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Abstract: In recent years, automatic fault diagnosis for various machines has been a hot topic in the 
industry. This paper focuses on permanent magnet synchronous generators and combines fuzzy 
decision theory with deep learning for this purpose. Thus, a fuzzy neural network-based automatic 
fault diagnosis method for permanent magnet synchronous generators is proposed in this paper. The 
particle swarm algorithm optimizes the smoothing factor of the network for the effect of probabilistic 
neural network classification, as affected by the complexity of the structure and parameters. And on 
this basis, the fuzzy C means algorithm is used to obtain the clustering centers of the fault data, and 
the network model is reconstructed by selecting the samples closest to the clustering centers as the 
neurons in the probabilistic neural network. The mathematical analysis and derivation of the T-S 
(Tkagi-Sugneo) fuzzy neural network-based diagnosis strategy are carried out; the T-S fuzzy neural 
network-based generator fault diagnosis system is designed. The model is implemented on the 
MATLAB/Simulink platform for simulation and verification, the experiments show that the T-S 
fuzzy diagnosis strategy is significantly improved, and the design purpose is achieved. The fuzzy 
neural network has a parallel structure and can perform parallel data processing. This parallel 
mechanism can solve the problem of large-scale real-time computation in control systems, and the 
redundancy in parallel computation can make the control system highly fault-tolerant and robust. The 
fault diagnosis model based on an improved probabilistic neural network is applied to the fault data 
to verify the effectiveness and accuracy of the model. 

Keywords: fuzzy neural network; automatic fault diagnosis; intelligent analysis; permanent magnet 
synchronous generators 
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1. Introduction 

As a bridge between electrical and kinetic energy, the safe and stable operation of the motor is a 
prerequisite for the continuous operation of the entire electrical system. As engines often work in 
very harsh environments, overloading and insulation aging, which bring high ambient temperature 
and excessive demagnetization current, as well as long-term violent physical vibration and collision, 
will cause permanent magnet failure, thus leading to demagnetization failure [1]. The 
demagnetization failure will bring a series of chain reactions, further aggravating the temperature rise 
and increasing the current during motor operation, which may damage the whole motor in severe 
cases [2]. Therefore, the identification, classification, and location of demagnetization faults can help 
the maintenance personnel to find the spots early and reduce the maintenance cost, and they can also 
play a role in guiding the motor design [3]. This year, the research and development of permanent 
magnet synchronous motors worldwide have yielded fruitful results and practical experience, which 
provides many options for the future development of permanent magnet synchronous motors. 
Meanwhile, the permanent magnet synchronous motor does not readily dissipate heat due to its small 
size and compact structure, and it is easy to operate in high-temperature environments. Fault 
diagnosis is a technique to understand and grasp the operational status of a machine, determine the 
normal or abnormal status of the machine as a whole or locally, detect faults early, determine the 
cause of faults, and predict the occurrence of faults. Electric motors provide a constant source of 
power to the production equipment of a factory to ensure normal production. However, when the 
machine is overloaded, the long operation will cause the motor to be overloaded and stressed, and it 
will be easily affected by the external environment, which will lead to failure. If it is not judged and 
handled in time, the motor will not operate normally and even cause damage to the motor, bringing 
unforeseen economic losses to the enterprise. Therefore, motor fault diagnosis technology is very 
important, as it is the basis to ensure the normal and reliable operation of the motor. 

