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Abstract: The electrostatics of two cylinders charged to the symmetrical or anti-symmetrical potential
is investigated by using the null-field boundary integral equation (BIE) in conjunction with the
degenerate kernel of the bipolar coordinates. The undetermined coefficient is obtained according to
the Fredholm alternative theorem. The uniqueness of solution, infinite solution, and no solution are
examined therein. A single cylinder (circle or ellipse) is also provided for comparison. The link to the
general solution space is also done. The condition at infinity is also correspondingly examined. The
flux equilibrium along circular boundaries and the infinite boundary is also checked as well as the
contribution of the boundary integral (single and double layer potential) at infinity in the BIE is
addressed. Ordinary and degenerate scales in the BIE are both discussed. Furthermore, the solution
space represented by the BIE is explained after comparing it with the general solution. The present
finding is compared to those of Darevski [2] and Lekner [4] for identity.
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1. Introduction

Five basic quantities (voltage, charge, current, capacitance, and resistance) in electrostatics
are involved in almost all applications. Electrostatics generally plays an important role in
improving the performance of microelectro/mechanical systems (MEMS) and electron devices in
the design stage. Many numerical methods (e.g., the finite difference method, the variational
method, the moment method, the finite element method, and the boundary element method) were
popularly used for engineering problems. Among diverse numerical techniques, the finite element
method (FEM) and the boundary integral equation method (BIEM), as well as the boundary element
method (BEM) become acceptable tools for engineers due to the increasing development of digital
computing power. Here, we may focus on the mathematical study of the BIEM for electrostatics of
two identical cylinders. Researchers have paid attention to the dual BEM paper of IEEE in 2003 [1],
which has received nearly 5000 views in the Research Gate.

For a pair of two conducting cylinders, there is a large amount of literature on charged
cylinders [2—4]. Different solutions existed to the electrostatic problem of two identical parallel
cylinders held at the same (symmetric) potential [2,3]. A note was given to show their equivalence,
and the identities were confirmed [4]. Four distinct solutions for the potential distribution around two equal
circular parallel conducting cylinders by [2,3,5,6] were demonstrated to be equivalent by Lekner [7] by
ways of several identities. Here, we may try an alternative way of BIEM using degenerate kernels to revisit
this problem. A degenerate kernel is based on the method of separation variables, but it separates the
variables in the two-point kernel function. Although the BIE in conjunction with the available degenerate
kernel can only solve simple geometries and the results may be obtained more directly by using the
method of separation variables for the solution instead of the fundamental solution, the tool can explain
the rank-deficiency mechanism in the BIE/BEM such as degenerate scale, degenerate boundary,
spurious eigenvalues and fictitious frequency, which is meaningful to the BEM community. Besides,
symmetric and anti-symmetric cases are both considered. Regarding the anti-symmetric electrostatic
potential, Lebedev et al. [8] have provided a closed-form solution by using the bipolar coordinates.
The solution is interestingly found to be the simplest method of fundamental solution (MFS) of two
opposite strengths of sources at the two foci. It is not trivial to check the asymptotic behavior at infinity
of the two cases, symmetric and anti-symmetric. Besides, whether the equilibrium of the boundary
flux along the two cylinders is satisfied or not is also our main concern.

Regarding the potential problem of a two-dimensional plane containing two circular boundaries,
Chen and Shen [9] studied the multiply-connected Laplace problem. They found that a degenerate
scale depends on the outer boundary. Chen et al. [10] solved the Laplace problem by using the BIEM
in conjunction with the degenerate kernel to derive an analytical solution. It is found that a degenerate
scale may occur due to the introduction of the logarithmic kernel for the two-dimensional case.
Efficient techniques for the rank-deficiency of the BEM in electrostatic problems were proposed by
Chyuan et al. [11]. Later, it was found that the special (degenerate) geometry happened to be the shape
of unit logarithmic capacity. Kuo et al. [12] studied the degenerate scale for regular N-gon domains by
using complex variables. Numerical implementation was also done by using the BEM. Kuo et al. [13]
revisited the degenerate scale for an infinite plane problem containing two circular holes using the
conformal mapping. Chen et al. [14] linked the logarithmic capacity in the potential theory and the
degenerate scale in the BEM for two tangent discs. The logarithmic capacity of the line segment as
well as the double degeneracy in the BIEM/BEM was studied by Chen et al. [15]. Due to the use of
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the two-dimensional fundamental solution in the BIEM, the solution space is expanded, and
sometimes the corresponding matrix is rank deficient in the BEM. In other words, the integral
operator of the logarithmic kernel is range deficient. A corresponding chart to show the rank
deficiency and the null space of the integral operator of single, double layer potentials and their
derivatives was given in [16—18], while the original one was provided in the face cover of the
Strang book [19]. Fikioris et al. [20] solved rectangularly shielded lines by using the Carleman-
Vekua method. In the mentioned paper [20], it is interesting to find that its formulation also needs a
constraint [21] to ensure a unique solution. This outcome is similar to the paper of Chen et al. [22] using
the Fichera’s approach, where an additional constraint is also required.

