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Abstract: Changes in the functional connections between the cerebral cortex and muscles can evaluate 

motor function in stroke rehabilitation. To quantify changes in functional connections between the 

cerebral cortex and muscles, we combined corticomuscular coupling and graph theory to propose 

dynamic time warped (DTW) distances for electroencephalogram (EEG) and electromyography (EMG) 

signals as well as two new symmetry metrics. EEG and EMG data from 18 stroke patients and 16 

healthy individuals, as well as Brunnstrom scores from stroke patients, were recorded in this paper. 

First, calculate DTW-EEG, DTW-EMG, BNDSI and CMCSI. Then, the random forest algorithm was 

used to calculate the feature importance of these biological indicators. Finally, based on the results of 

feature importance, different features were combined and validated for classification. The results 

showed that the feature importance was from high to low as CMCSI/BNDSI/DTW-EEG/DTW-EMG, 

while the feature combination with the highest accuracy was CMCSI+BNDSI+DTW-EEG. Compared 

to previous studies, combining the CMCSI+BNDSI+DTW-EEG features of EEG and EMG achieved 

better results in the prediction of motor function rehabilitation at different levels of stroke. Our work 

implies that the establishment of a symmetry index based on graph theory and cortical muscle coupling 

has great potential in predicting stroke recovery and promises to have an impact on clinical research 

applications. 
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1. Introduction  

Despite current advances in disease prevention, acute phase treatment and rehabilitation, the 

global burden of stroke is expected to rise in the future [1], and stroke remains the second leading 

cause of death in the world [2]. Restoration of motor function after a stroke is crucial to a patient’s 

recovery. However, due to the large inter-individual variation, it is difficult to accurately predict the 

outcome of a patient’s motor function rehabilitation based on clinical medicine and imaging 

assessments alone [3]. Therefore, there is still a need to identify reliable and inexpensive biomarkers 

to add predictive information for these patients. Biomarkers can provide clinically useful information 

when planning a patient’s individualized recovery. These biomarkers can also be used for patient 

selection and stratification, as well as for trials investigating rehabilitation interventions initiated early 

after a stroke. Ongoing multicenter trials, combined with exercise biomarkers, can help apply them to 

routine clinical practice. As evidence of neurovascular uncoupling in acute ischemic stroke 

accumulates, neurophysiological biomarkers appear to be increasingly relevant in predicting the 

outcomes [4].  

Since 1976, Cohen et al. [5] observed a large increase in low-frequency activity and a decrease in 

high-frequency activity in EEG signals in stroke patients. Many researchers have begun to use different 

quantitative electroencephalography (QEEG) methods to explore the biological indicators of stroke 

patients [6]. Finnigan et al. [7] studied ischaemic stroke patients by collecting static EEG and 

calculated QEEG increments for analysis with national institute of health stroke scale (NIHSS) scores, 

showing that the ratio of δ-band to α-band power and the relative frequency of the α-band were 

significantly correlated with NIHSS scores. Meanwhile, Finnigan et al. [8] studied the consistency 

with other clinical assessment scales by using the QEEG method in patients with (sub) acute ischaemic 

stroke. Numerous results on hundreds of patients have shown that the QEEG method can objectively 

inform clinical management, particularly for the prediction of motor function recovery outcomes. In 

addition to this, there is a range of studies on stroke that provide strong evidence for the validity of 

other QEEG indices, such as EEG signal power [9], intracortical inhibition [10], relative power [11], 

brain symmetry index and transverse coefficient [12,13]. 

As a direct performer of limb movement, especially in stroke patients, muscles are directly 

affected by motor dysfunction and neglect of the EMG signal will result in a one-sided assessment tool. 

Since the relationship between EEG signals and EMG signals during exercise was first identified [14], 

communication between brain and muscle has become an important topic of research. To explore the 

exchange of information between the brain and muscles during exercise, researchers have used various 

methods of coupled strength calculation and applied these methods to the field of stroke motor 

dysfunction research. Currently, brain-muscle coupling studies are mainly based on traditional 

frequency domain coherence methods to explore the exchange of information between the brain drive 

as well as the muscle response. Hallett et al. in 2001 found that the strength of cerebral muscle coupling 

in chronic stroke patients was found mainly in the contralateral brain region on the motor side; also, 

the cerebral muscle coupling on the affected side is lower than that on the healthy side during 

movement [15]. This suggests that the recovery of motor function in stroke may be related to the 

increased strength of coupling between opposite brain regions and muscles. 
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However, coherence analysis can only represent the strength of coupling between individual 

channels and individual channels and is powerless when applied to multi-channel EEG acquisition 

devices. In order to shift the perspective from individual channels to multiple channels, an analytical 

approach based on graph theory [16] was proposed. When applying the graph theory approach to the 

EEG signal, what is obtained is a network in which the nodes are the individual channel electrodes and 

the edges are the strength of the coupling between the individual channels. Graph theory methods 

provide a powerful approach to the quantitative study of network topologies [17], and network 

characteristics such as shortest path length, clustering coefficients, efficiency and small-world 

properties can be used to describe networks [18]. Coupling strength calculations as a potential 

generative model of network connectivity can provide insight into the mechanisms by which brain 

networks transform and process information [19]. Fallani et al. [20] constructed a functional brain 

network using imagined EEG signals from unilateral hand movements of stroke patients, and the 

analysis found that hand movements affected by disease during exercise had significantly reduced 

small-world properties and local efficiency in the beta band compared to healthy hands. Vecchio et al. [21] 

conducted a study of the correlation between abnormalities in the functional brain network and early 

clinical outcomes in stroke in order to find potential predictors of functional recovery to address or 

correct rehabilitation programs, by performing EEG recordings as well as clinical assessments of 139 

stroke patients on three scales: the NIHSS, the Barthel index and the action research arm test (ARAT). 

