the brain was activated for MI, and should remove 
irrelevant data accordingly. Since the optimal time window varies between individuals, using a fixed 
single time window for data interception and pattern recognition might not yield the best 
classification performance. 

For different MI tasks, the duration of ERD may vary. Typically, the duration of ERD ranges from 
several hundred milliseconds to a few seconds, depending on task type, individual differences and 
other factors. According to research [19], the ERD duration for imagining left and right hand 
movements is approximately 500 milliseconds. The ERD duration for imagining foot movements is 
usually around 1 second. The ERD duration for imagining tongue movements lasts for about 250 
milliseconds. Therefore, the following method was employed to segment time windows, ensuring 
accurate capture of the ERD phenomenon. The original EEG signal was divided by time T1~T8. First, 
starting from the moment after cue, the EEG data were segmented with a length of 1 s, then time 
window was shifted with a step size of 0.5 s. Adhering to this pattern, time windows T1~T6 were 
segmented. Subsequently, based on the starting and ending times of the motor imagery tasks, T7~T8 
were selected. Finally, each time window underwent frequency bands (Bଵ~B଺ସ)  segmentation to 
extract specific frequency components. (We segmented the frequency band ranging from 4 to 40 Hz. 
We chose varying bandwidths (2, 4, 8, 16 and 32 Hz). During each frequency band segmentation, we 
used a sliding step size of 2 Hz.) The processed data were then combined to generate new samples 
encompassing multiple time periods and various frequency bands, thereby providing the model with 
more contextual information. This augmentation of feature richness improved classification accuracy. 

2.1.2. Riemannian geometry 

Let Set 𝑀  be the 𝐺  dimensional differentiable manifold, where 𝑇஼𝑀  denotes the tangent 
space of 𝑀  at 𝐶 (𝐶 ∈ 𝑀) . Riemannian distance, also known as geodesic distance, is a very 
important metric that represents the distance of the shortest path between 𝐶 and 𝐶ᇱ on a manifold 𝑀. The geodesic distance (δୖ) is equivalent to the length of its tangent vector [20] and can be 
expressed as follows: 

 𝛿ோ(𝐶, 𝐶ᇱ) = || 𝑙𝑜𝑔஼(𝐶ᇱ) ||஼ = ||𝑇ᇱ||஼ (1) 
In Eq (1), 𝐶, 𝐶ᇱ ∈ M and 𝑇ᇱ ∈ 𝑇஼𝑀. 
In this study, the knowledge of Riemannian geometry can be used to deal with spatial covariance 

matrices with symmetric positive definiteness. In the multi-classification case, the number of 
covariance matrices increases, and the mean value needs to be used as a metric. Let {𝐷௜}௜ୀ ଵ௡  be a 
collection of 𝑛 covariance matrices. Then, in the Riemannian manifold, the Riemannian mean of 𝑛 
covariance matrices [21] can be defined as the matrix that minimizes the sum of squares of the 
Riemannian distances. 

 𝐷ഥ = 𝜗(𝐷ଵ, 𝐷ଶ, . . . , 𝐷௡) = 𝑎𝑟𝑔 min஽ ∑ 𝛿ோଶ(𝐷, 𝐷௜)௡௜ୀଵ  (2) 

This mean does not have a closed-form solution. However, this problem can be solved using an 
iterative gradient descent algorithm [22] to find the Riemannian mean. The Riemannian mean can be 
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used to find a sum that minimizes the Riemannian distance of the covariance matrix with each trial. 
The Riemannian distance is defined as follows: 

 δୖ(C, 𝐶ᇱ) = || log(Cିଵ𝐶ᇱ) ||୊ = [∑ logଶλ୧ே೎୧ୀଵ ]భమ (3) 

The EEG signals might be different for different people or even the same person at different times. 
The application of Riemannian distance and Riemannian mean can help solve the resulting degradation 
of classification accuracy. Barachant et al. [23] showed that for the same person, the EEG data at 
different times are assumed to have different Riemannian means, but the Riemannian distances for the 
same labeled data are approximately the same for the Riemannian means. Since the Riemannian 
distance and mean are robust to the noise in the Riemannian tangent space, projecting the covariance 
matrix into their corresponding tangent spaces and constructing the tangent vectors can make them 
effective as features of the classification algorithm. 