In this paper, we revisit two cylinders of electrostatics by using the BIE with the degenerate kernel
of the bipolar coordinates. Both the symmetric and anti-symmetric specified potentials are considered.
Besides, the logarithmic capacity is also discussed. The boundary potential and flux are expanded by
using the Fourier series, while the fundamental solution is represented by using the degenerate kernel.
The equilibrium of boundary flux and the asymptotic behavior at infinity are also examined. The
solution space expanded using the BIEM is compared with the true solution space. After summarizing
the single (circle and ellipse) and two cylinders, a conclusion for constructing the solution space can
be made.

2. Electrostatic potential subject to a single cylinder
2.1. A circular case

First, we consider a conducting cylinder. The governing equation and the Dirichlet boundary
condition are shown below:

VZu(x) =0, x€ D,
u(x) =u(x), X€ B, (1)

u(x) = Injx| + 0(1), x - o,

where V2, D and B are the Laplace operator, the domain of interest and the boundary, respectively.
Furthermore, x is the position vector of a field point and #(X) is the specified B.C. The integral
formulation for the Laplace problem is derived from Green’s third identity. The representation of the
conventional integral equation for the domain point is written as

2rnu(x) = fB T(s,x)u(s)dB(s) — fB U(s,x)t(s)dB(s),x €D, (2)
where s is the position vector of a source point, U(s,X) = In|x — s| is the fundamental solution,
T(s,x) = agS’X), and t(x) is the unknown boundary flux. By moving the field point to the smooth

boundary, Eq (2) becomes:
ni(x) = C.P.V. [,T(s,x)u(s)dB(s) — [, U(s,x)t(s) dB(s),X € B, (3)
where the C.P.V. denotes the Cauchy principal value, and T(s,x) = dU(s,X)/0dn, is the closed-form

kernel. Once the field point x locates outside the domain, we obtain the null-field integral equation as
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shown below:
0= [,T(s,¥)u(s)dB(s) — [, U(s,x)t(s) dB(s),x € D°. 4)

where D€ is the complementary domain. By employing the proper degenerate kernel (U(s, X)) to
represent the closed-form fundamental solution, the collocation point can be exactly located on the
real boundary free of facing the singular integral. Equations (2) and (4) can be rewritten as:

2rnu(x) = [, Ta(s,X)0(s)dB(s) — [, Uak(s,X)t(s) dB(s),x € DUB (5)

and
0 = [, Tar(s,X)u(s)dB(S) — [, Uar (s, ¥)t(s) dB(s),x € D° UB. (6)
where T4, (s,x) and Uy (s,x) are the corresponding degenerate kernels to represent T'(s,x) and
U(s, x), respectively. By setting the field point x = (p, ¢) and the source point s = (R,0) in the

polar coordinates for a circular domain, the closed-form fundamental solution in Eqs (5) and (6) can
be expressed by using the degenerate kernel form as shown below:

U'R6;p,¢) =InR — 55y Q™ cosm(6—¢), R2p, @
Uak(s,x) =4 w 1 Rum : (7)
U(R,0;p,9) =Inp = Y=y )" cosm (0 — ), p>R, (b)
and
i 1 0 pm
Ti(R,6;p,¢) = = (z + Znei o cosm (0 —¢)), R>p, (@)
Tar(s,x) =9 o gme . (8)
T*(R,0;p,¢) = Em=1(T7) cosm (6 — ), p>R. (b)
The unknown boundary flux t(s) is expanded in terms of Fourier series as shown below:
t(s) = ]l(ao + Y7_1a,cos(nb) + Yy, b,sin(nh)), 0 <6 < 2m, 9)

where J¢ = 1 is the Jacobian term, a,, a, and b, are unknown coefficients. The given boundary
condition is

u(x) =v. (10)

where v is a constant. By considering R=a in Eqs (6)—(8), the coefficient of the Fourier constant base
is

—alna ay = v, (11)

where a is the radius of the circular cylinder. Equation (11) indicates that the occurring mechanism
of a degenerate scale is

Ina = 0. (12)

When a = 1, the coefficient of a, cannot be determined. It results in a non-unique solution.
This critical size is called a degenerate scale. In Rumely’s book [23], the logarithmic capacity, c;, of
a circle is equal to its radius. It is easily found that the special (degenerate) geometry happens to be the
shape of unit logarithmic capacity. The discriminant D,(a) of the degenerate scale in the BEM/BIEM

for a circular boundary is written as
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D,(a) =Ina. (13)