The results found a significant correlation between the Small World Index in the prediction of recovery 

of motor function. 

Therefore, it is necessary to combine EEG signals and EMG signals to establish a brain-muscle 

function network through a Graph theory, to study the brain system and muscle system as a whole 

system and to extract features from the brain-muscle function network for classification by certain 

feature extraction means, in order to provide a new perspective in quantifying the functional state of 

the human nervous system during stroke motor rehabilitation, as well as to provide new insights and 

methods for the assessment of stroke motor function. 

In previous study, we concluded that cortical muscle function coupling (FCMC) between motor 

cortex and muscle can be considered as an assessment mechanism for motor function rehabilitation [22], 

and that FCMC is significantly lower in stroke patients compared to healthy individuals. The reduction 

in FCMC suggests that damage to the lesioned hemisphere may lead to discontinuities in information 

transmission in the sensory-motor system. The study also determined changes in paired brain 

symmetry index (PBSI) and corticomuscular coupling following stroke. In order to improve the 

understanding of the above-mentioned topics, we have proposed for the first time a symmetry index 

combining corticomuscular coupling and graph theory to study the recovery process in stroke patients. 

First, we extracted a number of features based on cortical muscle coupling and graph theory; then we 

calculated the importance of these features in a classification prediction model; and finally, clinical 

classification predictions were made based on this importance ranking in combination with multiple 

classification models to assess the practical significance of these features. 
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2. Materials and methods 

2.1. Overview 

We analyzed EEG and EMG data during the experiment in 34 subjects. This study consists of the 

following steps (shown as a schematic shown in Figure 1): first, after preprocessing the EEG and EMG, 

the coherence and DTW distance are calculated and a weighted adjacency matrix is created using the 

coherence; then, a threshold value is determined and the weighted matrix is converted into a binary 

matrix; finally, the brain network degree symmetry index (BNDSI) and corticomuscular coupling 

symmetry index (CMCSI) are calculated for the final classification analysis. 

 

Figure 1. Overview of the study workflow. (a) EEG and EMG acquisition, EEG and EMG 

electrode placement positions; (b) EEG and EMG preprocess; (c) DTW calculation to 

obtain DTW-EEG and DTW-EMG; (d) Calculation of coherence and creation of adjacency 

matrix to obtain BNDSI and CMCSI; (e) Classification model performance evaluation. 

2.2. Experimental paradigm 

We recruited 18 stroke patients (10 females and 8 males, mean age 60.5 years) and 16 healthy 

volunteers from Hangzhou Mingzhou Naokang Rehabilitation Hospital. Table 1 provides statistical 

information for each subject (healthy subjects were recorded as controls, patients with grade 6 in 

Brunnstrom’s staging were recorded as group B6, and patients with grade 5 were recorded as group 

B5). Subjects with other neurological or musculoskeletal disorders, and/or taking illegal drugs and 

head trauma were excluded. All subjects provided written informed consent in accordance with the 

Declaration of Helsinki, and the study was approved by the Ethics Committee of Hangzhou Mingzhou 

Naokang Rehabilitation Hospital. The experimental procedure is shown in Figure 2. The experiment 

was conducted in a closed room. There was a five-second preparation time before the experiment 

started, and subjects in groups B5 and B6 were told to place their affected hand on the contralateral 

waist, and subjects in the healthy group performed two sets of experiments (left hand on the right waist 

and right hand on the left waist, respectively). After hearing the voice prompt, the subject was required 

to slowly raise the hand to the chest and hold the position. The whole movement lasted for 5 seconds 

and the movement was ended after hearing the voice prompt again. After a 30-second rest, the 

experiment was repeated, with each subject repeating the procedure three times. 
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Figure 2. Experimental setup and paradigm. Flow of the experimental task: each 

experiment takes 5 seconds, and the interval between each experiment is 30 seconds. 

Table 1. Demographics of the participants. 

Group Number of subjects Age (years) Gender (M/F) Affected hand (left/right) 

B5 9 59 (± 0.92SE) (5/4) (4/5) 

B6 9 63 (± 0.75SE) (3/6) (5/4) 

Control 16 57 (± 0.29SE) (8/8) none 

2.3. Data acquisition and pre-processing 

The subjects’ EEG and EMG data were collected simultaneously during the entire experiment. A 

64-channel wireless EEG system (NeuSen.W64, Neuracle, China) was used to collect EEG data with 

a sampling frequency of 1000 Hz. Referring to the international 10–20 system, we selected 10 channels 

(F3, F4, FC3, FC4, C3, C4, CP3, CP4, P3 and P4) from the 64 EEG channels for measurement. 

Simultaneously, a channel EMG electrode (Delsys Inc., Natick, MA, USA) was used to collect EMG 

data with a sampling frequency of 1000 Hz. Electrodes were placed on the biceps brachii (BB) and 

front deltoid (FD) muscles of the subject’s upper extremity being tested for measurement. The EMG 

electrode positions are shown in Figure 1(a). The impedance of wireless EEG was kept below 5 kΩ by 

injecting conductive paste before data acquisition. Furthermore, on the muscle where the EMG 

electrode was to be applied, each participant shaved their body hair and cleaned the skin with alcohol. 