2.2. Feature selection 

In practical applications, Riemannian geometric methods often face the dimensional catastrophe 
problem. In this study, to solve the problems of non-smooth EEG signals and large individual 
differences, we used a multi-time window combination method, which increased the data dimension. 
Therefore, designing the dimensionality reduction algorithm is necessary. One purpose of feature 
selection is the suppression of irrelevant features to reduce the loss of information. 

In this study, we used NCA [24] for Riemannian feature identification. This is a supervised 
learning method used for classifying a given metric in the data. No complicated matrix operation is 
required when using NCA for distance metrics or dimensionality reduction, and no specific 
assumptions about the distribution of the sample space are required. The NCA method minimizes the 
objective function by regularizing the ranking of the features and learning the feature weights. The 
metric of the objective function in the text is the average leave-one-out (LOO) classification loss on 
labeled training data. 

The feature selection method of NCA is mainly based on the optimization of the nearest neighbor 
classification, which results in a weight vector w. According to the weight vector w, the weighted 
distance between two samples 𝑥௜ and 𝑥௝ is defined as: 

 𝑑௪(𝑥௜, 𝑥௝) = ∑ 𝑤௟ଶ|𝑥௜௟ − 𝑥௜௟|ௗ௟ୀ ଴  (4) 

Here, 𝑤௟ indicates the weight associated with the lth feature. The LOO technique maximizes the 
classification accuracy in the training set. When the error function is not continuous while calculating 
the error using the leave-one-out method, a differentiable softmax function is introduced as follows: 

 𝑝௜௝ = ௘௫௣(ି||ௗೢ(௫೔,௫ೕ)௫೔ିௗೢ(௫೔,௫ೕ)௫ೕ||మ)∑ ௘௫௣(ି||ௗೢ(௫೔,௫ೕ)௫೔ିௗೢ(௫೔,௫ೕ)௫ೖ||మ)ೖಯ೔  (5) 

To define the function, we maximized the number of correctly classified points, i.e., the maximum 
likelihood of choosing comparable points as nearest neighbors accurately. 

 f(𝑑௪) = ∑ ∑ p୧୨୨∈େ౟ = ∑ p୧୧୧  (6) 
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Where f can be differentiated, and maximizing f(𝑑௪) is an unconstrained optimization problem, the 
conjugate gradient method can be used to iteratively solve the optimal value. The optimal solution of 𝑑௪ can be obtained by continuous iterative optimization. Based on this, the obtained weight vector 
was used to rank the features and select the desired feature values as the classifier input. 

2.3. Feature classification 

SVM [25] is a typical classification algorithm for executing MI-BCI tasks. It finds an optimal 
hyperplane that maximizes the distance between two training data points. The support vector machine 
has flexible decision boundaries and a strong ability to generalize unknown information. 

In this study, the One-Versus-Rest SVM was used for the four classification problems. Following 
this method, four SVMs were constructed for four categories of samples, and the unknown samples 
were placed in the category with the maximum classification function value. In addition, the optimal 
SVM parameters were determined by using the grid search [26]. By traversing a given parameter space, 
a model was trained for each parameter combination and evaluated using cross-validation to assess 
model performance. The parameter combination that achieved the optimal model performance was 
selected as the optimal parameters for the SVM model. 

3. Materials 

3.1. Public dataset 

The BCI competition IV dataset 2a contains EEG data from nine healthy subjects who were 
required to perform four motor imagery tasks, which included imagined movements of the left hand, 
right hand, feet and tongue. Each participant had to complete two phases of data acquisition, including 
a training set data acquisition and a test set acquisition. In total, 25 measurement channels were used 
to record the dataset, including 22 EEG channels and three monopolar electroocular (EOG) channels. 
The dataset was uploaded to https://www.bbci.de/competition/iv/#datasets. 

3.2. Experimentally collected dataset 

The data were collected from healthy participants who had no experience with MI-based BCI 
(n = 7 males, 22−26 years old). All subjects signed an informed consent form before the experiment 
and were designated as sub-001 to sub-007. The study was approved by the Medical Ethics Committee 
of Chinese PLA General Hospital. 

