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Abstract: The problem of nonlinear adaptive control for a class of fractional-order tuberculosis (TB)
model is studied in this paper. By analyzing the transmission mechanism of TB and the characteristics
of fractional calculus, a fractional-order TB dynamical model is established with media coverage and
treatment as control variables. With the help of universal approximation principle of radial basis func-
tion neural networks and the positive invariant set of established TB model, the expressions of control
variables are designed and the stability of error model is analyzed. Thus, the adaptive control method
can guarantee that the number of susceptible and infected individuals can be kept close to the corre-
sponding control targets. Finally, the designed control variables are illustrated by numerical examples.
The results indicate that the proposed adaptive controllers can effectively control the established TB
model and ensure the stability of controlled model, and two control measures can protect more people
from tuberculosis infection.
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1. Introduction

TB is a deadly infectious disease and one of the world’s top ten causes of death [1–3]. Most of
the infected individuals can be cured by adopting a systematical diagnostic and using appropriate an-
tibiotics. However, the impact of TB on human health and social development still cannot be ignored
due to the lack of knowledge about TB prevention and diagnosis and the low treatment coverage in
some areas. According to the global tuberculosis report 2021 published by the World Health Organiza-
tion [4], about 9.9 million people worldwide suffered from TB in 2020, of which more than 1.3 million
died. The massive destruction caused by TB to the economy and society forces us to understand the
transmission mechanism of TB deeply.

Mathematical models play an essential role in understanding the dynamics of infectious diseases,
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including TB [5–10]. Exploring the transmission mechanism of tuberculosis is the first step to estab-
lishing a mathematical model, so references [11–13] have studied the transmission dynamics of tuber-
culosis. In addition, Castillo-Chavez and Feng [14] formulated one-strain and two-strain TB models to
analyze the effects of fundamental epidemiological factors. Subsequently, the TB compartment model
was proposed by Feng et al. [15] and is considered one of the basic frameworks of the transmission
mechanism of TB. The authors in [16] established the TB models with fast and slow dynamics by con-
sidering multi-level contact structure. Castillo-Chavez and Song [17] comprehensively summarized
the research trends of the tuberculosis dynamic models and control problems in the past decades, and
proposed some exciting and challenging questions. It should be pointed out that the research results
of [15] indicate that it is not enough to reduce the basic reproduction number to less than 1 for the pre-
vention and control of TB. After that, the researchers further discussed the influence of various factors
on the transmission of TB by proposing different dynamical models [18–25]. For example, Hattaf et
al. [23] established a TB disease model with exogenous reinfection, and studied the optimal control
problem to reduce the infectious group by using Pontryagin’s maximum principle. The multi-drug re-
sistance, and case detection and treatment were considered in [24] and [25], respectively. Meanwhile,
based on the actual infection data of TB in the United States from 1988 to 2019, the authors in [26] es-
tablished an SVEITR dynamical model by considering vaccination, incomplete treatment and relapse,
and analyzed the sensitivity of basic reproduction number and solved the optimal control problem issue
by using Pontryagin’s maximum principle.

It should be pointed out that the models in all of the literature mentioned above are established
by using the conventional integer-order calculus, which is a local concept. Fractional-order calculus,
as an extension of integer-order one, is a global concept that can more effectively characterize the
hereditary and memory properties of many physical processes and materials [27, 28]. Therefore, some
scholars try to describe the spread and outbreak of infectious disease by using the fractional dynamics
model [29–34]. The results show that the fractional order model can better fit the actual data. Although
the fractional-order model has the above advantages, the control of the fractional TB model is still in
the ascendant due to less application of fractional calculus in biology, which is one of the motivations
of the current paper.

Adaptive control is one of the important control methods in engineering [35, 36]. Its characteristic
is that the control target can be given in advance, and then the control variable can be designed so that
the state variable or the related variable of the model can track the control target with small errors, so as
to realize the control of the model. Recently, some results adopt the adaptive control method to realize
the control of biology [37–39]. In particular, the authors in [39] studied the nonlinear adaptive control
of COVID-19. However, the system parameters are estimated by the adaptive laws in [37–39], which
are heavily dependent on the initial values of adaptive laws. Therefore, how to reduce this dependency
is also one of the motivations of this paper.