The EELAB toolbox [23] in MATLAB was used to pre-process the raw EEG data recorded during 

the experiment by downscaling the raw signal to 250 Hz. In addition, Cleanline (an EEGLAB plug-in) 

is used to remove sinusoidal artifacts in the scalp channel that are not effectively removed by trap 

filtering. The combination of AC power line fluctuations, equipment power and fluorescent lamps may 

produce sinusoidal artifacts [24]. Using the Infomax algorithm in EEGLAB, other artifacts, such as 

ECG, EMG and EYE, are removed by technical independent component analysis (ICA). Then the 

artifact-free signal is denoised using wavelet transform. This is an acceptable combination of ICA and 

wavelet denoising for removing noise from EEG signals [25]. The denoised EEG signal and EMG 

signal was band-pass filtered using the FIR digital filter in EEGLAB to intercept the EEG and EMG 

signal from 12–45 Hz. Subsequently, the EMG signal was denoised using a combination of empirical 

mode decomposition (EMD) and wavelet thresholding [26]. The db3 wavelet is chosen as the wavelet 
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basis function for denoising. The uniform threshold formula proposed by Donoho and Jonestone [27] 

was used to determine the initial wavelet threshold. We can change the denoising performance by 

adjusting the two parameters in a modified two-parameter threshold function [28] to adjust the 

threshold value. 

During the data interception phase, the length of the collected signals varied due to the different 

response times of each subject at the beginning and end of the reminder. We used EMG signal power 

as the interception criterion. First, the resting-state EMG signal was collected from each subject, and 

then the power of the EMG signal under each window was calculated using a sliding window of 

variable length from the first 0.5 s to the last 0.5 s of the experimentally collected 5s EMG signal. 

Finally, the signal range with EMG signal power greater than or equal to 110% of the resting state 

EMG power and with the longest length is considered as the target range. This range was used as the 

signal interception range to intercept the corresponding EEG signals and EMG signals as the 

experimental data for the subsequent study. 

3. Method 

3.1. Dynamic time warping 

In this paper, we intercepted data according to different reaction times of each subject, and the 

signal range with the longest length was used as the interception range when the EMG power was 

greater than or equal to 110% of the resting-state EMG power. To demonstrate that this data 

interception method can effectively intercept the EEG signal and EMG signal in the motion state, we 

select the EEG signal and EMG signal in the resting state of each subject as the reference signal and 

calculate the distance between the signals using the DTW algorithm. The DTW algorithm is based on 

dynamic programming and solves the problem of matching data templates of different lengths. 

Given these two-time series: 𝑥𝑙 = 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛 and 𝑦𝑘 = 𝑦1, 𝑦2, … , 𝑦𝑖 , … , 𝑦𝑚, their lengths 

are n and m. To align these two series, we need to construct an 𝑛 ∗ 𝑚  matrix D. The matrix elements 

𝐷(𝑖, 𝑗)  represent the amplitude distance 𝑑(𝑥𝑖 , 𝑦𝑗)  between the 𝑥𝑖  and 𝑦𝑗  two points, denoted as 𝑑𝑘  . 

The algorithm can be understood as finding the smallest of the paths from the lower left corner to the 

upper right corner in this matrix. The path is the cumulative addition of the grid points passed. In terms 

of continuity and monotonicity, each grid point 𝐷(𝑖, 𝑗) , has only three forward directions: 
(𝑖 + 1, 𝑗), (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗 + 1). Our goal is to make the following paths with minimal regularization 

cost: 

𝐷𝑇𝑊(𝑥𝑙(𝑡), 𝑦𝑘(𝑡)) = 𝑚𝑖𝑛 (
∑ 𝑑𝑘

𝐾
𝑘=1

𝐾
) (3.1) 

where 𝑑𝑘 is the value represented by the matrix lattice on the path, K is the number of matrix lattices 

through which the path passes, and DTW is the similarity between the control and experimental groups. 

This path can be obtained by a dynamic programming algorithm. 

3.2. Graph analysis 

To quantify the strength of the coupling between the EEG and EMG channels, we calculated the 
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coherence between the channels [29]. 

|𝐶𝑥𝑦(𝑓)| =
|𝑃𝑥𝑦(𝑓)|

2

𝑃𝑥𝑥(𝑓) ∙ |𝑃𝑦𝑦(𝑓)|
(3.2) 

where, 𝑃𝑥𝑦  represents the cross-spectral density of signals x and y, 𝑃𝑥𝑥  and 𝑃𝑦𝑦  represents the self-

spectral density of x and y, i.e., the power spectral density. Then, in order to binarize the weighted 

adjacency matrix, a cost efficiency (Ce) threshold (th) is used： 

𝑡ℎ = 𝑚𝑎𝑥{𝐶𝑒} = 𝑚𝑎𝑥{𝐸𝑔 − 𝐷} (3.3) 

Here D is the network density, defined as the ratio of the actual number of edges to the number 

of all possible edges; Eg represents the global efficiency: 

𝐸𝑔 =
1

𝑁(𝑁 − 1)
∑

1

𝐿𝑖,𝑗

𝑁

𝑖≠𝑗

(3.4) 

where 𝐿𝑖,𝑗 represents the shortest path length between nodes i and j, and N is the number of nodes in 

the graph. 

Thresholds that maximize cost-effectiveness are used to binarize the weighted matrices. We set 

separate thresholds for each adjacency matrix, resulting in a directed binary adjacency matrix for 

further graph analysis. 