The EEG data were acquired using a 64-channel gel electrode cap (according to the standard 10/20 
system) and a Neuroscan SynAmps2 amplifier (Neuroscan, Inc.). The sampling frequency was 250 Hz. 
The EEG measurements were made using the left mastoid fiducial. During the experiment, the electrode 
impedance was kept below 10 kΩ. The bandpass filtering range of the system was 0.5−100 Hz. 

The subject wearing the electrode cap sat on a chair with both hands naturally resting on the thighs 
and both eyes 1 m away from the screen (see Figure 2). As shown in Figure 2, at the beginning of each 
trial, a short “ding” sound was emitted, and a cross-arrow appeared at the center of the display. The 
cross-arrow was presented for 2 seconds to prompt that the experiment was about to begin. 
Subsequently, the target arrow representing the motor imagery task was displayed on the screen for 4 
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seconds. During this time, the subjects were asked to imagine the movements (“left hand”, “right hand”, 
“feet” and “tongue”) instead of visualizing the picture that corresponded to them. The terms “left hand” 
and “right hand” represented lifting the respective left and right hands, “feet” represented lifting both 
feet and “tongue” represented rolling up the tongue. The researchers asked the participants not to make 
any movements while imagining. At the end of the imagery task, the screen turned black for 2 s and 
the 8-s trial ended. 

 

Figure 2. Experimental procedure for each participant. 

The experiment consisted of six sessions. Each session consisted of 12 trials of each of the 
four motor imagery tasks. To prevent mutual influence between the former and latter tasks, they 
appeared randomly. There was a 5 to 10 min break between sessions. Some channel data were 
excluded during the data processing stage, and 22 channels relevant to the motor imagery task were 
selected for processing. 

4. Results 

4.1. Experimental results 

The performance of the method proposed in this study was compared to other representative 
methods by conducting extensive experiments. We chose CSP as the baseline model, and compared it 
with FBCSP, AFBCSP, CNN-SAE and the proposed method in this study. 
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1) CSP: The feature extraction of the EEG signal from 0−4 s was performed in the range of 8–40 
Hz using the CSP technique. 

2) FBCSP [27]: CSP features were extracted from EEG data, which were based on multiple 
frequency bands throughout the time window. Based on this, the optimal feature selection method was 
used to automatically select the corresponding filter banks and CSP features. 

3) AFBCSP: The discriminative frequency components of a particular subject were first selected 
using the time-frequency map of fisher ratios of motion picture patterns. Then, the subject-specific 
bandpass filter was selected adaptively based on the information from Fisher’s ratio time-frequency 
map. The features were extracted only from the selected frequency components. 

4) CNN-SAE [28]: By conditioning the filters of the CNN convolutional layer, the features of the 
input EEG signal were retrieved. Then, a deep SAE network used these attributes to classify the data. 

The filtered EEG data were classified using an SVM classifier after applying the relevant methods 
described above to extract features. Based on the results of the grid search, a linear function was used 
as the kernel with the optimal classification parameters. The classification effectiveness of the two 
datasets was evaluated using 10-fold cross-validation. 

The classification accuracy for all subjects in both datasets was summarized in Tables 1 and 2. 
The classification accuracy refers to the proportion of samples that are correctly classified by the 
classifier among all the testing samples. It is calculated as the number of correct predictions divided 
by the total number of predictions. The proposed method achieved the highest classification accuracy 
in both datasets. Among them, the average accuracy for the nine subjects in the BCI competition IV 
dataset 2a was 68.8% (CSP), 62.5% (FBCSP), 75.4% (CNN-SAE), 70.6% (AFBCSP) and 89.00% (the 
proposed method). The kappa values [29] of each method were also calculated for all subjects. The 
kappa value of the proposed method in this study was 0.73 (Table 1), and its classification performance 
was significantly better than that of the other methods. 

Table 1. The classification accuracy of different methods for nine subjects in the BCI 
competition IV dataset 2a. 