The design of permanent magnet synchronous motor (PMSM) controllers in areas with high 
control performance requirements, such as wind turbines and motors for electric vehicles, is subject 
to stringent requirements. The design process also requires the use of various parameters during the 
engine’s operation [4]. For example, in the PMSM magnetic field-oriented vector control system, the 
speed and current loops of the dual closed-loop system are controlled by PID regulators, and the 
parameters of the PID regulators are often related to the parameters of the permanent magnet 
synchronous motor. However, the actual motor operating parameters are susceptible to flux 
saturation, stator current, and temperature. For example, when the engine is operated for a long time 
and the temperature rises, the stator winding resistance becomes more extensive, and the magnetism 
of the permanent magnets decreases [5]. In this case, the torque performance of the motor 
deteriorates, further affecting the engine's efficiency. In addition, the fluctuation of the d-q axis 
inductance will also affect the output performance of the electromagnetic torque. These factors can 
lead to inaccurate motor controller design and reduce the reliability of the system operation [6]. As 
with other motors, the PMSM is subject to a high probability of failure due to the high external 
environmental impact and load shock. Regular operation of the PMSM is essential to monitor the 
health status of the motor, which is closely related to the motor parameters. However, in the 
long-term process of the engine, various failures are bound to occur due to its load, losses, 
surrounding environment, etc. Once it happens, it will usually lead to the whole system not working. 
More seriously, it may lead to the destruction of the entire production chain, causing a significant 
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impact on production life and causing certain property losses [7]. Therefore, regarding the problem 
of the motor being prone to failure, we should vigorously develop the research of motor fault 
diagnosis technology to take timely measures to minimize the impact caused by the loss when the 
motor fails. At the same time, studying the causes of failure and understanding the changes in motor 
parameters at the time of loss is also conducive to improving motors in the motor development 
process and accelerating the motor field’s rapid growth. Also, motor fault parameters are essential in 
motor fault location, decision-making, and maintenance [8]. Therefore, by studying the parameter 
changes of the PMSM, we can determine the operational status of the motor, and by monitoring the 
parameter changes of the PMSM, we can detect the fault early and eliminate the hidden trouble. 

Fault diagnosis is a technique to understand and grasp the operational status of a machine, 
determine the normal or abnormal status of the device as a whole or locally, detect faults early, 
determine the cause of defects, and predict the occurrence of spots [9]. Electric motors provide a 
constant source of power to the production equipment of a factory to ensure average production. 
However, when the machine is overloaded, it may bring unforeseen economic losses to the 
enterprise [10]. Therefore, the motor fault diagnosis technology is critical as it is the basis to ensure 
the normal and reliable operation of the motor. Due to the continuous development of deep learning 
technology and its successful application in image, video, and natural language processing, a wave of 
learning deep learning techniques has been initiated in the academic and industrial areas [11]. First, 
the deep learning problem is a machine learning problem, which involves algorithms that 
summarizes general laws from a limited number of samples and can be applied to unknown data. 
Secondly, the model used in deep learning is generally complex. The complexity mainly refers to the 
data flow between the original input of the sample and the output through multiple linear or 
nonlinear components. Each component will process the information, and then affect the subsequent 
components. Therefore, when we get to the final output, we don't know how much each component 
contributes. This problem is called the contribution degree allocation problem, which is a very 
critical problem in deep learning, it is related to how to learn the parameters in each component. The 
parameters of a neural network can be learned from the data by using machine learning. Because 
neural network models are generally complex and the information transfer path from input to output 
is generally long, the learning of complex neural networks can be viewed as deep learning. Because 
the back propagation neural network achieves a better recognition effect in recognition, the 
limitations of motor fault diagnosis are based on feature engineering theory. The disadvantage of 
permanent magnet motor turn-to-turn short circuit fault data is that it cannot support deep neural 
network learning. Using fuzzy neural networks, fault detection can be performed on modelled 
systems. The recursive operation of the fuzzy neural network is used for long-time forecasting, 
without reference to the actual output, to provide external inputs to the system within the training 
data. The compensated neural network model can forecast the normal operating behaviour of the 
system. If a fault occurs, the measured output of the system is compared with the predicted output to 
generate a residual, which will give the actual sensor measurement deviation. The residual signal is 
analyzed and fault detection can be performed by applying fault decision rules. The sensor output 
information can also be used to identify faults. This paper combines fuzzy neural networks and 
generative adversarial neural networks to propose a fuzzy neural network based on residual 
connectivity for permanent magnet motor fault diagnosis, using stator current and vibration of the 
permanent magnet motor as feature data. The fuzzy neural network method with residual connections 
eliminates the artificially selected feature steps of the PM motor fault diagnosis algorithm, and the 
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adversarial neural network is used to expand the feature data to provide sufficient data for the 
learning of the fuzzy neural network with residual connections. The study of motor fault diagnosis 
has important research significance for information acquisition technology, deep learning, and 
information processing technology, and it has important economic value for social production and 
life. According to the gradual change of the stator current and vibration of permanent magnet motor 
in the fault state, the stator current and vibration act as a feature of permanent magnet motor failure. 