3.3. Symmetry index 

Van Putten [30] was the first to study the paired brain symmetry index (PBSI) in a stroke study 

and found an association with concomitant acute ischemic stroke (national institutes of health stroke 

scale, NIHSS). Another study reported that it was sensitive to the brain pathophysiology of 

subcutaneous stroke compared with health treatment [31]. We derive the brain network degree 

symmetry index (BNDSI) based on graph theory and PBSI. The formula is: 

𝐵𝑁𝐷𝑆𝐼 =
1

𝑁
∑ |

𝑟𝑖 − 𝑙𝑖

𝑟𝑖 + 𝑙𝑖
|

𝑁

𝑖=1

(3.5) 

N is the total number of paired channels, and i refer to a pair of channels in N pairs, 𝑟𝑖 and 𝑙𝑖 are 

the right and left hemispheres of paired channels, respectively. 

Similarly, compared to the combined EEG and EMG approach, the above symmetry index has 

certain drawbacks, ignoring the fact that motor processes are a joint cooperation between brain and 

muscle. Therefore, based on the PBSI, we proposed the corticomuscular coupled symmetry index 

(CMCSI): 

𝐶𝑀𝐶𝑆𝐼 =
1

𝑁
∑ |

𝑅𝑖 − 𝐿𝑖

𝑅𝑖 + 𝐿𝑖
|

𝑁

𝑖=1

(3.6) 
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CMCSI represents the coherence between EEG and EMG channels, N is the total number of pairs 

of EEG channels, i refers to one of the N pairs of channels, 𝑅𝑖 and 𝐿𝑖 refer to the degree of coupling 

between the right hemisphere channel and the muscle and the left hemisphere channel and the muscle, 

respectively, of this pair. 

3.4. Classification model 

In this paper, random forest [32] is selected to calculate CMCSI, BNDSI, DTW-EEG and DTW-

EMG feature importance, and the classification feature data is constructed by combining features in 

different ways according to the feature importance ranking. Subsequently, these feature data were used 

as input to the SVM algorithm [33] based on 10-fold cross-validation to train the classifier for final 

recognition. The SVM classifier was implemented by the LIBSVM toolbox in MATLAB, and the 

parameters were set to default values. 

3.5. Statistical analysis 

The statistical analysis software we chose was IBM SPSS statistics 23 (Datanine Software, China). 

One-way analysis of variance (ANOVA) tests was used to assess statistical differences in subject 

characteristics. Bonferroni correction was applied to avoid spurious rejections when the variance was 

chi-squared; Tamhane’s T2 method was used to compare between groups when the variance was not 

chi-squared. The significance level for all statistical analyses was set at P < 0.05. Classification 

accuracy was used to assess the ability of features to distinguish stroke patients. 

4. Result 

4.1. Dynamic time warping distance 

In this paper, the lengths of the intercepted motor state signals were different for different subjects, 

but the lengths of the EEG signals and EMG signals were the same for the same subjects. To verify 

that this signal interception method can correctly obtain the motion state signal, we calculated the 

DTW distance between the motion state signal and the resting state signal for each subject, and the 

results are shown in Figure 3, with the violin plot on the left of each plot and the corresponding scatter 

plot for each experimental group on the right. 

Figure 3(a) shows the DTW-EEG of subjects in the healthy, B5 and B6 groups. It can be seen from 

the figure that the DTW-EEG increases with the degree of stroke, which indicates that stroke does 

disrupt the exchange of information between brain areas and some extent. We also performed a one-

way ANOVA to verify the differences between the groups. The results showed that there was no 

significant difference between B5 and B6 (p = 0.374), a significant difference between B5 and the 

healthy group (p = 0.013) and a significant difference between B6 and the healthy group (p = 0.043). 

Figure 3(b) shows the DTW-EMG of subjects in the healthy, B5 and B6 groups. again, for each 

experimental group, the violin plot is shown on the left and the corresponding scatter plot on the right. 

As can be seen in Figure 3(b), for stroke patients, as with the DTW-EEG, the DTW-EMG increased as 

the stroke deepened. the increase in DTW distance indicates that the coupling between the cerebral 

cortex and between the muscles of the patient may be reduced and that the coordination function 
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between the muscles of the patient is affected by the stroke. One-way ANOVA results showed 

significant differences between B5 and B6 (p = 0.017), between B5 and healthy group (p = 0.039) and 

between B6 and healthy group (p = 0.44). 

 

Figure 3. DTW in EEG and EMG, respectively. (a) DTW in EEG. There are two 

representations for each group. For each group, the box plot on the left and the 

corresponding scatter plot on the right; (b) DTW in EMG. There are two representations 

for each group. For each group, the box plot on the left and the corresponding scatter plot 

on the right. 

4.2. Symmetry index 

In this paper, we present the BNDSI and CMCSI based on the brain symmetry index. In this 

section, the results of the BNDSI and CMCSI calculations are presented and statistically analyzed 

separately to investigate whether the between-group differences between subjects in different groups 

are statistically significant. 

 

Figure 4. Binary network representation. Each arc on the circle represents a channel, and the 

functional coupling between channels is represented by the connections between the arcs. 
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First, we binarize the weighted networks according to the proposed cost-effective threshold 

selection method. In the threshold selection process, we selected a threshold for each network 

independently, which resulted in the unavailability of the arithmetic mean of the representation of the 

binary network. We randomly selected one subject from each group to draw a schematic representation 

of the binary network, as shown in Figure 4. Each node is placed on an arc edge of a circle. Different 

channels correspond to different colors, and the connections between channels are represented by 

colored edge connections between arc edges. It can be seen from the figure that the coherence between 

channels in group B5 is lower than that in groups control and B6. 