If D,(a) # 0, this size is an ordinary scale and there exists a unique solution. Otherwise,

according to the Fredholm alternative theorem, there is no solution or infinite solutions. For an ordinary
scale, the boundary flux, of the electrostatic field along the boundary, is obtained as

t(x) = ——,X € B. (14)
The unique solution of electrostatic potential is obtained by
ERLY;
u(x) = v, (15)

as shown in Figure 1(a). Even though the electrostatic field along the boundary in Eq (14) is not in

equilibrium, i.e. [ 5 t(X) dB(x) # 0, the electrostatic field at infinity, ", would exist and satisfy the
equilibrium condition together in total, [ poro t(X) dB(x) = 0. If we normalize the potential on the

cylinder to the unity, and let A be the dimensionless ratio, the potential becomes
u(x) = v+ Auy(x), (16)
where

us(x) =Inp —lna. (17)
v
Dp(a).
When the size of the boundary is a degenerate scale, i.e., a =1 and D,(a) =1Ina = 0, it has no
solution if v # 0. If v = 0, then the constant term in Eq (9), a,, is a free constant. The electrostatic

potential yields

The solution by using the direct BIE of Eq (15) is the special case of Eq (16) by setting A =

u(x) =aglnp, (18)
and Eq (16) would reduce to
u(x) = Aug(x), (19)
and uy(x) in Eq (19) reduces to Inp since Ina = 0. It is easy to find that a, and A are
equivalent.
2.2. An elliptical case
For an elliptical case, we naturally utilize the elliptic coordinates to solve the problem in the BIE.
The relation between the Cartesian coordinates and the elliptic coordinates is given below:
x = ccoshécosn,y = csinhsinn. (20)

where c is the focal length. By separating the source point and the field point in the elliptic coordinates [24]
to represent the closed-form fundamental solution, we have
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Ui (s,X) = In|x — 5| =
(Ui, 15 E2) = & +In S — Xy Z e coshm &, cosm, cosmg

__ \'©

2 _ . . .

m=1—¢ messinhm &, sinmn, sinmn,, & =&, (a) 1)
0 2

Ue(fs: Ns; fx' nx) = Ex + ln% - mzlge méx COShmEs cosmm, CoOSmij,

_ \'©

L mzlie‘mfxsinhmfssinmnxsinmns, & <&, (D)

aU(sx)
Tar(s,X) = Tsx =

(Ti(fs,ns; EMy) = ;—1 (1 +2)7° 4 e~™és coshm &, cosmn, cosmn
+2 Y51 e ™ssinhm &, sinmn,sinmng), & > &, (a) (22)
T¢ (oM €)= 12 (2 Bine €™ sinhm & cos mn, cos m

+2¥% _ e ™x coshm & sinmn, sinm ns), & <&, (b)

where J; = cy/cosh? & sin? g + sinh? & cos? ;. The unknown boundary flux t(s) is expanded in

terms of generalized Fourier series. We have
() = - (ao + Xiic1 ay cos(nify) + oy by sin(nny)), 0 <, < 2. (23)
where @,, a, and b, are unknown coefficients. The given boundary condition is
i(x) = v. (24)

By substituting Eqs (21a), (22a), (23) and (24) into Eq (6), the coefficient of the Fourier
constant base is

— (fo + In g) apg =1, (25)
Equation (25) indicates that the occurring mechanism of a degenerate scale is
& +In>=0. (26)

Equation (26) yields the degenerate scale of asz = 1, where a and b are the semi-major and

semi-minor axes of an ellipse, respectively. According to Eq (25), the discriminant of a degenerate
scale in the BEM/BIEM is obtained
+b
De(c,§9) = & +In< =1n(22) 27)

In Rumely’s book [23], the logarithmic capacity of an ellipse is equal to %. According to Eqs (13)
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and (27), the logarithmic capacity, c;, and the discriminant, D, (+), satisfy the relation,
c, = ePeO), (28)

The relationship of the discriminant, logarithmic capacity, and degenerate scale are summarized
in Table 1. If D,(c,&,) is not equal to zero, this size is an ordinary scale with a unique solution.
Otherwise, according to the Fredholm alternative theorem, it has no solution or infinite solution. For
an ordinary scale, the boundary flux is obtained by

-V

t(x) = iy’ X € B. (29)
The unique solution of electrostatic potential is
C v
() = (& + ) (5705)- (30)

as shown in Figure 1(b). Even though the boundary flux in Eq (29) is not in equilibrium, i.e.,
fB t(x) dB(x) # 0, the electrostatic field at infinity, I'*, would exist and satisfy the equilibrium

condition together in total, i.e., [ t(x) dB(x) = 0. If we normalize the potential on the cylinder

B+I™
to the unity, and let A be the dimensionless ratio, the potential becomes
u(x) = v+ Auy(x), 31
where
g (®) = (& +In%) - (g +InS) =& - &. (32)

A neat formula of u4(x) could be defined as u;(x) = D,(&,) — D.(&y). The solution by using

the direct BIE of Eq (30) is the special case of Eq (31), if 1 = > (: o
eltso

When the size of the boundary is a degenerate scale, D,(c,&,) = &, + ln% = (0, it is no solution if

v # 0.If v = 0, the constant term in Eq (23), a,, is a free constant. The electrostatic potential yields

u(x) = (fx + lng) ay, (33)
and Eq (16) reduces to

u(x) = Auy(x), (34)

where uyz(x) in Eq (32) reducesto &, + lng since D,(&,) is equal to zero. It is easy to find that

ap, and A are equivalent. In addition, the degenerate scale in the BEM/BIEM is due to the
logarithmic kernel.
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Table 1. Relationship of the discriminant, logarithmic capacity and degenerate scale.

