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Abstract: In older adults, benign prostatic hyperplasia (BPH) is the most common cause of lower 
urinary tract symptoms (LUTS). This study aimed to explore the genes with diagnostic value in patients 
with BPH, reveal the relationship between the expression of diagnosis-related genes and the immune 
microenvironment, and provide a reference for molecular diagnosis and immunotherapy of BPH. The 
combined gene expression data of GSE6099, GSE7307 and GSE119195 in the GEO database were 
used. The differential expression of autophagy-related genes between BPH patients and healthy 
controls was obtained by differential analysis. Then the genes related to BPH diagnosis were screened 
by a machine learning algorithm and verified. Finally, five important genes (IGF1, PSIP1, SLC1A3, 
SLC2A1 and T1A1) were obtained by random forest (RF) algorithm, and their relationships with the 
immune microenvironment were discussed. Five genes play an essential role in the occurrence and 
development of BPH and may become new diagnostic markers of BPH. Among them, immune cells 
have significant correlation with some genes. The signal transduction of IL-4 mediated by M2 
macrophages is closely related to the progress of BPH. There are abundant active mast cells in BPH. 
The adoption and metastasis of regulatory T cells may be an important method to treat BPH. 

Keywords: prostatic hyperplasia; gene expression data; random forest; immune microenvironment; 
protein-protein interaction 
 

1. Introduction 

BPH is a common disease in the elderly male population. The incidence of BPH increases with 
age, and the LUTS caused by BPH will seriously affect patients’ quality of life [1]. It is reported that 
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almost 90% of men aged 81–90 suffer from BPH [2]. Autophagy delivers cytoplasmic components to 
lysosomes through autophagosomes, which is not only a necessary process to realize the metabolic 
needs of cells and the renewal of some organelles but also plays an important role in homeostasis. 
Existing studies explored the role of autophagy-related genes in tumors [3] and neurological diseases [4]. 
However, the role of autophagy-related genes in BPH is still unclear. 

In older adults, BPH is the most common cause of LUTS. This study aimed to explore the genes 
with diagnostic value in patients with BPH, reveal the relationship between the expression of 
diagnosis-related genes and the immune microenvironment, and provide a reference for molecular 
diagnosis and immunotherapy of BPH. The combined gene expression data of GSE6099, GSE7307 
and GSE119195 in the GEO database were used. The differential expression of autophagy-related 
genes between BPH patients and healthy controls was obtained by differential analysis. Then the genes 
related to BPH diagnosis were screened by a machine learning algorithm and verified. Finally, five 
important genes (IGF1, PSIP1, SLC1A3, SLC2A1 and T1A1) were obtained by RF algorithm, and 
their relationships with the immune microenvironment were discussed. Five genes play an essential 
role in the occurrence and development of BPH and may become new diagnostic markers of BPH. 
Among them, immune cells have significant correlation with some genes. The signal transduction of 
IL-4 mediated by M2 macrophages is closely related to the progress of BPH. There are abundant active 
mast cells in BPH. The adoption and metastasis of regulatory T cells may be an important method to 
treat BPH. 

Bioinformatics analysis can analyze biomarkers closely related to diseases from the perspective 
of omics data and provide a reference for targeted treatment, clinical diagnosis and prognosis of 
diseases. According to the enrichment analysis of BPH and protein-protein interaction (PPI) network, 
Wang found five key genes, UBE2C, AKT1, MAPK1, CCNB1 and PLK1, may play a vital role in the 
pathogenesis of BPH. The study also confirmed that the local adhesion pathway, FoxO signaling 
pathway and autophagy pathway may be the key to BPH progress [5]. Xiang et al. [6] research suggest 
that there may be differentially expressed genes such as ARG2 and LUM in epithelial cells and stromal 
cells, which might provide a new understanding of the pathogenesis of BPH. Xu et al. [7] analyzed the 
transcriptome data of BPH by weighted gene co-expression network analysis (WGCNA) and found that 
SOCS3, IL6, C3, IGF1, NOTCH1 and VCAN are critical regulators of BPH immunophenotype. However, 
the role of autophagy-related genes in diagnosing BPH and its relationship with the immune 
microenvironment is still unclear. Therefore, this paper selects the combined data of GSE6099, 
GSE7307 and GSE119195 in the GEO database and analyzes the differential expression of 610 
autophagy-related genes in these data sets to obtain differentially expressed autophagy-related genes 
(DEAGS). Then, this paper makes a variety of bioinformatics analyses and uses a machine learning 
algorithm to screen five essential genes (IGF1, PSIP1, SLC1A3, SLC2A1, T1A1) related to BPH 
diagnosis. Finally, the correlation between this gene and immune cells was discussed. Sachdeva et al. [8] 
performed PPI network analysis of differentially expressed genes in BPH and identified 38 hub genes. 
These genes may serve as drug targets for BPH. Because prostate-specific antigen (PSA) is difficult to 
distinguish BPH patients from prostate cancer (PCa) patients, Ge et al. [9] identified genes that are 
significantly differentially expressed in the two diseases by comprehensive analysis of miRNA 
microarrays in BPH and PCa and validated them using qRT-PCR. Their findings suggest that plasma 
let-7f-5p combined with PSA can be a potential diagnostic biomarker for PCa. 
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2. Materials and methods 