Subject  Method 
CSP+SVM FBCSP+SVM AFBCSP+SVM CNN-SAE Proposed 

method 
sub-001 0.810 0.701 0.851 0.861 0.925 
sub-002 0.678 0.609 0.598 0.678 0.901 
sub-003 0.816 0.83 0.805 0.90 0.899 
sub-004 0.494 0.598 0.540 0.64 0.899 
sub-005 0.598 0.71 0.747 0.733 0.926 
sub-006 0.322 0.436 0.402 0.502 0.831 
sub-007 0.874 0.862 0.874 0.914 0.941 
sub-008 0.851 0.805 0.86 0.897 0.894 
sub-009 0.747 0.780 0.644 0.665 0.798 
mean ± std 0.688 ± 0.175 0.625 ± 0.137 0.706 ± 0.161 0.754 ± 0.137 0.890 ± 0.044
kappa 0.52 0.57 0.63 0.60 0.73 
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Table 2. The classification accuracy of different methods for the seven subjects in the 
experimentally collected dataset. 

Subject  Method 
CSP+SVM FBCSP+SVM AFBCSP+SVM CNN-SAE Proposed method

sub-001 0.344 0.698 0.583 0.688 0.750 
sub-002 0.411 0.555 0.543 0.572 0.761 
sub-003 0.477 0.805 0.796 0.849 0.769 
sub-004 0.360 0.538 0.556 0.551 0.776 
sub-005 0.443 0.444 0.45 0.625 0.751 
sub-006 0.443 0.403 0.574 0.764 0.80 
sub-007 0.442 0.774 0.783 0.792 0.812 
mean ± std 0.417 ± 0.045 0.602 ± 0.147 0.612 ± 0.119 0.692 ± 0.105 0.774 ± 0.022 

To provide an intuitive comparison of the performance of each model in public dataset, we 
employed Receiver Operating Characteristic (ROC) curves as the evaluation metric. Based on the 
previously discussed results, we selected the following models for comparison: FBCSP+SVM, 
AFBCSP+SVM, CNN-SAE and the proposed method. 

As shown in Figure 3, the ROC curve of our proposed method was situated closest to the upper 
left corner, signifying a high true positive rate and a low false positive rate. Conversely, the ROC 
curves of the other three models exhibited a slight deviation from the optimal position. These 
observations suggested that the proposed method outperformed the other models in terms of 
classification accuracy. 

 

Figure 3. Comparative study of ROC curves for four models. 

To further support our findings, we computed the Area Under Curve (AUC) values for each model. 
The AUC value represents the area beneath the ROC curve and serves as a quantitative measure of a 
model’s performance. An AUC value approaching 1 indicates superior performance. 

Our calculations showed that the proposed method achieved the highest AUC value (AUC = 0.90). 
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In contrast, FBCSP+SVM (AUC = 0.76), AFBCSP+SVM (AUC = 0.79) and CNN-SAE (AUC = 0.83) 
demonstrated lower AUC values. These results corroborated the conclusions drawn from the ROC 
curve observations, further confirming the superior performance of the proposed method in MI tasks. 
With its high accuracy, the proposed method provided robust support for research and applications 
in this domain. 

4.2. Comparison of classification effects with different time windows 

The classification accuracy obtained by combining the EEG data with different time windows for 
all subjects in public dataset is shown in Figure 4. We found that the classification of the combined 
pattern of time windows was the best among the participants sub-003, sub-007 and sub-009. The sub-
time windows 𝑇ଵ, 𝑇ଷ and 𝑇ହ of sub-003 and sub-009 had higher classification accuracy. The sub-
time windows 𝑇ଵ , 𝑇ଶ  and 𝑇ଷ  of sub-007 had higher classification accuracy. This illustrated that 
different subjects had different response times for the MI task. Additionally, as shown in Figure 4, the 
accuracy of using a single time window for classification was significantly lower than that of using 
multi-time window combination algorithm for classification. It also indicated that the proposed multi-
time window combination algorithm could reduce the risk of misclassification due to improper time 
window selection. 

 

Figure 4. Effect of choosing different time windows on classification accuracy. 