Curvilinear coordinates

Discriminant, D(-)

Logarithmic capacity, c¢; [23]

Degenerate scale

Bipolar coordinates

c, = ePr(® c,=a a=1
Dy(a) =Ina Dy(a) =Ina =
c=a=1
Polar coordinates
+b
De(c,&) =& +Is=Mn (=) =0
a+b=2
¢, =&t De(c,§) =In(22) =0
t 2 a+b 2
@ = eDe(c80) o=""= 1
Elliptical coordinates ”
4 e
Dy(c, 1m0) = 21In(2¢) —no + sz e
n=1 D,(c, o) = 2In(2¢) —no + Z e
_ Kcy1-k? n=1n(1 +e 0)
Postulate L="¢ e
G = er(CJIO) ? C, = 7 =1

where K = ¥2.,[((2n)1)*/(@"n)) k2", k = [Snez q°-5("+°-5)2]2/[2nez q*sm*2, g = e?™* 1 =ix/{, { =In[(c +d)/a], and c? = d? — a?.




For the single elliptical cylinder, the degenerate kernel is expanded in terms of the generalized
form as

' Ugr(s,X) = In|x — s| =
{UI(ES'T]S; EX' nx) = De(fs) _Z%=1 am(fs: T’S' EX’ nx)' ES Z fX’ (a) (35)
Ue (ES' nS' EX’ nX) = DB(EX) - Z;.;l=1 am(gx' nxr fS’ T’S) Y 55 < EJC’ (b)

Tar(s,x) = —GZS'X) =
T (&5 M3 Exo M) = ;—Sl(Défs) = 2m=1PmCs s €0 x)), &> 8 (@) (36)
T¢(EsMss &0 Mx) = iZ%ﬂﬁm(&,ns;fx, Mx) » & <&x (b)

where & and 1 are the radial and angular directions, respectively, D, (+)is the constant function for
1 and other term is (). The unknown boundary flux t(s) is expanded in terms of the generalized
Fourier series as shown below:

t(s) = 7 (ao + it ap cos(ns) + Loy by sin(nny)), 0 < 17, < 2, (37)

where a,, a, and b, arec unknown coefficients. By substituting Eqs (35a), (36a), (37) and the
boundary condition (Eq (10)) into Eq (6), the coefficient of the Fourier constant base is

D.(§0)ag = —v D¢ (&), (38)
If D(é,)#0), then the unique solution of electrostatic potential is
v
u®) = ;- De (62, (39)
and
Uq(X) = De($x) — De(So)- (40)

When the size of the boundary is a degenerate scale, D,(¢y) = 0, there is no solution if v # 0.
If v = 0, the constant term in Eq (37), a,, is a free constant. The electrostatic potential yields

u(x) = (De(§x) — De($0))ao, (41)
and Eq (40) reduces to
u(x) = Auy(x), (42)

where uy(x) in Eq (40) is reduced to D.(¢,), since D.(&,) is equal to zero. By using the
generalized form of Eqs (35) and (36), the analytical and neat form of u;(X) for the single elliptical
cylinder is derived. It is easy to find that a, and A are equivalent. The generalized potential and the
solution by using the BIEM are compared in Table 2.



Table 2. Comparison of the general solution and the BIE solution for single or double cylinders.

Shape A 01rcular_ cylinder An elliptical cylinder Two circular cylinders
y ~ " - - o \“
Jlr R " . r n,
) ! { S0 N [ A
Sketch ] D 1 3 ! " J
i ) ) ’ ! ]
\ v v Mo ’ -7 \D v v 2
G.E. V2u(x) =0, X€D
B.C. u(x) =v,Xx€BRB u(x) =v,X€B u(x)=u"(x) =v,XEB
Db (C, Uo)a(r) =v

Equation of

Dy(a)a, = —v

D.(c, §p)ag = —v

—Zm]o

constant tern

De(c, &) = & +1n

Dy(e, m0) = 2In(26) - no+zn—(1+e_2n%)