2.1. Data sources 

The data used in this paper are all from the GEO database (https://www.ncbi.nlm.nih.gov/gds). 
Among them, the GSE119195 data set includes five prostate samples from BPH surgical resection and 
three from brain-dead young people’s donation, and its data platform is GPL6244 (Affymetrix Human 
Gene 1.0 ST Array). GSE6099 data set includes 21 BPH samples and four control samples, and its data 
platform is GPL6244 Affymetrix human gene 1.0 ST array. GSE119195 data set includes 5 BPH 
samples and three control samples, and its data platform is GPL2013 (Chinnaiyan Human 20K Hs6). 
In addition, 1185 autophagy-related genes were collected from previous literature. After merging the 
three data sets, 610 autophagy-related genes were obtained. GSE132714 data set includes 18 BPH 
samples and four control samples, and its data platform is GPL16791 (Illumina HiSeq 2500). We 
downloaded 222 and 366 autophagy related genes from HADb database (http://www.autophagy.lu/) 
and HAMdb database (http://hamdb.scbdd.com/home/index/) respectively. From GeneCards 
(https://www.genecards.org/), we extracted the first 1000 genes related to autophagy. Through the 
intersection of the above autophagy related genes, 1183 autophagy related genes were finally reserved 
for subsequent analysis. 

2.2. Differential expression analysis 

The limma algorithm was used to analyze the differential expression of the merged data sets to 
identify the differentially expressed autophagy genes between BPH patients and healthy controls. The 
R package “limma” was used for data standardization and difference analysis. The DEGs with p values 
less than 0.05 were retained. 

2.3. Enrichment analysis 

To explore the pathway information involved in DEGs, this paper introduced three items in gene 
ontology (GO) enrichment analysis [10]: biological process (BP), cellular component (CC) and 
molecular function (MF). In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis [11] was introduced to determine the biological function of DEGs. The R package 
“clusterProfiler” was used to perform GO analysis and KEGG analysis. Pathways with p values less 
than 0.05 were considered to be significantly enriched. 

2.4. PPI network construction 

To explore the interaction of DEGs at the protein level, this paper uses the STRING database 
(https://cn.string-db.org/) to build a PPI network and sets the highest confidence interactive score to 0.9. 
Then download the PPI network and visualize it using Cytoscape software (https://cytoscape.org/). 

2.5. Identify diagnostic biomarkers in BPH 

First, we divide the overall dataset into training and test sets. The training set had 19 samples, 
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including 8 BPH samples and 11 control samples. The test set had nine samples, including four BPH 
samples and five control samples. The RF in the scikit-learn package of python was used to sort the 
feature weights, and the logistic regression (LR) algorithm was used to build the diagnosis model. We 
implemented the above two algorithms based on the scikit-learn package. Specifically, we first set the 
random seed to 12345 for both algorithms. For the RF algorithm, we set the range of n_estimators 
from 100 to 1000, and the range of n_estimators is gini and entropy. We applied 10-fold cross-
validation to the parameter selection and screening training set to obtain hub genes. Next, we classified 
BPH based on hub genes and used a LR algorithm. The range of the parameter ‘C’ of the LR algorithm 
is set from 0.1 to 3.1. We still use ten-fold cross validation on the training set to select the best 
parameters. The final prediction result is then obtained on the test set. 