Motivated by the above discussions, the problem of nonlinear neural networks control is studied
for the fractional-order TB model. The main contributions of this paper are summarized as follows:
(i) By analyzing the transmission mechanism of TB and considering the historical dependence on
the spreading of TB, a fractional-order TB model under Caputo fractional derivative is established.
Compared with the model in [33], in this paper we consider that the proportion of smear-positive and
smear-negative from susceptible population is not equal to that from latent population, and the patients
after rehabilitation may become susceptible ones again. (ii) This is a successful attempt to apply the
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universal approximation principle of radial basis function neural networks to biological model, and
thus the controllers for fractional-order TB model are proposed and the initial values dependency of
adaptive laws are also reduced. Different from [37–39], where the model parameters are estimated by
adaptive laws, the unknown functions that include model parameters are approximated in this paper,
and thus the processes of estimations to model parameters are avoided.

This paper is organized as follows. The problem to be studied is formulated and some preliminaries
are presented in Section 2. The adaptive neural networks controllers are designed and the stability of
controlled model is also analyzed in Section 3. Some numerical examples are given in Section 4 to
illustrate the proposed controllers. Finally, a brief summary is presented in Section 5.

2. Preliminaries and problem formulation

2.1. Preliminaries

Definition 1. [40] The Caputo derivative of function f (t) ∈ Cn+1([t0,+∞),R) with the order α is given
as follows

Dα f (t) =
1

Γ(n − α)

∫ t

t0

f (n)(τ)
(t − τ)α+1−n dτ,

where Γ(·) denotes Gamma function, n ∈ N+ and n − 1 < α ≤ n.

Definition 2. [40] For α > 0, the Mittag-Leffler function with a single parameter is defined as Eα(z) =∑∞
i=0

zi

Γ(αi+1) , where z is plural. In particular, E1(z) = ez.

Lemma 1. [40] Let the function f (t) ∈ C1([t0,+∞),R), then Dα f 2(t) ≤ 2 f (t)Dα f (t) for t ≥ t0 and
α ∈ (0, 1].

Lemma 2. Consider the system Dαx(t) = φ(t) − x(t) with initial value x(0) > 0. If 0 < α < 1 and
function φ(t)(t ≥ 0) is a non-negative and bounded continuous function, then the solution x(t) of this
system is positive and bounded.

Proof. This Lemma can be proven by using the similar method in [44, Lemma 5], so we omit it here.
□

Lemma 3. [41] For a given approximation accuracy ϵ̃ > 0, any continuous function f (x) defined on
a compact set can be approximated by the radial basis function neural networks W∗TΨ(x) as follows

f (x) = W∗TΨ(x) + ϵ(x), |ϵ(x)| ≤ ϵ̃,

where W∗ = arg minW
[
supx | f (x) −WTΨ(x)|

]
, x represents the input vector, W∗ = (w1, · · · ,wl)T ∈ Rl

denotes the ideal weight vector, l > 1 represents the nodes number, Ψ(x) = (Ψ1(x), · · · ,Ψl(x))T , Ψi(x)
is selected as Ψi(x) = exp

[
− (x − σi)T (x − σi)/κ2

]
for i = 1, · · · , l, where σi = (σi1, · · · , σin)T and κ

are the center and width of the Gaussian function, respectively.

2.2. Problem formulation

Since it usually takes four to eight weeks from the time TB enters the body to the time it shows
symptoms, and people with TB can have either smear positive or smear negative. Therefore, the people
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carrying mycobacterium TB is divided into latent population (E), smear positive population (I1) and
smear negative population (I2). The rest of the population is classified as susceptible (S ) and immune
or quarantined due to cure (R). Based on the above division, literature [33] established a dynamic
model of TB, discussed the global stability of disease-free equilibrium point and endemic equilibrium
point, and analyzed the impact of smear-negative individuals on TB transmission. Considering that the
proportion of smear-positive and smear-negative from S is not equal to that from E, and the patients
after rehabilitation may become susceptible ones again, we improve the model in [33] to the following
one



Ṡ (t) = Π − (β1I1 + β2I2)S − µS + λR,
Ė(t) = (1 − k)(β1I1 + β2I2)S − (µ + m)E,
İ1(t) = p1k(β1I1 + β2I2)S + q1mE − (γ1 + δ1 + µ)I1,