Next, we calculated the BNDSI based on the graph theory proposed, and the results are shown in 

Figure 5. It is straightforward to see from the figure that the BNDSI of the subjects decreased as the 

degree of stroke deepened. From the formula of BNDSI, it is known that a high BNDSI represents a 

large gap in the bilateral channeling degree of the brain region. The results showed that deeper stroke 

motor dysfunction decreased the degree in the contralateral brain region or increased the degree in the 

ipsilateral brain region, implying that stroke did change the functional arrangement between the 

bilateral brain regions. One-way ANOVA results showed significant differences between B5 and B6 

(p = 0.017), between B5 and healthy group (p = 0.039) and no significant difference between B6 and 

healthy group (p = 0.094). Figure 5 also shows the CMCSI in subjects with different stroke levels. In 

contrast to BNDSI, the CMCSI of the subjects increased with the severity of the stroke. This suggests 

that stroke may increase the proportion of muscle control in contralateral brain regions or decrease the 

proportion of muscle control in ipsilateral brain regions. We hypothesize that this may be due to motor 

dysfunction causing the brain to lose some of its ability to control muscles. The contralateral brain 

region in stroke patients is required to play a greater role in muscle control compared to normal subjects. 

One-way ANOVA results showed significant differences between B5 and B6 (p = 0.021), between B5 

and healthy group (p = 0.010) and between B6 and healthy group (p = 0.048). 

 

Figure 5. mean network degree symmetry index and mean cortical muscle coupling 

symmetry index corresponding to the three groups of subjects. 
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4.3. Classification 

In this section, we calculated the importance of CMCSI, BNDSI, DTW-EEG and DTW-EMG 

features and performed feature combinations based on feature importance ranking. Finally, we 

performed a triple classification experiment on the combination of these features to assess their 

performance in the classification of motor function after stroke. 

Table 2 shows the ranking of feature importance calculated by the random forest algorithm. The 

numbers from number 1 to number 4 represent the order of importance of the four features calculated 

and selected by the random forest, respectively. Further, according to this ranking order, the features 

are classified from highest to lowest importance and a set of classification results for the combination 

of 1 + 2 + 4 are added. Table 3 shows the classification accuracy of all combinations. From the table, 

it can be seen that the classification accuracy is the best when the combination is 1 + 2 + 3, with an 

accuracy of 84.4%. Additionally, although the special importance of DTW-EMG is not as good as that 

of DTW-EEG, the accuracy is higher than that of DTW-EEG when DTW-EMG is used for 

classification alone. 

Table 2. Feature importance ranking. 

Abbreviation 1 2 3 4 

Feature CMCSI BNDSI DWT-EEG DWT-EMG 

Table 3. Classification accuracy of feature combination classification model. 

Feature ACC(%) Feature combination ACC(%) 

1 76.7 1 + 2 81.3 

2 74.8 1 + 2 + 3 84.4 

3 68.4 1 + 2 + 3 + 4 82.8 

4 73.1 1 + 2 + 4 82.1 

ACC refers to the accuracy of the classification. Numbers 1, 2, 3 and 4 are the same as those in Table 2. 

In order to further analyze the evaluation ability of the proposed method for different motor 

functions, the class accuracy, recall, F1-score and ROC curve area are calculated for each class under 

10-fold cross-validation in the dichotomous test, as shown in Table 4. Figure 6 shows the triclass ROC 

curve and the dichotomous ROC curve under the best feature combination. The method in this paper 

showed the highest performance in the evaluation of motor function of B6 subjects, and the accuracy 

and recall rates reached 95.07% and 91.90%, respectively, which were at a high level, indicating that 

subjects in B6 group could be correctly identified; for the control group, the area of the ROC curve is 

0.94, indicating that its recognition performance for the recognition performance of healthy subjects 

was also good; while for subjects in group B5, their classification performance was relatively poor, 

with a ROC curve of only 0.73. 
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Table 4. Performance indicators are categorized by category. 

Category ACC(%) Recall(%) F1-score ROC area 

control group 85.71 80.00 0.8276 0.94 

B5 77.85 82.00 0.7987 0.73 

B6 95.07 91.90 0.9346 1 

 

Figure 6. ROC curves of the best feature combination classification model. The four 

curves in the figure represent the overall average ROC curve for the three classifications 

and the ROC curve for each group. 

4.4.  The validation result of the feature 

In order to verify that the combined features of CMCSI+BNDSI+DTW-EEG can effectively 

evaluate motor function, this section combined with Brunnstrom motor function staging rating to 

classify whether there was stroke and three groups of different Brunnstrom motor function staging 

rating subjects, and sensitivity, specificity and classification accuracy were used to evaluate the 

classification detection performance. 

4.4.1 Verification results under ideal conditions 

Assuming that the EEG and sEMG signals are pure signals without noise after denoising, the pure 

signals are converted into the combined features of CMCSI+BNDSI+DTW-EEG for feature extraction 

and feature learning. 