ROC curve was drawn by R package “pROC”, which is used to evaluate the diagnostic model 
and the prediction accuracy of diagnosis related genes. In addition, wilcox-test was used to analyze 
the expression difference of diagnosis related genes between the two groups. Based on the genes in the 
diagnostic model, we used the “rms” R package to construct a nomogram. The calibration curve was 
used to evaluate the accuracy of the nomogram. 

2.6. Immunoinfiltration analysis 

To explore the relationship between the five diagnosis-related genes and the expression of 
immune cells, the CIBERSORT algorithm was used to calculate the proportion of different immune 
cell types [12] and the infiltration abundance of 22 kinds of immune cells in a significant sample (p < 0.05). 
Finally, the Spearman correlation coefficient was used to calculate the correlation between five 
diagnostic genes and 22 kinds of immune cells. 

3. Results 

3.1. Differential expression analysis results 

First, we presented the overall flow diagram of this paper in Figure 1. In this paper, 125 DEGs 
were obtained by differential analysis of 610 autophagy genes in the merged data set. Figure 2A shows 
the volcano map obtained by difference analysis, in which green dots represent significantly down-
regulated genes and red dots represent up-regulated genes considerably. The expression heat maps of 
these DEGs in all samples are given in Figure 2B. In addition, PPI networks of these genes were drawn. 
As can be seen from Figure 2C, there are many interactions among these genes. We performed PPI 
analysis on 125 differentially expressed autophagy related genes, and retained genes with interaction 
scores higher than 0.9. A total of 73 autophagy related genes with interaction scores higher than 0.9 
were obtained and mapped in Figure 2C. 
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Figure 1. Overall flow chart of the paper.

 

Figure 2. Differential expression analysis of merged data sets. A is the volcano map 
obtained by differential expression analysis. B is the expression heat map of the top 50 
upregulated genes and downregulated genes in the absolute value of logFC. C is a PPI 
network constructed by the first 50 genes. C is a PPI network constructed by the 73 
autophagy related genes with interaction scores higher than 0.9. 
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3.2. Enrichment analysis results 

To explore the signal pathway of DEGs’ participation, the BP (Figure 3A), CC (Figure 3B) and 
MF (Figure 3C) entries in GO enrichment analysis and KEGG enrichment analysis (Figure 3D) were 
carried out in this study. The discussion section explored these pathways’ biological significance 
in detail. 

 

Figure 3. Results of GO and KEGG enrichment analysis of DEGs. A-C are the analysis results 
of BP, CC and MF in GO, respectively. D is the result of the KEGG enrichment analysis. 

3.3. Construction of diagnostic model 

To determine the DEGs closely related to diagnosis, this paper sorted the features of DEGs based 
on the RF algorithm and obtained the diagnosis-related genes. We retained the top five most significant 
genes and visualized their weights (Figure 4A). Then, based on these five genes, the LR algorithm 
obtained the diagnosis model and the ROC curve of Figure 4B was drawn (AUC = 0.8056). In 



12030 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 12024–12038. 

addition, this paper verified it on the data (training set) after merging three data sets. As can be 
seen from Figure 5A–E, the AUC of all five genes is more significant than 0.5. Five genes were also 
verified in the GSE132714 data set (verification set) (Figure 6A–E), and the AUC of all five genes was 
more significant than 0.5. In addition, we present the results of the difference analysis using the t test 
in Figure S1 in the supplementary material. According to the difference in expression levels of five 
genes in the validation set between the BPH group and control group (Figure 6F–J). Among them, 
there was a significant difference in the expression of IGF1 between the two groups. In order to further 
explore the clinical value of these five diagnosis-related genes (IGF1, PSIP1, SLC1A3, SLC2A1 and 
TIA1), we built a nomograph model based on these five diagnosis-related genes (Figure 7A). The 
calibration curve shows that the nomograph model based on five diagnosis-related genes is more 
consistent with the ideal model (Figure 7B).  

 

Figure 4. Construction of diagnostic model. A. Histogram drawn by the top five genes 
with the largest feature weight. B. A diagnostic model of BPH constructed using the first 
five genes. 

 

Figure 5. AUC curves of five genes in the training set. A–D are AUC curves of IGF1, 
PSIP1, SLC1A3, SLC2A1 and TIA1, respectively. 
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Figure 6. Verification of five genes on verification set. A–E is the ROC curve of five genes 
in the validation set. F–J is a box diagram of the expression levels of five genes in the BPH 
and the control group. 