İ2(t) = p2k(β1I1 + β2I2)S + q2mE − (γ2 + δ2 + µ)I2,

Ṙ(t) = γ1I1 + γ2I2 − (µ + λ)R,

(2.1)

where Π represents the input rate of the population, β1 and β2 represent the infection rates of smear
positive and negative population to susceptible population respectively, µ represents the natural mor-
tality rate, γ1 and γ2 are the cure rates of smear positive and negative population respectively, δ1 and
δ2 are the disease-related death rates of smear positive and negative infected persons respectively, λ
denotes the transfer rate of the immune or quarantined population that loses immunity or released
from quarantine and becomes susceptible again, m represents the transfer rate from latent population
to infected population, k represents the proportion of susceptible people who become infected directly
after carrying TB bacteria (p1 and p2 represent the proportion of smear positive and negative respec-
tively), q1 and q2 represent the proportion of smear positive and negative respectively in the people
who enter the infected population from the latent population. All parameters in model (2.1) are pos-
itive except 0 ≤ p1, p2, q1, q2 ≤ 1 and p1 + p2 = q1 + q2 = 1. The initial values of model (2.1) are
S (0) > 0, E(0) > 0, I1(0) > 0, I2(0) > 0,R(0) > 0.

In practice, the infection rate of the bacteria and the transfer rate of the population among the
compartments depend on the infection rate and transfer rate at each historical moment. That is, it
has heritability and memory, which is completely ignored by the integer-order derivative adopted in
model (2.1). It is worth noting that the fractional-order derivatives can better describe the genetic and
memory characteristics of the process or materials, so the fractional-order compartmental model can be
established to better describe the transmission process of mycobacterium TB bacteria in the population
based on model (2.1). On the other hand, effective and feasible control measures need to be taken to
control the spread of the bacteria in the population. Usually, media coverage for susceptible population
to reduce the infection rate and treatment for infected population are the two most commonly used
control measures, which are introduced into the fractional-order compartmental model to obtain the
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following fractional-order control model

DαS (t) = Π − (β1I1 + β2I2)S (1 − c1u1) − µS + λR,
DαE(t) = (1 − k)(β1I1 + β2I2)S (1 − c1u1) − (µ + m)E,

DαI1(t) = p1k(β1I1 + β2I2)S (1 − c1u1) + q1mE − (γ1 + δ1 + µ)I1 −
c2u2I1

1 + α1I1
,

DαI2(t) = p2k(β1I1 + β2I2)S (1 − c1u1) + q2mE − (γ2 + δ2 + µ)I2 −
c3u3I2

1 + α2I2
,

DαR(t) = γ1I1 + γ2I2 +
c2u2I1

1 + α1I1
+

c3u3I2

1 + α2I2
− (µ + λ)R,

(2.2)

where α ∈ (0, 1), c1, c2, c3 ∈ [0, 1] are the effective rate of control measures, u1, u2, u3 ∈ [0, 1] denote
the intensity of control measures, α1, α2 > 0 are half-satiation constants. The reasons why we set
u1(t), u2(t), u3(t) as control variables are summarized as follows:

(i) Media coverage for susceptible population (u1): after the media coverage to susceptible popula-
tion, people can take scientific and effective protective measures to reduce the infection rate of
the bacteria, which is described by (1 − c1u1) in (2.2).

(ii) Treatment to smear positive infected population (u2) and smear negative infected population (u3):
due to the limited medical resources, the saturation treatment rate is used to characterize the
treatment control measures.

Remark 1. In references [29–32], fractional-order TB models were established by considering differ-
ent factors that influence the transmission of TB, where the fractional derivatives with nonsingular ker-
nel were adopted, while the Caputo fractional derivative is used in model (2.2). Although the Caputo
fractional derivative contains a singular kernel, this does not affect the main purpose of this paper:
extend the adaptive control and neural networks approximation method widely used in the engineering
fields to the biological field, and design control variables for the fractional-order TB model. It should
be pointed out that the new and interesting definition of fractional derivative [27, 28, 42] proposed
in recent years can effectively overcome some shortcomings of the traditional fractional derivative,
but the stability theory related to these new definition is still relatively lacking, which may lead to
difficulties in analyzing the stability of the controlled TB model.