Firstly, for the problem of detecting whether stroke is dichotomous, this paper performs 

dichotomous verification of category data balance and dichotomous verification of category data 

imbalance. When balancing the data categories, we selected an equal number of healthy participants 



10542 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10530-10551. 

and stroke participants, in which stroke participants were selected from two Brunnstrom motor 

function staging rated subjects in the same proportion according to stratified sampling for testing 

experiments; When the data categories were unbalanced, we selected all participants for the testing 

experiment. Table 5 summarizes the performance indicators of the detection methods and related stroke 

patient detection methods in the context of data balance. To make a fair comparison, different training 

and testing methods were used for validation. For example, compared with other methods using the 

hold-out method (4:1), the proposed method obtains higher performance, that is, 83.88% sensitivity, 

82.07% specificity and 83.91% classification accuracy. For the hold-out method, the method in this 

article is also tested with different training test data ratios. For example, the hold-out method (19:1) 

was used to compare the training test data in this paper, and the classification performance of 78.88% 

sensitivity, 79.00% specificity and 79.08% classification accuracy was obtained. Similarly, using the 

ratio of training test data by hold-out method (1:2), the proposed method achieves 75.66% sensitivity, 

74.03% specificity and 74.56% classification accuracy. More importantly, among the existing stroke 

dichotomous detection methods, the proposed method achieves the highest classification accuracy of 

95.68% under the 10-fold cross-validation method, which is 1.68% higher than the highest accuracy 

gap reported in the literature. This shows that the method presented in this paper has excellent detection 

performance for stroke motor dysfunction under the condition of balanced data categories. 

Table 5. Methods in this article and methods in the literature for stroke dichotomous 

detection results. 

Method Training test methods Sensitivity (%) Specificity(%) ACC(%) 

Ella Wahyu Guntari [34] hold-out method (1:2) —— —— 72.22 

1 + 2 + 3 hold-out method (4:1) 83.88 82.07 83.91 

1 + 2 + 3 hold-out method (19:1) 78.88 79.00 79.08 

1 + 2 + 3 hold-out method (1:2) 75.66 74.03 74.56 

Nicolas Vivaldi [35] 10-fold cross-validation —— —— 94.00 

Nicolas Vivaldi 10-fold cross-validation —— —— 73.00 

1 + 2 + 3 10-fold cross-validation 94.20 95.42 95.68 

Nicolas Vivaldi Independent 

verification 

—— —— 76.00 

Nicolas Vivaldi Independent 

verification 

—— —— 70.05 

Arifah Ummul 

Fadiyah[36] 

Independent 

verification 

—— —— 79.69 

1 + 2 + 3 Independent 

verification 

87.11 86.16 87.61 

Arifah Ummul Fadiyah Leave-One-Out Cross-

Validation 

86.10 86.50 86.00 

1 + 2 + 3 Leave-One-Out Cross-

Validation 

84.15 84.38 84.33 

Numbers 1, 2, 3 and 4 are the same as those in Table 2. 

For the binary classification of stroke, when the data category is unbalanced, Table 6 shows the 

performance indicators of the method and other classifiers. To make a fair comparison, each classifier 
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performed detection experiments using different training test methods. For the hold-out method (4:1), 

75.87% sensitivity, 76.28% specificity, 76.33% classification accuracy and 79.66% sensitivity, 79.26% 

specificity and 79.09% classification accuracy were obtained under SVM and KNN classifiers, 

respectively, while the proposed method was improved on the basis of SVM and KNN classifiers. In 

addition, when using the 10-fold cross-validation method, the proposed method obtains the best 

specificity of 92.20%, sensitivity of 92.42% and classification accuracy of 92.68%, which are higher 

than other methods. This shows that the method proposed in this paper has a slight decrease in detection 

performance compared with data category imbalance, but still reflects accurate detection performance. 

Table 6. Methods in this article and methods in the literature for stroke dichotomous 

detection results. 

Classifier Training test methods Sensitivity (%) Specificity(%) ACC(%) 

SVM hold-out method (4:1) 75.87 76.28 76.33 

KNN hold-out method (4:1) 79.66 79.26 79.09 

1 + 2 + 3 hold-out method (4:1) 81.88 81.07 81.91 

SVM 10-fold cross-validation 84.88 84.26 84.71 

KNN 10-fold cross-validation 88.09 88.00 88.59 

1 + 2 + 3 10-fold cross-validation 92.20 92.42 92.68 

Finally, in order to verify the performance of the proposed method for the evaluation of different 

motor functions, the classification problem between three different datasets, health, B6 and B5, is 

solved. Addressing this problem accurately is more challenging, in fact, few studies have focused on 

the multi-classification of different motor functions in stroke, but solving this problem is very 

beneficial for the application of stroke rehabilitation and can provide useful clinical practice methods 

for medical personnel. This paper applies the proposed methodology, as well as some of the most used 

classification methods in the field of stroke classification over the past decade, to the collected data, 

and as in previous comparisons, these methods are compared using different training test methods. The 

results are shown in Table 7, and the proposed method achieves the highest classification performance 

under the 10-fold cross-validation test method: sensitivity is 86.7%; specificity is 85.34% and accuracy 

is 84.4%. 

Table 7. The method in this paper and other classifiers perform tri classification 

detection results on stroke. 

Classifier Training test methods Sensitivity (%) Specificity(%) ACC(%) 

SVM hold-out method (4:1) 66.37 66.33 67.54 

KNN hold-out method (4:1) 70.96 71.67 71.10 

1 + 2 + 3 hold-out method (4:1) 77.67 77.05 77.33 

SVM 10-fold cross-validation 75.11 76.50 76.67 

KNN 10-fold cross-validation 73.33 74.67 74.51 

1 + 2 + 3 10-fold cross-validation 86.70 85.34 84.40 

4.4.2 Validation results in the presence of noise conditions 

To further investigate the robustness of the methods presented in this paper to common noises in 
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evaluating motor function, Matlab is used in this section to attach noises (white noise, muscuation and 

eye movement) to the pure data in Section 4.4.1. When adding noise, we also adjust the noise amplitude 

to generate noise data with different SIGNAL-NOISE RATIO (SNR). Figure 7 shows the results of 

stroke dichotographic classification under a wide range of SNR(−8–24 dB) for data balance of different 

noise types. 