Discriminant D,(a) =Ina
Ordil;ary u(x) =v —agu, (unique solution)
seae u(x) =v —aguy (unique solution) u(x) =v —aguy (unique solution)
(BIEM/BEM) ‘ A=—a}
D=0 A= —a, t A=_a0
General
solution ux) =v+Aug
(Infinite 9 = gl
solution) 1=a, A=ag = Qo
v=20 _ v=20 _ v=20 r_
Deiggﬁ: ate (Infinite a4 =k (Infinite a4 =k (Infinite a =k
(BIEM/BEM) solution) ux) =v+kuy =kuy solution) u(x) =v+kuy =kuy solution) u(x) =v+kuy =kuy
= v+0 ay is no solution v+0 ay is no solution v+0 ay is no solution
D=0
(No solution) Uy is no solution (No solution) Uy is no solution (No solution) Uy is no solution
uy(x) = In(2 coshn, —2cosé,) —no +
Ug Ug = Dyp(p) = Dp(a) =Inp—ina Ug = De(§x) — De($o) = $x yo_ 2 gmnig SO (0 pg Y
n=1y cosh(nng) x

where D_, D, and D, are the discriminants of degenerate scales for the circle, ellipse and two circles, respectively, and k is a free constant




3. Problems of two identical cylinders in electrostatics: symmetric and anti-symmetric cases

In this section, we consider two circular cylinders of electrostatics. The Dirichlet boundary
conditions of two circular cylinders are given by

u'(x) = v; andu”(x) = v,,X € B, (43)

where u!(x) and u”(x) are potentials of the left and right circular boundaries, respectively, X is the
position vector of the field point, B is the boundary, and v; and v, are specified constant potentials.
The original problem can be decomposed into a symmetric problem and an anti-symmetric problem as
shown below:

ul(x) = u"(X) = v,X € B, symmetry BC, (44)
and
ul(x) = —u"(X) = v,X € B. anti-symmetry BC. (45)

Since the problem contains two circular boundaries, we naturally employ the bipolar coordinates
to express the closed-form fundamental solution. The relation between the Cartesian coordinates and
the bipolar coordinates is shown below:

sinhn siné

- coshn—cosf'y - Ccoshn—cos & (46)

where n and ¢ are the radial and angular coordinates, respectively, c is the half distance between the
two foci of the bipolar coordinates. By separating the source point and the field point in the bipolar
coordinates [9] for the closed-form fundamental solution, we have

Ug(s,x) =In|x —s| =
© 1
In(2c) + 1, — Z - {e7m@s7m) cos[m (&, — &)] — e™x cos(mé,) — e™s cos(mé,)}, 0 > ng = 17,

® 1
In(2¢) +ny — Z - {e'm("X‘ns) cos[m(&, — &5)] — e™x cos(mé,) —e™s cos(mfs)},o >Ny >N
m=1

In(2¢) — ” l e~ mx=15) cos[m (&, — — e ™x cos(mé, ) — e™s cos(m >0>
@)-) (& = 9] (mé) (mg}ne > 0> 1 7

R |
In(2¢) —ns — E E{e‘"‘("x_"s) cos[m(&, — &)] — e ™M cos(mé,) — e ™s cos(mfs)}, Ny =N >0
m=1

© 1
In(2¢) —ny — Z lg{e_m(ns_"x) cos[m(&, — &) — e ™Mx cos(mé,) — e™™s cos(mfs)}, Ne>1n,>0
m=

In(2¢) — Zm l{e‘m(”fﬂx) cos[m(&, — &)] — e™x cos(mé&,) — e™™7s cos(mé;)}, s > 0 > 1,

m=1MmM
_0U(s,x)
Ta(s,x) = on, =
%{_1 + Zm:l [_e—m("ls—"lx) cos[m(§x — §5)] — e™s cos(mé)] }v 0>ns =1y
]lz {e7m@ns) cos[m (€, — &)] — e™s cos(mé)}, 0 > nye > 15
N m=1
]lzw {e‘m(”X"ls) cos[m(fx - Es)] —e™s cos(mfs)}, Ny > 0> 14 (48)
S m=1
Fre Y e cosfn(e — €] e cos(me ] | e 21, > 0
IO (e cosTm — £)] - e cosmE)) e > 1> 0
s m=1
]lzw {e_m(ﬂs—ﬂx) cos[m($, — &) —e™™s COS(me)}, Ns > 0>y
N m=1
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where X = (1, &), s = (15,¢s) and J; = c¢/[cosh(n,) — cos(&s)].

3.1. Derivation of the analytical solution for the symmetry problem

The boundary condition of the symmetry problem is shown in Eq (44). The unknown boundary
densities on the two circular cylinders can be expanded by using the generalized Fourier series as
shown below:

(ah + Tioyah cosnés + Tioy bl sinnéy), n,<0,s € B,

tM(s) = (49)

]l(ag +Yr_jancosnég+Yr_brsinnég), ny,=>0,s € B,
S

where al,al,bl,ab,al, and b}, are unknown coefficients of the generalized Fourier series. By
substituting Egs (47a), (47f), (48a), (48f), (44) and (49) into Eq (6), and collocating the null-field
point on the left boundary, B!, we have

—2nv—m {Z(In( 2¢) —ng)al + Z;’fﬂ%e_n"oaﬁl - ZZ’:l%(—Ze_m’Oaé +al) cosné&, —
Sreipbhsinnécf —m{2In(20)af + Tigy e Mah + iy (2 M0a —  (50)
e 2Moql) cosn &, — e 2™op!l sinn fx]} = 0.