The control objectives of this paper are as follows: The appropriate expressions of u1, u2, u3 in model
(2.2) are designed so that the susceptible population S , smear positive population I1 and smear negative
population I2 can track the control targets S d, I1d and I2d with small errors, respectively. It is assumed
that S d, I1d, I2d and their fractional-order derivative with order α are all bounded and continuously
differentiable. In order to achieve the control goal, the following lemma is given.

Lemma 4. Ω = {(S , E, I1, I2,R)|S ≥ 0, E ≥ 0, I1 ≥ 0, I2 ≥ 0,R ≥ 0, S + E + I1 + I2 + R ≤ Π
µ
} is a

positive invariant set of models (2.1) and (2.2).

Proof. Lemma 4 can be proved by using similar methods of [43, Theorems 1 and 2], so omitted here.
□
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3. Controllers design and stability analysis

In this section, the controllers are designed for the controlled model (2.2) through three steps, and
then the stability of the control system is analyzed.

3.1. Design of controllers

For convenience, the control errors are defined as follows

S̃ = S − S d, Ĩ1 = I1 − I1d, Ĩ2 = I2 − I2d.

Step 1: The Lyapunov function V1 is constructed as

V1 =
1
2

S̃ 2 +
1
2
ξ−1

1 θ̃
2
1, (3.1)

where ξ1 > 0 is a design parameter, θ̃1 = θ̂1 − θ1, θ̂1 is the estimate of θ1 = ∥W∗
1∥

2, W∗
1 will be defined

later. Based on lemma 1, the fractional-order derivative of the function V1 is

DαV1 ≤S̃DαS̃ + ξ−1
1 θ̃1D

αθ̃1

≤S̃
[
Π − (β1I1 + β2I2)S (1 − c1u1) − µS + λR −DαS d

]
+ ξ−1

1 θ̃1D
αθ̃1

=S̃
[
c1u1S (β1I1 + β2I2) −DαS d + F1(X1)

]
+ ξ−1

1 θ̃1D
αθ̃1,

where F1(X1) = Π − (β1I1 + β2I2)S − µS + λR, X1 = (S , I1, I2,R)T . From Lemma 4, we know that X1

belongs to a compact set, so continuous function F1(X1) can be approximated by radial basis function
neural networks. According to Lemma 3, F1(X1) can be approximated as F1(X1) = W∗

1Ψ1(X1)+ ϵ1(X1),
ϵ1(X1) is the approximation error and satisfies |ϵ1(X1)| < ϵ̃1. Using Young’s inequality, we get

S̃ (W∗
1Ψ1(X1) + ϵ1(X1)) ≤ |S̃ |(∥W∗

1∥∥Ψ1(X1)∥ + ϵ̃1)

≤
1

2a2
1

S̃ 2θ1Ψ
T
1 (X1)Ψ1(X1) +

1
2

a2
1 +

1
2

S̃ 2 +
1
2
ϵ̃21 .

Then,DαV1 can be written as

DαV1 ≤ S̃
[
c1u1S (β1I1 + β2I2) +

1
2a2

1

S̃ θ1ΨT
1 (X1)Ψ1(X1) +

1
2

S̃ −DαS d

]
+

1
2

a2
1 +

1
2
ϵ̃21 + ξ

−1
1 θ̃1D

αθ̃1.

(3.2)

The controller u1 andDαθ̂1 are designed as

u1 =
1

c1S (β1I1 + β2I2)

[
− (ρ1 + 0.5)S̃ −

1
2a2

1

S̃ θ̂1ΨT
1 (X1)Ψ1(X1) +DαS d

]
, (3.3)

Dαθ̂1 =
ξ1

2a2
1

S̃ 2ΨT
1 (X1)Ψ1(X1) − θ̂1, (3.4)

where ρ1 > 0 is a design parameter. By substituting (3.3) and (3.4) into (3.2) and noting that θ̃1 = θ̂1−θ1,
we can obtain

DαV1 ≤ −ρ1S̃ 2 − ξ−1
1 θ̃1θ̂1 +

1
2

a2
1 +

1
2
ϵ̃21 .
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Further, since −θ̃1θ̂1 = −θ̃21 − θ̃1θ1 ≤ −
1
2 θ̃

2
1 +

1
2θ

2
1, we get

DαV1 ≤ −ρ1S̃ 2 −
1
2
ξ−1

1 θ̃
2
1 + ∆1, (3.5)

where ∆1 =
1
2ξ
−1
1 θ

2
1 +

1
2a2

1 +
1
2 ϵ̃

2
1 .