 

Figure 7. Nomograph model in BPH. A. Construction of the nomogram model based on 
the selected genes (IGF1, PSIP1, SLC1A3, SLC2A1 and TIA1). B. Calibration curve 
illustrating the diagnostic ability of the nomogram model. 

3.4. Five genes related to immune infiltration landscape 

To explore the immune landscape of five genes related to BPH diagnosis, the CIBERSORT 
algorithm was used to calculate the samples with significant differences in immune abundance, the 
proportion of 22 kinds of immune cells was visualized (Figure 8A), and the correlation of 22 types 
of immune cells was analyzed (Figure 8B). In addition, the samples were divided into high-risk 
and low-risk groups according to the expression levels of five genes. The differences in infiltration 
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abundance between high-risk and low-risk groups in 22 kinds of immune cells were visualized 
(Figure 8C–G). In addition, the scatter plot of immune cells with significant differences in five 
genes was drawn (Figure 9A–F). Among them, IGF1 and Macrophages M2 have the strongest 
correlation. In addition, Pearson test was used to analyze the correlation between diagnostic genes 
and immune cells. Related scatter plots are shown in Figure S2 in the supplementary material. 

 

Figure 8. Immune infiltration landscape of BPH and healthy control group. A is a bar graph 
of the ratio of 22 immune cells in the BPH and the control group. B is the correlation heat 
map between 22 kinds of immune cells. C-G is a box diagram of immune cell differences 
between high and low expression groups calculated by dividing the samples into high and 
low expression groups according to the expression of five genes (IGF1, PSIP1, SLC1A3, 
SLC2A1 and T1A1). 
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Figure 9. Scatter plot of genes with significant correlation and immune cells. 

4. Discussion 

BPH is a disease that often occurs in the elderly male population and causes LUTS. The role of 
autophagy-related genes in the occurrence and development of BPH is still unclear. This paper aimed 
to mine BPH-related pathways and genes related to diagnosis by using a machine-learning algorithm 
from the perspective of bioinformatics. Specifically, this paper first obtained three GEO data sets of 
BPH. DEGs were obtained through the differential expression analysis of the merged data sets. We 
carried out various enrichment analyses of DEGs, most of which have been proven closely related to 
the occurrence and development of BPH. In Figure 3, for the BP pathway, Wang et al. [13] clarified 
that PI3K/AKT/mTOR signal nodes play an essential role in the occurrence and progression of prostate 
cancer（PCa）through the model of genetically engineered mice. Wang et al. divided the mice into a 
control group, obesity group (OB) and obesity group plus exercise group (OB+E), and took the aerobic 
exercise experiment together, and found that the PI3K-Akt signaling pathway was down-regulated to 
relieve BPH of obese mice [14]. Human papillomavirus infection is sexually transmitted virus, which 
may be related to the formation of prostate inflammation, leading to BPH and PCa [15]. Literature [16] 
showed that drugs could cause atrophy and Apoptosis of prostatic secretion cavity cells, reduce prostate 
volume, improve BPH and relieve LUTS. In the rat model of BPH, Li et al. [17] found that SIRT3 can 
participate in mitochondrial metabolic recoding through the AMPK signaling pathway, which can 
significantly alleviate the symptoms of BPH. FoxO signaling and autophagy pathways may be crucial 
to the progress of BPH. Liu et al. [18] confirmed through experiments that silencing the Beclin-1 
gene would hinder the autophagy of BPH cells. BPH patients are related to the regulation of adhesion 
kinase (FAK) [19]. Through the regulation of FAK, smooth muscle in tissues of BPH patient contracts, 
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which may improve LUTS and play an important role in treating LUTS. Blood oxygen level contrast 
magnetic resonance imaging can be used as a standard to distinguish PCa from BPH before the 
operation, instead of a noninvasive assessment of vascular maturity [20]. Penna et al. [21] found that 
MHC class II molecules were expressed in BHP cells. Annexin (ANX) represents a family of calcium 
and phospholipid-binding proteins and plays an important role in physiological processes such as cell 
differentiation. Lehnigk et al. [22] found that the immunoreactivity of ANX I and II was limited to 
basal cells of glands in samples of BPH patients. In addition, we found that the more is the role of 
concentration of multiple pathways in BPH has not yet been confirmed, such as the endocytic vesicle, 
regulation of cell-cell adhesion and epstein-barr virus infection. In future studies, researchers can pay 
attention to the role of these pathways in BPH and verify them through biological experiments. 