Similarly, substituting Eqs (47¢), (47d), (48c¢), (48d), (44) and (49) into Eq (6), and collocating
the null-field point on the right boundary, B”, we have

-1 {2 In( 2c)al + Zﬁzlie"""oaﬁl + Zﬁ=1% [(—e™2™Moql, + 2e ™ogl) cosné, —
e~ ?"opl sinn fx]} —2nV — T {Z(In( 2c) —ng)ag + Zi‘;l%e_"noa; + (51)
Z‘;‘izli [(2e™™0al — a},) cosn &, — b, sinnfx]} =0.

By adding Eqs (50) and (51) together, we obtain

(4In(2¢) — 2np)(ab + a§) + 2 Ty -e ™™o (ah + af) + oy [—(1+ e 2"0)(al, +

52
al) + 4e™o(al + al)] cosné, — Z‘;’izli [(1+ e~2"0)(bL + bT)]sinn &, = —4v (52)

After comparing the coefficient of generalized Fourier bases, we have
(4In(2c) — 2no)(ab + ab) + 22§=1%e‘"’70(afl +ah)=—-4v,n=1, 2, 3...
J% (14 e 2"0)(ak + ah) + 4e ™o(al +af) =0,n =1, 2, 3... (53)
Eu + e 2m0) (bl + bT) =0,n =1, 2, 3...
By similarly subtracting Eq (50) from Eq (51), we have
T {—Znoaé + Z;‘lerll [(—1 + e~ 2"0)a! cosn &, + (—1 + e~ 2™0)p} sinn Ex]} o
+7 {Znoag + Z:l°=1% [(1 — e 2™0)al cosné, + (1 — e 2™0)pl sinnfx]} =0 %)

After comparing the coefficient of generalized Fourier bases, we have
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Irzno(ag —a))=0,n=1, 2, 3...
1
4;(—1 +e o) (gl —al) =0, n=1, 2, 3... (55)

|1
o1+ 20y Bh —b) =0, n=1, 2, 3...

In order to solve the coefficients al and ar, we need to define a discriminant as shown below:
0 0
1 4e—2MN0

Dy(c,m) = 2In(2¢) — Mo + Xn=1- = (56)

n (14e—2nMo)’

For the case of two cylinders, Rumely [23] employed the complex variable to derive the
logarithmic capacity, as shown in Table 1. Since the logarithmic capacity is not a closed-form or an
exact formula, the postulate in Eq (28) for the case of two cylinders could not be analytically verified
at present. If D, # 0, the geometry of the problem is an ordinary scale, Eqs (53) and (55) yield the
coefficients as shown below:

v l 2e~ Mo
a,=aF =————
Dp(cmo) o (1+e~2mM0)

Substituting Eqs (47b), (47f), (48b), (48f), (44) and the obtained unknown boundary densities
into Eq (5) for the field solution of 7, < 0, we have the unique solution

ab,n=123... bb =b, =0,n=1.23.. (57)

ab =aly =

v
Dp(c.no)

4 e~2mMo 2( _ eMx e~ MNx
u(x) = ) © ( nnogZ T

<(21n(26)4'Ux4'2ﬁ=1;;:;2553 ~ Ln=1}, emMote-To
(58)

e"WX) cos(nfx)> , Mo <N, <0
Similar substitution of Eqs (47¢), (47¢), (48¢), (48¢), (44) and the obtained unknown densities
into Eq (5), the field solution for 1, = 0 yields

4 e_znTIO

v © w 2( _ eMx e Mx
u(x) = ((2 In(20) = Ny + Bipn ) = Bty > (e 7m0 S

Dp(c,1mo) n 1+e~2nMo

(59)
e‘"WX) cos(nfx)>,n0 =>1n,=0.

It is found that Eqs (58) and (59) show the symmetry solution. All potentials are shown in
Figure 1(c). This solution will be compared and discussed with that of Darevski [2] later.

If Dy(c,mg) = 0, a degenerate scale occurs. When the constant potential v # 0, it yields no
solution. When the constant potential v = 0, it yields infinite solutions. Equations (53) and (55) yield
the coefficients as shown below:

e kon=123... b\ =D} =0,n=123. (60)

r _ ol _ I 7 —
ao_ao_k' an_an_(1+e—2mlo) ’

where k is an arbitrary constant. In case of a degenerate scale, 1, becomes

—2nng

1 de
Mo = 2In(2c) + Z ;(1+e—_2nno) (61)
n=1

Substituting Eqs (47b), (47f), (48b), (48f), (44) and the obtained boundary unknown densities
into Eq (5) for the field solution of 7, < 0, we have the infinite solution,

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10007-10026.