Step 2: The Lyapunov function V2 is constructed as

V2 =
1
2

Ĩ2
1 +

1
2
ξ−1

2 θ̃
2
2, (3.6)

where ξ2 > 0 is a design parameter, θ̃2 = θ̂2 − θ2, θ̂2 is the estimate of θ2 = ∥W∗
2∥

2, W∗
2 will be defined

later. Applying Young’s inequality and noticing that u1 ∈ [0, 1], we can obtain

Ĩ1 p1k(β1I1 + β2I2)S (1 − u1) ≤
1
2

Ĩ2
1 + p2

1k2(β1I1 + β2I2)2S 2 +
1
2

(1 − u1)2

≤
1
2

Ĩ2
1 + p2

1k2(β1I1 + β2I2)2S 2 +
1
2
.

(3.7)

According to Lemma 1 and using (3.7), we can easily obtain

DαV2 ≤ Ĩ1

[
−

c1u2I1

1 + α1I1
−DαI1d + F2(X2)

]
+ ξ−1

2 θ̃2D
αθ̃2 +

1
2
,

where F2(X2) = 1
2 Ĩ1 p2

1k2(β1I1 + β2I2)2S 2 + q1mE − (γ1 + δ1 + µ)I1, X2 = (S , E, I1, I2, I1d)T . The
function F2(X2) can be approximated by radial basis function neural networks because it is continuous
and X2 belongs to a compact set. According to Lemma 3, F2(X2) can be approximated as F2(X2) =
W∗

2Ψ2(X2) + ϵ2(X2), where |ϵ2(X2)| < ϵ̃2 is the approximation error. Using Young’s inequality, we get

Ĩ1F2(X2) ≤ |Ĩ1|(∥W∗
2∥∥Ψ2(X2)∥ + ϵ̃2) ≤

1
2a2

2

Ĩ2
1θ2Ψ

T
2 (X2)Ψ2(X2) +

1
2

a2
2 +

1
2

Ĩ2
1 +

1
2
ϵ̃22 ,

where a2 > 0 is a constant. Then, we have

DαV2 ≤ Ĩ1

[
−

c1u2I2

1 + α1I1
−DαI1d +

1
2a2

2

Ĩ1θ2Ψ
T
2 (X2)Ψ2(X2) +

1
2

Ĩ1

]
+ ξ−1

2 θ̃2D
αθ̃2 +

1
2
+

1
2

a2
2 +

1
2
ϵ̃22 .

Design the controller u2 and adaptive law of θ̂2 as

u2 =
1 + α1I1

c1I1

[
(ρ2 +

1
2

)Ĩ1 +
1

2a2
2

Ĩ1θ̂2Ψ
T
2 (X2)Ψ2(X2) −DαI1d

]
, (3.8)

Dαθ̂2 =
ξ2

2a2
2

Ĩ2
1Ψ

T
2 (X2)Ψ2(X2) − θ̂2, (3.9)

where ρ2 > 0 is a design parameter. Substituting (3.8), (3.9) into DαV2, and using θ̃2 = θ̂2 − θ2 and
−θ̃2θ̂2 ≤ −

1
2 θ̃

2
2 +

1
2θ

2
2, we can get

DαV2 ≤ −ρ2 Ĩ2
1 −

1
2
ξ−1

2 θ̃
2
2 + ∆2, (3.10)
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where ∆2 =
1
2ξ
−1
2 θ

2
2 +

1
2 +

1
2a2

2 +
1
2 ϵ̃

2
2 .