4.3. Comparative analysis of feature distributions 

To facilitate the comparison of feature distribution, the dataset was divided into two 
categories, and only left-handed and right-handed tasks were processed. To illustrate the results, the 
data of sub-002 in public dataset, who showed average performance, were selected for the analysis. The 
distribution of the two features obtained in Riemannian space and Euclidean space is shown in Figure 5. 
Figure 5(b) indicated that the performance of extracting EEG signal feature distributions in the 
Euclidean space was poor. In contrast, Figure 5(a) showed that the algorithm based on the Riemannian 
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transform provided a more easily separable distribution of features. This conclusion was consistent 
with the findings of the discussion of the method in Section II and the classification performance of 
Tables 1 and 2. 

 
(a)                                (b) 

Figure 5. (a) The distribution of Riemannian distances relative to the Riemannian mean 
for the right-hand and left-hand covariance matrices. (b) The distribution of Euclidean 
distances relative to Euclidean means for the right-hand and left-hand covariance matrices. 
(The red dots represented the distribution of features from the right hand, and the green 
dots represented the distribution of features from the left hand.) 

4.4. Computational efficiency 

The computational efficiency of several of the above-mentioned comparison algorithms was 
analyzed by using the example of sub-002 in public dataset. The testing time required to perform one 
experiment using python 3.9 on a PC is shown in Table 3. This PC is equipped with an i5-9600K 3.7GHz 
CPU and 16GB RAM, meeting the computing requirements for our experiments. The results showed 
that the method proposed in the study was not the fastest but was able to achieve real-time processing 
(computation time was less than the experimental time) [30]. Most of the time was spent training the 
model. However, testing occurred almost immediately, requiring only about 738 ms. Thus, the method 
could effectively improve the classification accuracy of BCI without affecting the computational speed 
of BCI. 

Table 3. Comparison of the time spent by different methods to perform calculations. 

Subject Method 
CSP+SVM FBCSP+SVM AFBCSP+SVM CNN-SAE Proposed 

method 
Computation 
time (ms) 

508 708 600 400 738 
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4.5. Ablation study 

We performed ablation analyses on the BCI competition IV dataset 2a to further investigate the 
effectiveness of the multi-time window combination module and NCA module in the proposed 
method. We removed the multi-time window combination module and the NCA module in turn and 
compared them with the proposed method. As shown in Figure 6, both the multi-time window 
combination and NCA modules had contributed to the improvement of the classification accuracy. 
Moreover, it could be clearly observed that the classification accuracy of features extracted from 
fixed time windows (1−4 s) exhibited substantial individual variability and instability. In contrast, the 
proposed multi-time window combination model significantly enhanced the generalization performance 
of MI classification tasks. 

 

Figure 6. Comparison of accuracy in the proposed model under different ablative 
conditions. W/O NCA algorithm represented the proposed model without NCA algorithm 
module; W/O multi-time window combination represented the proposed model without 
multi-time window combination module. 

5. Discussion 

In MI-BCI, CSP is the most common spatial feature extraction technique. However, the algorithm 
is highly sensitive to noise and has weak generalization performance. To enhance the generalization 
performance of CSP, many studies have investigated ways to improve the CSP algorithm. In this study, 
the idea of combining multiple filters in the FBCSP algorithm was used to extract the EEG data of the 
α-band (8−12 Hz) and the β-band (12−30 Hz) [31]. Then, the sub-band filter bank was utilized to 
further divide the EEG data segmented by time windows. Previous studies analyzed only the frequency 
domain and did not focus on the response speed of the subject in the MI task. The response latencies 
of the MI tasks were different (Figure 4). In BCI experiments, variance can be due to time variability, 
session-to-session variability or subject-to-subject variability. Therefore, variance probably is an 
important source of error. Combining time window may be a way of solving this variability problem, 
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which may explain its success. In this study, we divided the MI cycle into different sub-time windows 
to combine multiple time windows. Using this strategy, we solved the problem of finding the optimal 
instant for classification. 

Since the Riemannian distance and mean were robust to the noise in the Riemannian tangent 
space, the covariance matrix could be operated to improve the distribution of the features in the 
Euclidean space, making them more effective as features of the classification algorithm (Figure 5). 