The remainder of this paper is organized as follows. In the next section, the related works will 
be shown in detail. In Section 3, the fault types of permanent magnet motors and the formation 
mechanism of permanent magnet motor faults are introduced, and the application of artificial 
intelligence technology in the field of fault diagnosis is studied. In Section 4, the permanent magnet 
synchronous generator fault diagnosis method is simulated. Finally, some conclusions are drawn in 
Section 5. 

2. Related works 

In the middle of the 20th century, with the rapid development of computers, artificial 
intelligence control methods emerged and attracted more and more scholars to research intelligent 
control. Intelligent control refers to the ability to independently control the control object and 
achieve the desired control objectives with little human intervention and belongs to the advanced 
stage of control theory [12]. Intelligent control does not require a rigorous mathematical model of 
the controlled object but can simultaneously take into account the uncertainty and imprecision of the 
system when maintaining the system. PID control has the advantages of simple structure and easy 
parameter adjustment, so it is often used in PMSM servo control systems [13]. However, the PMSM 
is strongly nonlinear, and it isn't easy to obtain the desired control effect by simply using PID control 
as linear control. The problem is that the traditional PID control parameters can not be changed with 
the change of the motor system, which improves the dynamic response performance and 
anti-interference ability of the motor [14]. It is usually proposed to combine intelligent control with 
PID control to realize the real-time self-regulation of PID control parameters. The emergence of 
intelligent control is mainly used to deal with complex controlled objects, environments, or tasks [15]. 
So, when controlling extraordinary things with uncertain disturbance factors, intelligent control has 
become the preferred control method because of its nonlinear and self-correcting characteristics. It 
can achieve the purpose of improving the robustness of the system. The commonly used intelligent 
control methods are fuzzy control, neural network control, etc., and the combination of these 
intelligent control methods with each other or with advanced algorithms such as genetic algorithms 
and differential evolutionary algorithms can eliminate the influence of parameter changes and 
perturbations on the system, thus achieving better control results [16]. 

In general, traditional machine learning models need to extract features artificially, and then 
specific model algorithms will classify or predict the extracted features. In other words, traditional 
machine learning models rely heavily on feature extraction, and how well the features are extracted 
by humans will greatly affect the final results of the model. However, the process of feature 
extraction often takes a lot of time, and feature extraction also requires specialized knowledge, and 
different extraction methods are needed for different problems, which undoubtedly increases the 
difficulty of algorithm model design. Deep learning is a type of representation learning that does not 
require much human involvement and can automatically extract features from the data, simplifying 
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the model design process. Motor fault diagnosis technology is based on the mechanism of the motor 
fault. Collecting the vibration signal, temperature rise change, electrical characteristics, and other 
states during the motor’s operation can help to determine whether the operation of the engine is 
regular or not. With the joint efforts of researchers and scholars from various countries in the past 
decade, the motor fault diagnosis method has been realized in theory and achieved great success [17]. 
Although the motor fault diagnosis technology started late, many achievements have been obtained 
based on continuous development. The adaptive morphological method based on variational mode 
decomposition provides theoretical support for removing the characteristic frequency of rolling 
stretch signal [18]. The selection of a particle swarm algorithm can optimize the filter and facilitate 
the completion of adaptive filtering. Simulation experiments can be conducted to extract the 
characteristic fault signal of merit. The causes of rolling bearing faults can be analyzed and 
compared with adaptive morphology and other regulation methods. Zhang proposed a new way to 
diagnose motor inter-turn short circuit faults, the expansion of sample data, robust establishment, and 
training ensemble diversity are all taken care of by generative adversarial neural networks [19]. Then 
sparse self-coding deep learning networks are used to accomplish efficient and accurate fault 
diagnosis and classification. The combination of both can make this new method more precise and 
efficient. 