To determine the diagnosis-related genes, five genes (IGF1, PSIP1, SLC1A3, SLC2A1 and T1A1) 
related to the diagnosis were obtained by RF screening. IGF1 has been proven to be the key regulator 
of the immunogenic phenotype of BPH. In a tissue sample from PCa patients, BPH patients and normal 
prostate, the mRNA expression level of IGF1 was observed by quantitative real-time RT-PCR. It was 
found that IGF1 was down-regulated in BPH, which could be used as a potential target for the detection 
and treatment of BPH [23]. The LEDGF/PSIP1 is one of the autoantibodies of BPH [24]. Notably, in 
Figure 6A–F, the AUCs of all five genes were more significant than 0.6. However, limited by the 
quality of BPH data in the GEO database and the limited sample size, only IGF1 had confidence 
intervals above 0.5. In future studies, we will collect more BPH data to obtain more high-quality 
samples and further validate the diagnostic genes. 

Furthermore, this paper analyzed the correlation between five genes, immune cell infiltration and 
the immune microenvironment. Among them, it has a significant correlation with some genes. M2 
macrophage-mediated IL4 signaling is closely related to the progress of BPH [25]. There are abundant 
activated mast cells in BPH. Jin et al. [26] showed that the adoptive transfer of regulatory T cells might 
be an important way to treat BPH. 

5. Conclusions 

In a few words, this paper found the relevant pathways of abnormal expression genes of BPH 
through various information analyses and identified several diagnosis-related genes through a machine 
learning algorithm. We further analyzed the top five genes’ relationship with immune infiltration and 
the immune microenvironment. This study helps discover the molecular mechanism of BPH. However, 
the scope of the method applied in this paper is limited by public databases, and the number of samples 
and data quality cannot be guaranteed. In future studies, we will collect more samples and try multiple 
machine learning models while ensuring data quality. Furthermore, we note that advances in 
interaction prediction studies in various fields of computational biology will provide valuable insights 
into BPH-related genetic markers and ncrnas [27]. Most of the existing development methods are based 
on deep learning models. Wang et al. [28] developed a method based on a graph convolutional neural 
network and conditional random field to predict the interaction between human miRNA and lncRNA 
and obtained high prediction accuracy. In a similar study, Sun et al. [29] combined a graph 
convolutional network and a graph attention network to predict diseases and their potential association 
with related metabolites. Zhang et al. [30] developed a computational method for predicting 
interactions between large-scale mirnas and lncrnas by computing similarity networks of lncrnas and 
mirnas and integrating them with Gaussian interaction spectrum kernel similarity. Then, network 
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distance analysis is performed on the integral similarity network, and the final score is obtained after 
confidence calculation and score conversion. This method has achieved good results on large-scale 
datasets. In future studies, we will try combining the advantages of the above computational methods 
to develop RNA intermolecular interaction relationship prediction methods with higher accuracy. 

Acknowledgments 

We thank the authors for their contributions and the reviewers for their critical review of the 
manuscript. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. H. Xiao, Y. Jiang, W. He, D. Xu, P. Chen, D. Liu, et al., Identification and functional activity of 
matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate, Aging, 12 (2020), 
8605–8621. https://doi.org/10.18632/aging.103175 

2. C. Wang, X. Du, R. Yang, J. Liu, D. Xu, J. Shi, et al., The prevention and treatment effects of 
tanshinone IIA on oestrogen/androgen-induced benign prostatic hyperplasia in rats, J. Steroid 
Biochem. Mol. Biol., 145 (2015), 28–37. https://doi.org/10.1016/j.jsbmb.2014.09.026 

3. X. Li, Z. Dai, X. Wu, N. Zhang, H. Zhang, Z. Wang, et al., The comprehensive analysis identified 
an autophagy signature for the prognosis and the immunotherapy efficiency prediction in lung 
adenocarcinoma, Front. Immunol., 13 (2022), 749241. 
https://doi.org/10.3389/fimmu.2022.749241 