 

Figure 7. (a) Accuracy of binary classification under different noise types and levels (data 

balance); (b) Accuracy of binary classification under different noise types and levels (data 

imbalance); (c) Accuracy of three-way classification under different noise types and levels. 

As shown in Figure 7(a), even if the EEG signal and EMG signal are completely immersed in 

noise, the method proposed in this paper achieves the lowest accuracy of 81.61%. Notably, for data 

with white noise, the proposed method maintains a higher classification accuracy compared to other 

noises at almost all SNR levels, achieving a classification accuracy of 87.77% at SNR = −8 dB. The 

proposed method also retained its high classification performance in the presence of muscle activity 

noise and eye movement noise: at SNR = −8 dB, the lowest classification accuracy obtained with 

muscle activity noise and eye movement noise was 81.61% and 85.33%, respectively. These are quite 

high accuracies for data corrupted by severe noise, and eventually settle in a relatively acceptable range 

after a small decrease in accuracy as the noise content increases. 

Second, for imbalanced binary classification problems, the proposed method is also examined on 

noisy data contaminated by blinking, muscle artifacts and white noise. For this imbalanced 

classification problem, the proposed method maintains high classification accuracy even at very low 

SNR, and Figure 7(b) illustrates the detection results obtained by the method in the presence of each 

noise type. The results show that when the data are completely immersed in white noise (SNR = −8 

dB), the lowest classification accuracy is 79.63%. When SNR > 0 dB, the classification accuracy of the 

proposed method was higher than 80%. Similar to the data balance case, the proposed method achieved 

better performance compared to muscle activity in the presence of eye movement artifacts and white noise. 

Finally, the performance of the proposed method in the presence of noise for the three-

classification problem is evaluated. Figure 7(c) depicts the classification performance of the proposed 

method under different noise SNR. It is worth noting that for multi-class classification, the proposed 

method still maintains a high robustness. The detection performance was the worst under muscle 

activity noise, with the lowest (SNR = −8 dB) of 74.33%. The main reason may be that muscle activity 
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occurs in most of the EEG channels, leading to serious distortion of the EEG shape. In addition, under 

the eye movement noise, the proposed method maintained a higher accuracy than other noises, with 

the highest accuracy of 83.88% and the lowest (SNR = −8 dB) of 79.69%. 

5. Discussion 

The main objective of this study was to find the biological predictive features between stroke 

rehabilitation ratings. Therefore, we recruited 34 subjects (9 B5, 9 B6 and 16 healthy individuals, as 

shown in Table 1) for the trial. Using knowledge such as graph theory, combined with EEG and EMG, 

four biological characteristics such as DTW and symmetry index were calculated for each subject, 

focusing on the differences in characteristics between the three groups of participants. 

First, due to inter-individual response time bias, we selected the longest signal above 10% 

baseline as the valid signal based on the power of the EMG signal at resting state. We used the DTW 

algorithm to avoid the difference in data length. Then, due to the excellent performance of graph theory 

in brain network studies, we improved on the original PBSI based on signal power and proposed 

BNDSI based on the degree of brain network. In addition, the cortical muscle function network 

proposed in our previous study has better representation than brain network during motor control [37], 

therefore, we proposed CMCSI. Further, used random forest-based feature importance to rank these 

features. Finally, based on this ranking, features are added sequentially to obtain an optimal 

combination of features and their performance is evaluated. 

The DTW scatters plot in Figure 3 shows that there are large individual differences among the 

three groups of subjects. This is one of the difficulties in measuring the degree of recovery of patients 

only through simple treatment or physician’s experience. However, if the subjects in each experimental 

group are analyzed as a whole, some significant differences can be found between the different groups, 

such as the DTW-EEG in group B5 is significantly different from group B6 and the healthy group, 

respectively; in particular, the DTW-EMG increases with the degree of motor dysfunction (which may 

be caused by motor dysfunction), and the overall average results of the groups are shown in Figure 3, 

which is consistent with some previous EMG power spectrum studies [38]. 

From the perspective of BNDSI, the BNDSI gradually decreases with the progressive degree of 

stroke. Studies have shown that lower PBSI values are associated with better motor function [12]. This 

is contrary to our results. It may be that the PBSI is calculated with different criteria than the network 

degree symmetry index proposed in this paper. Our binary network built on the basis of cost-

effectiveness has chosen an independent threshold for each subject, but the results obtained by the 

uniform criterion are still valid. Considering the mechanism of motor control by contralateral brain 

regions [39], the decrease in BNDSI indicates a decrease in the dominant role of contralateral brain 

regions or an increase in the dominant role of ipsilateral brain regions during motor control, suggesting 

that stroke hemiplegia does affect the dominant role of both brain regions during motor control. For 

CMCSI outcomes, the CMCSI gradually increases with the degree of stroke. the same findings were 

reported in the brain symmetry index study by Agius [40]. PBSI increased in the subacute phase after 

stroke compared to 1−2 months after stroke. In addition, the decrease in the mean coupling strength 

between the channels of each brain region and EMG channels confirms the results of previous studies [41]. 

Finally, for these biomarkers, we calculated their respective importance based on random forest. 