10020

2 e™x + e~Mlx
(e—nﬂo

ux) =| (o + Ux)—z:— pr Ty

- — e”"JC) cos(né&,) |k, —mo <1, <0. (62)

n=1
Similar substitution of Eqs (47¢), (47e), (48c¢), (48¢), (44) and the obtained boundary unknown
densities into Eq (5), the field solution for 1, = 0 yields the infinite solution,

2 elx 4 e™Mlx
u@) =|{ (o — ) — z - <6"”"° e T o 9_""") cos(néy) |k, mo =2 n, =2 0. (63)
n=1

Equations (62) and (63) also indicate symmetry.
3.2. Derivation of the analytical solution for the anti-symmetry problem

Similarly, we consider the anti-symmetry problem. The coefficient of generalized Fourier bases
in Eqs (45) and (49) satisfy

—2nng
=(2In(26) = 1o + 4 Xt 5oy (0 + €§) =0,
%(1 + e~2™"0)(al, + al) + 4e "o (al +af) =0, n=1, 2, 3... (64)
~(1+e ) (bl + b)) =0, n=1, 2, 3...

and
2n0(ag — ap) = 4v,
1 _
~(-1+e noy(gh —al)=0,n=1, 2, 3..., (65)
~(—1+e 2o (b, —b;) =0, n=1, 2, 3...

We also find the discriminant, Dy (c,ny) in Eq (64). If D,(c,no) # 0, the geometry of the
problem is an ordinary scale. Equations (64) and (65) yield the coefficients as shown below:

al = —al) = :—O ab=a,=0n=123.. b, =b =0,n=123.. (66)

Substituting Eqs (47b), (47f), (48b), (48f), (45) and the obtained boundary unknown densities
into Eq (5) for the field solution of 7, < 0, we have

u(x) = vZ—’;, 1, <0. (67)

Substituting Eqs (47¢), (47e), (48¢), (48¢), (45) and the obtained unknown densities into Eq (5)

for the field solution of 1, = 0, we also have
u(®) =viE, 1, 2 0. (68)

All potentials are shown in Figure 1(d). The solution in Eq (68) matches well with that of
Lebedev et al. [8]. From the viewpoint of the MFS, this solution is the simplest one since only two
sources with opposite strengths are required to locate the two foci.

If Dy(c,ny) = 0, a degenerate scale occurs. Fortunately, it doesn’t result in no solution whether
v is equal to zero or not as shown in the boundary condition of Eq (45). Equations (64) and (65) yield
the coefficients as shown below:
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ab+al =2k al =al =—2"" k n=123.. bl =bl =0,n=123.. (69)

(1+e~2mM0) 7

where k is an arbitrary constant. For a degenerate scale case, 7, satisfies D,(c,ny) = 0, i.e.
1 4e~2™o

Mo = 21In(2¢) + Xoe1 — —=zmney (70)

n (1+e~2M10)

Substituting Eqs (47b), (47f), (48b), (48f), (45) and the obtained boundary unknown densities
into Eq (5) for the field solution of 7, < 0, we have

u(x) = %nx +k (ln(Z coshn, —2cosé&,) —ny +

w 1 _ cosh(nny)
2%n=1€ ""Omcos(nfx)); —To S Ny < 0.

(71)

Similarly substituting Eqs (47¢), (47e), (48¢), (48¢), (45) and the obtained unknown densities
into Eq (5), we obtain the field solution

u(x) = %Ux +k (ln(Z coshn, —2cosé,) —ny +

-nng
2 ¥y s —=———cosh(m,) cos(n&y) ), Mo = 1,>0.

n cosh(nng)

(72)

Equations (71) and (72) destroy the anti-symmetry due to the second part of k. To obey the anti-
symmetry solution, & should be zero. In other words, this & part in the solution of Eqs (71) and (72)
also disobey the bounded potential at infinity. This solution for a free constant, &, will be compared
with that of Lekner [4] later.
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(c) Solution in Egs (58) and (59) for two (d) Solution in Eqs (67) and (68) for two
circular cylinders subject to the symmetrical circular cylinders subject to anti-symmetrical
condition condition

Figure 1. Analytical solution of the electrostatic potential subject to conducting
cylinders derived by using the null-field BIEM.
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3.3. Results and discussions

According to the solution of Lekner [4], the general solution space of the symmetry problem in
Eq (44) is expressed as follows:

ux) = v+ Aug(x) (73)
where
v 2 _ h(nn,
uq(®) = In(2 cosh7r, — 2cos &) =1 + Trieq 2 70 250 cos(néy). (74)
By using the identity equation,
In(coshn, —cosé&,) =1, — Xm=1 % e ™x cosmé, —In2, (75)

the solution by using the direct BIE of Eq (59) is rewritten as

v

= - o 2 ,-nn, C0sh(nnx) _
ulx) = Datens) <ln(2 coshn, —2cosé,) + anlne 0 coshmmy) cos(né,) 6
w 1 4e2Mo
(2 In(2c) + Zn=1;1+ee_m)>'770 = 1,>0.