Using the finite element method, Zhang et al. [20] conducted an in-depth study of the internal 
magnetic field, branch current and counter potential variation patterns of a permanent magnet 
synchronous motor under different degrees of demagnetization and during regular operation and 
verified the reliability of the finite element method through experiments. Raj et al. [21] analyzed the 
stator current spectrum, wavelet variation processed the current signal, fused the sample information 
entropy, and compared them to extract the fault characteristic frequency and determine the 
appropriate fault characteristic quantity to detect the demagnetization fault of a permanent magnet 
synchronous motor. Saeed et al. [22] combined the methods of fundamental adaptive waveform and 
empirical modal decomposition to propose a form capable of diagnosing local demagnetization. Lu 
et al. [23] conducted a finite element analysis of the magnetic field distribution of a permanent 
magnet synchronous linear motor. They used a probabilistic neural network algorithm to identify and 
accurately classify its local demagnetization faults. The experimental results showed that the method 
has relatively high identification accuracy. Due to the characteristics of wind resource utilization, the 
operating conditions of wind turbines are variable [24]. There are many phases of current and speed 
sensor faults and common marks such as output gain variation, DC bias and output jamming. The 
complex operating conditions and multiple types of sensor faults lead to the imbalance of managing 
data and multi-sensor fault samples, which brings difficulties to the machine learning-based fault 
diagnosis methods regarding learner training and generalization performance [25]. The permanent 
magnet synchronous wind turbine operation control and fault diagnosis methods are designed in 
two-phase stationary or rotating reference coordinates. In symmetric three-phase systems, because 
the phase currents satisfy the constraint that the vector sum is zero, which leads to the system output 
measurement matrix row is not full of rank, the fault estimation observer built based on the 
traditional model can only realize the residual generation or fault estimation in two-phase stationary 
or rotating coordinates. It is challenging to locate and estimate the phase current sensor fault. 
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3. Fuzzy neural network-based fault diagnosis model design for permanent magnet 
synchronous generator 

3.1. Fuzzy neural network model construction 

Fuzzy reasoning is performed based on expert experience, and finally, a defuzzification 
operation is applied to the obtained undefined variables, thus getting the exact control amount of the 
controlled object. However, to use fuzzy control, it is necessary to add human experience, which can 
make a lot of time spent be on adjusting fuzzy rules. Neural networks have strong self-learning and 
self-adaptive capabilities. The feed-forward neural network is the structure of layer-by-layer 
“propagation” from front to back [26]. It has the advantages of simple design, easy implementation, 
and strong approximation ability. However, the neural network lacks the guidance of artificial 
knowledge and experience, and the initial values of the network parameters can only be zero or 
random numbers, leading to a long response time. If the fuzzy control and neural network are 
correctly combined, not only can the advantages of each part be reflected, but the disadvantages of 
each can also be compensated. In this chapter, a fuzzy neural network PI controller is designed and 
used to achieve real-time PI parameter self-adjust to enhance the system's immunity and robustness. 

Compared with other neuro-fuzzy systems, the T-S (Tkagi-Sugneo) model fuzzy neural network 
has convenient and efficient features. Take the rule 𝑟௜ as an example, the fuzzy inference is as 
follows: the inference rule represents the output as a linear combination of the inputs, where 𝑎௝

௜ is 

the fuzzy set of the fuzzy system; 𝑃௝
௜ is the undefined system parameters; 𝑦௜ is the work obtained 

according to the rule. 
Let the input be X = [X1, X2, …, Xk], and the affiliation of each input variable Xj is obtained 

according to the fuzzy rule as: 
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Calculate the output value of the fuzzy model based on the unclear calculation results iy : 
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The fuzzy neural network of the T-S model consists of five layers: input layer, fuzzy layer, 
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fuzzy rule layer, normalization layer, and output layer. The structure is shown in Figure 1. 
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Figure 1. Network structure diagram. 