Feature selection is the key to MI classification. When selecting features that are relevant to the 
completion of the classification, irrelevant or less important features that have a low impact on the 
classification goal need to be discarded. Features that are irrelevant or not fully relevant can have a 
detrimental effect on the execution of the model. The commonly used PCA feature reduction method 
was compared to the NCA feature selection method used in this study. As shown in Figure 7, the 
scatter plot of the selected feature distribution showed that the features selected by the NCA had 
better separability. 

 

Figure 7. Comparison of the PCA feature reduction method and the NCA feature selection 
method. (The red dots represented the ‘right hand’, the purple dots represented the ‘left 
hand’, the gray dots represented the ‘tongue’, and the brown dots represented the ‘feet’.) 

We used machine learning instead of deep learning because we verified via experiments that the 
method in this study could achieve similar or higher accuracy while the complexity of using machine 
learning was lower, and the calculation cost was lesser. To achieve high performance, deep learning 
requires very large datasets. For MI-BCI, such a large dataset is not readily available. For smaller datasets, 
machine learning often outperforms deep learning. Also, machine learning is more interpretable. 

Besides, we conducted a quantitative comparison between our model and the existing state-of-
the art model LMDA-Net model. LMDA-Net incorporated two novel attention modules designed 
specifically for EEG signals, the channel attention module and the depth attention module, LMDA-
Net was able to effectively integrate features from multiple dimensions, resulting in improved 
classification performance across various BCI tasks. On the BCI Competition IV dataset 2a, LMDA-
Net achieved an average accuracy of 78.8%, a kappa value of 0.71 and an AUC value of 0.74. However, 
upon evaluation, our model achieved an average accuracy of 89%, a kappa value of 0.73 and an AUC 



12468 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 12454−12471. 

value of 0.9. Compared to the LMDA-Net model, our model exhibited significant improvements in all 
performance metrics, indicating that our model possessed higher accuracy and robustness in motor 
imagery classification tasks. The differences in performance might be attributed to the effective capture 
of ERD time periods in our model and the advantages of using Riemannian transformation for feature 
extraction. Moreover, our model reduced complexity and improved computational speed through the 
use of the NCA feature selection algorithm and an SVM classifier. In contrast, while LMDA-Net 
achieved some success in integrating multi-dimensional features, it still lagged behind in terms of 
classification accuracy. 

Although the method outperformed other methods regarding performance, further refinements 
are needed in the following area. The multi-temporal window combination model proposed in this 
study can solve the problem of variability for classification, but the training time needs to be extended 
as the choice of time windows increases. Further study is needed to improve this aspect. For instance, 
implementing parallel computing can effectively reduce computation time by decomposing tasks into 
multiple sub-tasks and executing them concurrently. Taking advantage of multi-core processors or 
GPU acceleration for parallel processing can significantly speed up calculations, thus mitigating the 
extended training times associated with our current approach. Moreover, in future research, we could 
consider combining Multiple Graph Cooperative Learning Neural Networks (MGLNN) proposed by 
Jiang et al. [32]. Applying MGLNN to MI-BCI classification tasks can extract valuable information 
regarding MI by simultaneously processing multiple graph structures based on time windows, 
frequency bands, or brain regions. By introducing this advanced technique, we expect to further 
improve the performance of MI-BCI classification. 

6. Conclusions 

In this study, we developed a MI-BCI classification method based on Riemannian geometry, 
which classified the fused EEG spatiotemporal frequency features. Our approach employed the 
combination of multiple sub-time windows to tackle the challenge of individual variability in EEG 
classification. Subsequently, we employed Riemannian geometry to extract features, overcoming the 
problem of low signal-to-noise ratio and improving the discriminability of features. Finally, we applied 
the NCA feature selection algorithm, which was more suitable for processing EEG signals, to reduce 
data dimensionality while minimizing model complexity, so that the processed features could be input 
into the SVM classifier for faster computation. This method enhanced the accuracy and stability of the 
MI-BCI system. In conclusion, the proposed method significantly enhanced the classification 
performance of EEG signals, laying a solid foundation for further research and practical applications 
in the BCI field. 
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