Step 3: Similar to step 2, construct the Lyapunov function V3 as

V3 =
1
2

Ĩ2
2 +

1
2
ξ−1

3 θ̃
2
3, (3.11)

where ξ3 > 0 is a designed parameter, θ̃3 = θ̂3 − θ3, θ̂3 is the estimate of θ3 = ∥W∗
3∥

2, W∗
3 is the weight

vector. Similarly, we can design u3 andDαθ̂3 as

u3 =
1 + α2I2

c2I2

[
(ρ3 +

1
2

)Ĩ2 +
1

2a2
3

Ĩ2θ̂3Ψ
T
3 (X3)Ψ3(X3) −DαI2d

]
, (3.12)

Dαθ̂3 =
ξ3

2a2
3

Ĩ2
2Ψ

T
3 (X3)Ψ3(X3) − θ̂3. (3.13)

where ρ3 > 0 is a design parameter, X3 = (S , E, I1, I2, I2d)T . Using lemma 1, 3 and Young’s inequality,
we have

DαV3 ≤ −ρ3 Ĩ2
2 −

1
2
ξ−1

3 θ̃
2
3 + ∆3, (3.14)

where ∆3 =
1
2ξ
−1
3 θ

2
3 +

1
2 +

1
2a2

3 +
1
2 ϵ̃

2
3 .

Remark 2. In previous works [37–39], the vectors to be estimated by adaptive laws were constructed
by using the model parameters, with the result that the initial values of adaptive laws have an important
influence on the estimated value of the parameter vector. However, in this paper, the functions that
contain model parameters are approximated by neural networks, and then the norms of weight vectors
are estimated by adaptive laws, so it avoids the estimations to model parameters. Thus, the initial
values dependency of adaptive laws are reduced.

3.2. Stability analysis of controlled model

Theorem 1. For control model (2.2), the designed controllers (3.3), (3.8), (3.12) and the adaptive laws
(3.4), (3.9), (3.13) can ensure that S , I1 and I2 track the control target S d, I1d and I2d with small errors,
respectively. That is, the control goal can be achieved.

Proof. According to (3.1), (3.6) and (3.11),constructing Lyapunov function as V(t) = V1 + V2 + V3.
Thus, based on (3.5), (3.10) and (3.14), we have

DαV ≤ −ρ1S̃ 2 − ρ2 Ĩ2
1 − ρ3 Ĩ2

2 −
1
2

3∑
i=1

ξ−1
i θ̃

2
i + ∆ ≤ −ρV + ∆,

where ρ = min{2ρ1, 2ρ2, 2ρ3, 1} and ∆ = ∆1 + ∆2 + ∆3 are positive constants. Since there is 0 ≤
Eα(−ρtα) < 1 for any t ≥ 0, according to [44, Lemma 5], it can be obtained

V(t) ≤ (V(0) −
∆

ρ
)Eα(−ρtα) +

∆

ρ
≤ V(0)Eα(−ρtα) +

∆

ρ
. (3.15)

From the form of Lyapunov function V1,V2,V3, limt→∞ Eα(−ρtα) = 0 and (3.15), the control errors S̃ ,
Ĩ1 and Ĩ2 can enter into a small neighborhood of the origin by choosing appropriate parameters ∆ and
ρ. In other words, under the designed control variables, the control objective of TB model (2.2) can be
achieved with small error. □
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Remark 3. According to Eqs (3.3), (3.8) and (3.12), the values of u1, u2, u3 will lie outside the interval
[0, 1] at some time, so, the value of u1, u2, u3 can be adjusted as follows

ui(t) =


1, ui(t) > 1,
ui(t), 0 ≤ ui(t) ≤ 1,
0, ui(t) < 0,

i = 1, 2, 3.

The above adjustment is reasonable, which is mainly because the restriction on the range of control
variables will reduce the control effect of the model to a certain extent, but will not affect the stability of
the model, which is explained as follows by taking the “Step 1” in Subsection 3.1 as an example. In fact,
if u1 is restrict into interval [0, 1], then based on Lemma 4 and the assumptions for S d in Subsection
2.2, we can conclude that the term c1u1S (β1I1 + β2I2) + 1

2 S̃ θ1ΨT
1 (Z1)Ψ1(Z1) + 1

2 S̃ − DαS d + ρ1S̃ is
bounded by a positive constant ζ1. Thus, (3.2) can be rewritten as

DαV1 ≤ |S̃ |ζ1 + S̃
[
−

1
2

S̃ θ̃1ΨT
1 (Z1)Ψ1(Z1) +

1
2

S̃ θ̃1ΨT
1 (Z1)Ψ1(Z1) − ρ1S̃

]
+

1
2

a2
1 +

1
2
ϵ̃21 + ξ

−1
1 θ̃1D

αθ̃1.