-V
Dp(cmo)
degenerate scale, i.e., Dy, (c,n,) = 0, the BIE solution does not exist if v # 0. If v = 0, the constant
term in Eq (57), ag, is a free constant. The electrostatic potential is obtained by

ux) =— (ln(Z coshn, —2cosé&,) —ny + Z?’;lie cos(nfx)) ag, Mo =
1,>0,

Equation (59) is the special case of Eq (73),if A = When the size of the boundary is a

—n1o cosh(nny)

cosh(nng) (77)

and Eq (73) can be reduced to
u(x) = Aug(x), (78)

since v is zero. It is easy to find that aj and A are equivalent.
Similarly, the general solution space of the anti-symmetry problem in Eq (45) is expressed
as follows:

u(x) = v Z—O + Aug (X) (79)
where
w 2 - h(nny
uyz(x) =In(2coshn, —2cosé,) —ny + anlze o %cos(ng‘x}. (80)

Lebedev et al. [8] considered the condition at the infinity, u(x) = 0,x — oo, the solution of
Eq (79) would reduce to only
Nx

u(x) = Vo (81)

It is the reason why the solution of Eq (68) by using the BIEM is a special case of Eq (79) for
A = 0. When the size of the boundary is a degenerate scale, i.e., Dy(c,n9) = 0, it yields infinite
solutions. Since the sum of constant terms, a} and al, in Eq (69) is a free constant, k, the
electrostatic potential yields

u(x) = UZ—X - (ln(Z coshn, —2cosé&,) —ny + (82)
0
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1 e ™o

n cosh(nng)

2)7=1 cosh(nn,) cos(nfx)) k, ny = n,>0.

It is easy to find that k and A are equivalent. To sum up, the free constant, 4 and u,(X) inthe
general solution by Lekner [4] are similar to the constant term in the boundary potential and the
obtained BIE solution for the degenerate scale by Chen et al. [9], respectively. The obtained BIE
solution for the degenerate case yields nontrivial boundary flux even though the boundary potential is
trivial. The generalized potential and the available solutions by using the BIEM for the problem
containing two cylinders are compared with each other in Table 3.

4. Conclusions

This paper investigates the solution space for the electrostatics of two cylinders using the BIEM.
Both the symmetric and anti-symmetric cases are considered. Flux equilibrium on the cylindrical
boundaries and the asymptotic behavior at infinity is also examined. Moreover, on the base of the
Fredholm alternative theorem, the relation of unique solution and the degenerate scale in the BIEM is
linked. The logarithmic capacity and the discriminant are also linked by using an exponential relation.
Besides, the degenerate scale is also related. Not only two cylinders but also a single one (circle or
ellipse) are considered. Finally, the results are compared with those derived by other researchers.
Linkage and agreement are made.
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Table 3. Comparison of the general solution and the BIE solution for the double cylinder subject to the symmetrical or anti-symmetrical

condition.
Anti-symmetry case Symmetry case
e - T ‘-"\ LT T T T T S
S T = T
St OO0 OO0
:\ v v ,“ :“ v v Py ]
G.E. Viu(x) =0, x €D
B.C. W) =—u"(x)=v,x€EB ul(x)=u"(x) =v,x€B
Equation of
Dy(c, mo)(ag + ag) = v+ (—v) Dy(c, no)ag =v
constant term
e e~2Mg

Discriminant

4
Dy (c, =21In(2c) — Z——
(€, Mo) n(2c) —no + 71+ e 20y

n=1

Ordinary scale ab =—a} = :—0 (unique solution) ab=a}= 5 (: - (unique solution)
(BIEM/BEM) u(x) = T u(x) =v-—ajuy
Db;tO Mo t A=_(M)=_ag
x _ 2
General solution | u(x) = vz—o + Augy P (aéﬂlg) g u(@) = v + Aug
(Infinite solution) Z
L
v=20 ab +al = 2k, ab —al = = -0 ab=al=k A=M=k
(Infinite o v=e 2
Degenerate scale luti (Infinite solution)
(BIEM/BEM) solution) u(®) = v+ kg = kug u(x) = v+ kuy = kuy
D, = )
b 0 v#0 ab +af =2k, ab—af == £0 a, is no solution
(Infinite e o 1= ag+ap =k v Luti
solution) u() =v_ “+kug 2 (No solution) ug is no solution
o0
u (%) = In(2 cosh 7, — 2 cos &) +z 2 gy O (g
Ugq(X) = In( 2 cos — 4 COS - —e ———Cos(n
d d 77x X 7]0 1n COSh(nT]O) X
n=

where £ is a free constant.
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