The affiliation function and the weights of each layer of the fuzzy neural network greatly 
influence the network performance. The centroid and width in the Gaussian function and the network 
weights used in this paper are the main parameters of the whole fuzzy neural network, so specific 
learning algorithms need to be selected to correct the control parameters in the fuzzy neural network 
to make the control system achieve a good control effect. The error gradient method has been widely 
used with its mature theoretical research basis and the advantage of rigorous computational 
derivation. This paper uses the gradient descent method to adjust the network control parameters of 
the recurrent fuzzy neural network online. Similarly, the error function is defined as: 

2

2

( ) ( )o o

n
e

y n y n




                           (4) 

3.2. Permanent magnet synchronous generator failure characteristics analysis 

When the PMSM is in operation, physical quantities such as the current and voltage change 
with the motor, so the cause of motor failure can be analyzed by using these physical quantities, and 
the changes in physical quantities can be summarized as a basis for determining the loss [27]. In this 
paper, the fault diagnosis of the PMSM is performed by using the method based on signal analysis, 
where the physical quantity selected is the current. This section focuses on the changes in the 
harmonic components of the current that occur after a fault. When a PMSM experiences a 
turn-to-turn short-circuit fault in the winding, the symmetry of the magnetic field in the stator 
winding is broken. The current in the motor changes, where the wind in the fault phase is larger than 
the current in the other two phases, and the current in the further two phases increases compared to 
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the average current under the influence of the fault phase. And the frequency of these increased 
harmonic components is summarized as follows: 

 
( ) 1

s c

s

z p
f

f v


 



                               (5) 

where 𝑓௦ is the frequency of the motor, v shows a positive integer, z suggests the number of slots in 
the engine, and p is the number of pole pairs. When the air gap distance in the PMSM changes, the 
internal magnetic field also becomes uneven, resulting in a difference in the motor current, which is 
expressed as 
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1

2 1 1s
s
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

                                (6) 

The electromagnetic force, an essential parameter in the operation of permanent magnet 
synchronous motors, is influenced by several physical quantities simultaneously. During the engine's 
rotation, the rotor is subjected to electromagnetic forces in two directions: the tangential 
electromagnetic force, also known as the electromagnetic torque, which drives the rotor's rotation, 
and the radial electromagnetic energy, which is perpendicular to the shaft. 

The permanent magnet synchronous motor is a nonlinear, strongly coupled controlled system, 
and the electromagnetic coupling relationship between the stator and rotor parameters during the 
motor operation is complex and time-varying. To facilitate the analysis and design of better control 
algorithms for PMSM, it is necessary to simplify the PM synchronous motor to a certain extent and 
establish a simple and suitable mathematical model to idealize the PM synchronous motor, assuming, 
for example, (1) disregarding the magnetic circuit saturation, hysteresis, eddy currents, etc.; (2) 
disregarding the harmonic effects and considering the magnetic field generated between the motor 
stator winding and rotor permanent magnet as completely symmetrical and sinusoidally distributed; 
(3) does not consider the losses generated by temperature and frequency changes during motor 
operation; (4) no damping on the rotor and no damping effect on the permanent magnets. To 
downscale and decouple the complex PMSM mathematical model, the stationary coordinate 
transformation Clark transformation and synchronous rotating coordinate transformation and Park 
transformation are required to transform the mathematical model of the motor from the abc 
three-phase coordinate system to under the d-q two-phase synchronous rotating coordinate system. 
Since the motion of each pair of poles of the PMSM is the same, the analytical model of the motor is 
drawn with one pair of poles as an example. 

The three stator windings of a permanent magnet synchronous motor are spatially symmetrical 
and differ from each other by a 120° electrical angle. The three-phase stationary coordinate systems a, 
b, and c coincide with the center axis of the three stator windings. The a-axis is used as the stator 
reference axis. The dq coordinate system is rotated synchronously with the rotor, and the angle 
between the d-axis and the a-axis is defined as the rotor position angle. The stator voltage equation of 
the permanent magnet synchronous motor is: 
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                           (7) 

Vector control has the advantages of simple operation, good torque performance, and wide 
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speed range, and it can achieve high control performance when controlling PMSM systems. Vector 
control technology converts the stator current of a permanent magnet synchronous motor into 
currents in the dq coordinate system, which are the stator current excitation component id and the 
stator current torque component iq, and it controls these two present components separately to give 
the AC motor control performance that is similar to that of a DC motor. The proposed vector control 
makes a big step forward in developing motor control technology, and the block diagram of the 
PMSM vector control system is shown in Figure 2. 
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Figure 2. PMSM vector control system block diagram. 