According to Lemma 2, we know that θ̂1 is bounded and thus θ̃1 = θ̂1 − θ is bounded, which means that
1
2 S̃ θ̃1ΨT

1 (Z1)Ψ1(Z1) is bounded. Further, by using the boundedness of S̃ ,DαV1 can be calculated as

DαV1 ≤ −ρ1S̃ 2 −
1
2
ξ−1

1 θ̃
2
1 + ζ2,

where ζ2 > 0 is a constant. Therefore, the stability of model (2.2) can be ensured by using the sim-
ilar argument as in Subsection 3.2. Besides, this restriction also makes it possible to use the control
measures in practice, because the control input outside the interval [0, 1] is meaningless in practice.

Remark 4. Although there are many TB models which were built by using different fractional deriva-
tive definitions [29–32], these studies mainly focus on the existence and uniqueness of the solution,
dynamic behavior, numerical methods and so on. However, the research results on the control problem
of fractional TB model using adaptive control method are relatively scarce. In this paper, we success-
fully designed the expressions of control variables for the model by using adaptive control method and
radial basis function neural networks, and analyzed the stability of the model under control variables.

4. Numerical simulations

This section is devoted to illustrating the theoretical results in previous section by some numerical
examples.

The values of parameters in model (2.2) are chosen as: α = 0.95, Π = 1.4, β1 = 5.07394 ×
10−3, β2 = 1.01479 × 10−3, µ = 1/66,m = 0.001, k = 0.001, p1 = 0.35, p2 = 0.65, q1 = 0.4, q2 = 0.6,
γ1 = 0.2038, γ2 = 0.4038, δ1 = δ2 = 0.22, c1 = 0.7, c2 = 0.8, c3 = 0.7, α1 = 1, α2 = 1. The
designed parameters in the controllers are selected as: ρ1 = 250, ρ2 = ρ3 = 20, a1 = a3 = 1, a2 =

2, ξ1 = ξ2 = ξ3 = 1. The initial values of model (2.2) and adaptive laws (3.4), (3.9) and (3.13)
are (S (0), E(0), I1(0), I2(0),R(0)) = (5000, 80, 40, 40, 20) and (θ̂1(0), θ̂2(0), θ̂3(0)) = (10−4, 10−5, 10−5),
respectively. Finally, the desired values are

Iid =Ii(0)e−bit + ri

∫ t

t−τ

[
pik(β1I1(w) + β2I2(w))×
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S (w)(1 − c1u1(w)) + qimE(w)
]
dw, (i = 1, 2)

S d =b3 + (S (0) − b3)e−b4t,

where τ = 3, r1 = 0.3, r2 = 0.2, b1 = b2 = 0.4, b3 = 1500, b4 = 0.3. The parameters in radial basis
function neural networks are chosen as σi = (−30,−20,−10, 0, 10, 20, 30)T , κ = 10.

Remark 5. Since the number of infected people at the current time depends on the cumulative number
of infected people in the recent period and the initial values, the desired values I1d and I2d are selected
as the above forms. Thus, r1 (or r2) represents the proportion of people who enter I1(or I2) from t−τ to
t and have not recovered at t; I1(0)e−b1t(or I2(0)e−b2t) refers to the number of patients at the initial time
who have not recovered at the current time t. For susceptible populations, our goal is to try to prevent
them from contracting the bacteria, that is, to keep as many people as possible in S , which can be
achieve by adjusting b3 and b4 in S d. So, b3 represents the number of people who are still susceptible
in the end, and b4 means the rate from S (0) to b3.
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Figure 1. The tracking performance of S , I1 and I2 under different desired values.

Example 1. Tracking performance of S , I1, I2 to S d, I1d, I2d, respectively.