4. S. He, Z. Deng, Z. Li, W. Gao, D. Zeng, Y. Shi, et al., Signatures of 4 autophagy-related genes as 
diagnostic markers of MDD and their correlation with immune infiltration, J. Affective Disord., 
295 (2021), 11–20. https://doi.org/10.1016/j.jad.2021.08.005 

5. Z. Ke, H. Cai, Y. Wu, Y. Lin, X. Li, J. Huang, et al., Identification of key genes and pathways in 
benign prostatic hyperplasia, J. Cell. Physiol., 234 (2019), 19942–19950. 
https://doi.org/10.1002/jcp.28592 

6. P. Xiang, D. Liu, D. Guan, Z. Du, Y. Hao, W. Yan, et al., Identification of key genes in benign 
prostatic hyperplasia using bioinformatics analysis, World J. Urol., 39 (2021), 3509–3516. 
https://doi.org/10.1007/s00345-021-03625-5 

7. X. Xu, Y. Wang, Z. Sihong, J. Lu, X. Zheng, J. Wang, et al., Immune infiltration pattern associated 
with diagnosis and development in benign prostatic hyperplasia, Urol. J., 18 (2021), 564–572. 
https://doi.org/10.22037/uj.v18i.6678 

8. R. Sachdeva, N. Kaur, P. Kapoor, P. Singla, N. Thakur, S. Singhmar, Computational analysis of 
protein-protein interaction network of differentially expressed genes in benign prostatic 
hyperplasia, Mol. Biol. Res. Commun., 11 (2022), 85–96. 
https://doi.org/10.22099/mbrc.2022.43721.1746 



12036 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 12024–12038. 

9. Y. Ge, Q. Wang, W. Shao, Y. Zhao, Q. Shi, Q. Yuan, et al., Circulating let-7f-5p improve risk 
prediction of prostate cancer in patients with benign prostatic hyperplasia, J. Cancer, 11 (2020), 
4542–4549. https://doi.org/10.7150/jca.45077 

10. M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger, et al., The Gene Ontology 
(GO) database and informatics resource, Nucleic Acids Res., 32 (2004), 258–261. 
https://doi.org/10.1093/nar/gkh036 

11. H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, M. Kanehisa, KEGG: Kyoto encyclopedia of 
genes and genomes, Nucleic Acids Res., 27 (1999), 29–34. https://doi.org/10.1093/nar/27.1.29 

12. A. M. Newman, C. B. Steen, C. L. Liu, A. J. Gentles, A. A. Chaudhuri, F. Scherer, et al., 
Determining cell type abundance and expression from bulk tissues with digital cytometry, Nat. 
Biotechnol., 37 (2019), 773–782. https://doi.org/10.1038/s41587-019-0114-2 

13. S. Wang, C. Zhang, Z. Xu, M. H. Chen, H. Yu, L. Wang, et al., Differential impact of 
PI3K/AKT/mTOR signaling on tumor initiation and progression in animal models of prostate 
cancer, Prostate, 83 (2023), 97–108. https://doi.org/10.1002/pros.24441 

14. S. Wang, K. Li, Z. Liu, S. Gui, N. Liu, X. Liu, Aerobic exercise ameliorates benign prostatic 
hyperplasia in obese mice through downregulating the AR/androgen/PI3K/AKT signaling 
pathway, Exp. Gerontol., 143 (2021), 111152. https://doi.org/10.1016/j.exger.2020.111152 

15. G. J. Leiros, S. R. Galliano, M. E. Sember, T. Kahn, E. Schwarz, K. Eiguchi, Detection of human 
papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from 
Argentina, BMC Urol., 5 (2005). https://doi.org/10.1186/1471-2490-5-15 

16. D. B. Joseph, G. H. Henry, A. Malewska, J. C. Reese, R. J. Mauck, J. C. Gahan, et al., 5-Alpha 
reductase inhibitors induce a prostate luminal to club cell transition in human benign prostatic 
hyperplasia, J. Pathol., 256 (2022), 427–441. https://doi.org/10.1002/path.5857 

17. Y. Li, Q. Wang, J. Li, B. Shi, Y. Liu, P. Wang, SIRT3 affects mitochondrial metabolic 
reprogramming via the AMPK-PGC-1α axis in the development of benign prostatic hyperplasia, 
Prostate, 81 (2021), 1135–1148. https://doi.org/10.1002/pros.24208 