The results showed that CMCSI had the highest feature importance, followed by BNDSI, then DTW-

EEG and finally DTW-EMG. Interestingly, although there was a significant change in DTW-EMG 

compared with DTW-EEG after stroke, DTW-EMG ranked after DTW-EEG in terms of feature 

importance and the accuracy rate after adding DTW-EMG did not significantly improved. It is 
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speculated that the difference in DTW-EMG may be due to the influence of post-stroke brain regions. 

This makes DTW-EMG features and other feature combinations unable to form the largest irrelevant 

vector group, because the random forest calculates the importance of features only for a certain specific 

characteristic of adding noise interference [42], so the importance of DTW-EMG is the lowest. To test 

this conjecture, we also added a set of CMCSI+BNDSI+DTW-EMG classification results to the feature 

combination classification. The improvement in classification accuracy was very small and lower than 

the CMCSI+BNDSI+DTW-EEG classification accuracy. 

In addition, the best classification accuracy was achieved with the combined features of 

CMCSI+BNDSI+DTW-EEG. There are also some studies [43,44] that used different 

electrophysiological features to obtain better classification accuracy, but most of them used a single 

feature or a single channel, or only two classifications of stroke, which contributed little to the analysis 

of the whole process of motor function rehabilitation after stroke. Compared with single features, 

combined features can aggregate information from multiple sources. In an ideal feature selection, it 

allows for a more complete representation of the classification model. This is confirmed by our final 

classification results. In order to verify that the combined features of CMCSI+BNDSI+DTW-EEG can 

effectively evaluate motor function, combined with Brunnstrom motor function stage ratings, we 

verified whether the subjects with stroke and three groups of subjects with different Brunnstrom motor 

function stage ratings were classified. It can be seen from Tables 5–7 that although the method 

proposed in this paper is more complicated than the methods of other researchers in terms of steps, it 

has achieved excellent classification results in both two-classification and three-classification. This 

indicates that the proposed combined features of CMCSI+BNDSI+DTW-EEG have high objectivity 

and consistency in assessing motor function in different stroke. To further investigate the robustness 

of the proposed method to common noises when assessing motor function, we added white noise, 

muscle activity noise and eye movement noise to the processed data. It can be concluded from Figure 

7 that the combined features of CMCSI+BNDSI+DTW-EEG proposed in this paper have a reduced 

ability to evaluate stroke motor function in the presence of noise, but the range of decline is limited. 

Under ideal conditions and in the presence of noise, excellent accuracy was achieved for the detection 

of stroke motor dysfunction and for the classification of different motor function levels. This result 

shows the robustness of our proposed method. Previous studies have also proved that for patients, the 

fusion of data collected by mobile devices and wearable sensor devices can improve the reliability, 

robustness and generalization ability of the recognition system [45–47]. 

Due to the complexity of motor function damage caused by stroke, the cognition of the activity 

of human neuromuscular system is still in the preliminary stage of research. There are many 

deficiencies and improvements to be made in the research work: (1) Improvement of experimental 

protocol. All the stroke subjects selected in this paper were right-handed, but the affected hand was not 

uniform, and only 10 EEG channels were selected. In the future work, more EEG leads can be selected, 

different types of subjects can be recruited, and more standardized and novel experimental paradigms 

can be designed to study the activity characteristics of the neuromuscular system in stroke from 

different perspectives. (2) In the process of EEG acquisition experiment, the EEG cap is used in this 

paper, so there is a volume conduction phenomenon between EEG signals: when the voltage 

fluctuation on the scalp surface is measured by electrodes, it is actually the result of the joint activity 

of multiple field potential sources. In future studies, trace-back analysis can be considered to find the 

real source of EEG signal generation. (3) The Brunnstrom motor function rating scale used in the 

validation of the brain muscle function network to evaluate the motor function of stroke patients 

recruited only two levels of subjects, compared with other rating scales, there were fewer categories. 

In the future study, a more detailed motor function assessment scale can be considered for verification. 
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(4) Our method does not involve the direction characteristics of information flow when measuring the 

coupling strength, but only reflects the interaction relationship between signals. In future studies, we 

will increase the exploration of the characteristics of bidirectional information flow between cerebral 

cortex and muscle on the basis of this paper. 

6. Conclusions 

In this paper, by combining corticomuscular coupling and graph theory, we obtained the dynamic 

time warping (DTW) distance of the signal and two new symmetry indices: the brain network degree 

symmetry index (BNDSI) and the corticomuscular coupling symmetry index (CMCSI). By analyzing 

the DTW-EEG and DTW-EMG, we found that stroke disrupts the information exchange between brain 

regions and the coordination between muscles to some extent; by analyzing the symmetry index, we 

found that stroke changes the brain-muscle connection during movement to some extent. Subsequently, 

we used the random forest algorithm to calculate the feature importance of these biological indicators. 

Finally, the different features were combined and validated by classification based on the results of 

feature importance. The results showed that the feature importance was from high to low as 

CMCSI/BNDSI/DTW-EEG/DTW-EMG, and the feature combination with the highest accuracy was 

CMCSI+BNDSI+DTW-EEG. It can reach 84.4%. Compared with single features, the combination of 

EEG and EMG features achieved better results in motor function rehabilitation prediction under 

different stroke levels. Our work also implies that the symmetry index based on graph theory and 

cortico-muscular coupling can distinguish different motor functions of stroke patients, which is 

expected to provide a richer evaluation method for the recovery of motor function in stroke patients in 

the clinical field. 
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