As presented in Section 2, the control objective of this study is to design the controllers such that
S , I1, I2 can track desired values S d, I1d, I2d with small errors, respectively. Thus, we consider the
following two cases to verify the effectiveness of the controller and the tracking performance of S , I1, I2

to S d, I1d, I2d, respectively: Case I, τ = 2, r1 = 0.3, r2 = 0.3, b1 = b2 = 0.4, b3 = 1500, b4 = 0.3; Case
II, τ = 2, r1 = 0.25, r2 = 0.2, b1 = 0.5, b2 = 0.3, b3 = 2000, b4 = 0.2. The main reason for choosing the

0 10 20 30 40 50

Time

0

1000

2000

3000

4000

5000

S
(t

)

=1.0

=0.9

=0.8

=0.7

=0.6

(a)

0 10 20 30 40 50

Time

0

20

40

60

80

100

120

140

I 1
(t

)

=1.0

=0.9

=0.8

=0.7

=0.6

(b)

0 10 20 30 40 50

Time

0

50

100

150

200

I 2
(t

)

=1.0

=0.9

=0.8

=0.7

=0.6

(c)

Figure 2. The trajectories of S , I1 and I2 under different α.
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above parameters is that we hope that most people can change their behavior and enter the compartment
R through media coverage, and most people can recover after treatment. The simulation results are
presented in Figure 1. From Figure 1, we see that the trajectories of S , I1, I2 can track the desired
values S d, I1d, I2d with small errors in both Case I and II, respectively, which indicate the effectiveness
of the proposed controllers. In addition, compared with the case of without control, the number of
infected people decreased significantly in both Case I and II.

Example 2. The effect of the fractional-order derivative order α.

The order α is an important parameter in fractional-order model (2.2), which can be adjusted based
on the actual demand. In order to exhibit the effect of α in model (2.2), we choose α = 1 (i.e., integer-
order model), 0.9, 0.8, 0.7, 0.6, and run the numerical simulations. The results are shown in Figure
2. It can be seen from Figure 2 that with the decrease of α, the convergence speed of the trajectory
of S , I1 and I2 are decreasing, that is, the period of TB epidemic is prolonged. This shows that the
fractional-order model is more flexible than the integer-order model and has the ability to meet the
needs of different situations.
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Figure 3. The trajectories of S , E, I1, I2,R and u1, u2, u3 under different control combinations.

Example 3. The effect of different control combinations.

The purpose of setting control variables in model (2.2) is to prevent as many people as possible
from contracting TB. In order to better understand the role of each control measure, we consider the
following five cases: Case I, u1, u2, u3 = 0; Case II, u1, u3 = 0, u2 , 0; Case III, u1, u2 , 0, u3 = 0; Case
IV, u1 = 0, u2, u3 , 0; Case V, u1, u2, u3 , 0, where ui = 0 denotes ui is in absence, and ui , 0 denotes
that control measure ui is adopted (this does not mean that ui has never been equal to zero).

The simulation results are presented in Figure 3. It follows from Figure 3(a) that, compared with
the cases without media coverage (i.e., Cases I, II, IV), there are more people who can remain in
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compartment S when media coverage measures are taken for the susceptible people (i.e., Cases III, IV),
which shows that media coverage (u1) is an effective control measure to curb the spread of TB. Figure
3(b) shows the exposed individuals under five cases, which also indicate the significance of media
coverage. From Figure 3(c),(d), we know that, when only control measures u2 or u3 (i.e., treatment
to the smear positive and negative individuals) are adopted, their effect on reducing the number of TB
infections is extremely limited. However, when media coverage and treatment measures are adopted at
the same time, the infectious scale of TB epidemic can be greatly reduced. Therefore, we can conclude
that comprehensive control measures can be more effective than single ones to prevent the large-scale
spread of the bacteria when the TB outbreak occurs. Figure 3(e) presents the trajectories of R. The
trajectories of control variables u1, u2 and u3 in Case V are given in Figure 3(f).

5. Conclusions

The adaptive neural networks control problem has been investigated for the fractional-order TB
model. First, based on the spreading mechanism of TB, a fractional-order compartment model of TB
has been established. Then, by using the universal approximation principle of neural networks and
constructing Lyapunov functions, adaptive controllers have been designed, which can ensure the con-
trol objective can be realized. Finally, some numerical simulations have been presented to illustrate the
effectiveness of the proposed controllers. It should be noted that some interesting and meaningful new
definitions for fractional-order derivative, including Caputo-Fabrizio, Atangana, Atangana-Baleanu,
Losada-Nieto and so on [28, 42], have emerged in recent years, which, compared with Caputo deriva-
tive adopted in this paper, have nonsingular kernel. Thus, we need to consider the modeling and control
problem of TB under these new definition in the future. Meanwhile, some comparisons should be made
to explore the advantage and disadvantage of Caputo derivative and other new definitions, which is also
one of our future works.
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