18. R. Liu, S. Zhang, R. Wan, J. Deng, W. Fang, Effect of Beclin-1 gene silencing on autophagy and 
apoptosis of the prostatic hyperplasia epithelial cells, Clinics, 77 (2022), 100076. 
https://doi.org/10.1016/j.clinsp.2022.100076 

19. T. Kunit, C. Gratzke, A. Schreiber, F. Strittmatter, R. Waidelich, B. Rutz, et al., Inhibition of 
smooth muscle force generation by focal adhesion kinase inhibitors in the hyperplastic human 
prostate, Am. J. Physiol. Renal. Physiol., 307 (2014), 823–832. 
https://doi.org/10.1152/ajprenal.00011.2014 

20. N. Di, N. Mao, W. Cheng, H. Pang, Y. Ren, N. Wang, et al., Blood oxygenation level-dependent 
magnetic resonance imaging during carbogen breathing: differentiation between prostate cancer 
and benign prostate hyperplasia and correlation with vessel maturity, Onco Targets Ther., 9 (2016), 
4143–4150. https://doi.org/10.2147/OTT.S105480 

21. G. Penna, B. Fibbi, S. Amuchastegui, C. Cossetti, F. Aquilano, G. Laverny, et al., Human benign 
prostatic hyperplasia stromal cells as inducers and targets of chronic immuno-mediated 
inflammation, J. Immunol., 182 (2009), 4056–4064. https://doi.org/10.4049/jimmunol.0801875 

22. U. Lehnigk, U. Zimmermann, C. Woenckhaus, J. Giebel, Localization of annexins I, II, IV and 
VII in whole prostate sections from radical prostatectomy patients, Histol. Histopathol., 20 (2005), 
673–680. https://doi.org/10.14670/HH-20.673 



12037 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 12024–12038. 

23. N. Soulitzis, I. Karyotis, D. Delakas, D. A. Spandidos, Expression analysis of peptide growth 
factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia, 
Int. J. Oncol., 29 (2006), 305–314. 

24. D. J. O’Rourke, D. A. DiJohnson, R. J. Caiazzo Jr, J. C. Nelson, D. Ure, M. P. O’Leary, et al. 
Autoantibody signatures as biomarkers to distinguish prostate cancer from benign prostatic 
hyperplasia in patients with increased serum prostate specific antigen, Clin. Chim. Acta, 413 
(2012): 561–567. https://doi.org/10.1016/j.cca.2011.11.027 

25. J. Sheng, Y. Yang, Y. Cui, S. He, L. Wang, L. Liu, et al., M2 macrophage-mediated interleukin-
4 signalling induces myofibroblast phenotype during the progression of benign prostatic 
hyperplasia, Cell Death Dis., 9 (2018), 755. https://doi.org/10.1038/s41419-018-0744-1 

26. X. Jin, T. Lin, G. Yang, H. Cai, B. Tang, X. Liao, et al. Use of Tregs as a cell-based therapy via 
CD39 for benign prostate hyperplasia with inflammation, J. Cell. Mol. Med., 24 (2020), 5082–
5096. https://doi.org/10.1111/jcmm.15137 

27. C. Wang, C. Han, Q. Zhao, X. Chen, Circular RNAs and complex diseases: from experimental 
results to computational models, Brief Bioinform, 22 (2021), 286. 
https://doi.org/10.1093/bib/bbab286 

28. W. Wang, L. Zhang, J. Sun, Q. Zhao, J. Shuai, Predicting the potential human lncRNA-miRNA 
interactions based on graph convolution network with conditional random field, Brief. Bioinform., 
23 (2022), 463. https://doi.org/10.1093/bib/bbac463 

29. F. Sun, J. Sun, Q. Zhao, A deep learning method for predicting metabolite-disease associations 
via graph neural network, Brief. Bioinform., 23 (2022), 266. https://doi.org/10.1093/bib/bbac266 

30. L. Zhang, P. Yang, H. Feng, Q. Zhao, H. Liu, Using network distance analysis to predict lncRNA-
miRNA interactions, Interdiscip Sci, 3 (2021), 535–545. https://doi.org/10.1007/s12539-021-
00458-z 

Supplementary 

 

Figure S1. The results of the difference analysis using the t test. 
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Figure S2. Scatter diagram of correlation between diagnostic genes and immune cells. 
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