3.3. Fuzzy neural network-based fault diagnosis system design for a permanent magnet synchronous 
generator 

Ambiguous natural language is often used to characterize states in condition monitoring and 
fault diagnosis. To determine states with fuzzy signs more accurately and efficiently, the concept of 
fuzzy sets must be used to describe the reasons for whether they belong to a state or not. It is 
described in terms of the degree of attribution, and affiliation. Especially for monitoring and 
diagnosing motor faults, the causal relationship between the causes and signs of the states is complex, 
and it is impossible to establish an accurate mathematical model between fault signs and states. A 
neural network can store the correlation between input and output in the form of weights by learning 
method and make associations based on them to realize the nonlinear mapping of information to 
production. 

Therefore, fuzzy logic systems and neural networks complement each other, and since both are 
processed in numerical form, they can be combined to form fuzzy neural networks. On the one hand, 
fuzzy neural networks can use linguistic descriptions to collect knowledge, which can quickly 
introduce enlightening expertise and track the inference process; on the other hand, they can have 
learning functions like neural networks to improve the accuracy of judgments [28]. Based on the 
traditional multilayer perceptron, it cannot handle expert linguistic descriptions, and can only deal 
with the ideal case of data, which is that the failure mode corresponding to specific data can only 
belong to a particular state but not to several states at the same time [29]. Therefore, this paper 
combines the fuzzy concept in the neural network so that both its input and output are semantic 
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subordination, which can handle input in the form of language and the output has a fuzzy nature in 
the fault mode recognition. 

In this paper, a fuzzy neural network with a biased recurrent neural network is used, whose 
learning algorithm and modification of weights that are consistent; the concept of fuzziness is fused 
on the input and output expressions. First, the input is fuzzified, and for each input feature S`, it can 
be expressed as a fuzzy set formed by short and intermediate-length, and significant linguistic 
expressions with the help of the affiliation function in fuzzy logic. Second, the output is fuzzified, as 
the samples are often pathological, their boundaries are unclear, and the patterns used for training 
often have non-zero values at more than one output, the corresponding pattern output cannot be made 
to be 1 and the rest to be 0. Therefore, in the training phase, the work should be made to reach the 
desired affiliation degree as much as possible. The backpropagation algorithm continuously checks 
the weighted values so that the output can give the corresponding pattern affiliation degree at any 
input. The backpropagation algorithm is used to alter the weighting values so that the work can 
provide the affiliation of the connected node at any information so that the fault diagnosis module 
can judge the state of the data with fuzzy boundaries more effectively. 

For the model problem with i output nodes of class l, the mean and standard deviation of the 
numerical training data, k is denoted by the n-dimensional vectors 𝜆௞ and 𝜎௞ respectively, then the 
weighted distance formula of the training model S for the class k is expressed as 

    2

( )
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j k ji k k j
j

z f    


                            (8) 

where 𝑓௝ is the j element of the i pattern. The weighted value 1/𝜎௞ି௝ is used to consider the 
variance of the class, the feature values with significant variance have smaller weights in the 
classification. The affiliation function of the i pattern to the k course is defined as 
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where f and g are two positive constants that control the fuzziness of the affiliation set of the class. 
Equation (9) represents the distance of a pattern to a class; the greater the distance, the smaller the 
affiliation degree. In the case of the maximum fuzzy degree, the distance has l non-zero elements. 
Then the fuzzy corrector can be used to increase the size of each type of affiliation: 
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k i k

k i
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w s w
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s
 
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
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The most crucial task of synchronous generator fault diagnosis is to extract the correct 
information reflecting the status of the generator equipment by analyzing and identifying the various 
external signs and information during operation and corresponding to its status pattern. This system 
is based on the analysis of possible abnormalities in the stator of synchronous generators in the case 
of rotor winding short-circuit faults and establishes a corresponding condition and fault diagnosis 
system. 

Synchronous generator rotor winding short circuit fault diagnosis is purposed to determine 
whether the rotor winding is working correctly according to the information change pattern 
generated during the generator operation; if it is not working correctly, the type of fault and the trend 
of the responsibility should be determined [30–32]. Therefore, the diagnosis process includes 
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acquiring and processing characteristic quantities, diagnosis decisions, and fault handling. The flow 
chart of synchronous generator fault diagnosis is shown in Figure 3. 
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Figure 3. Synchronous generator fault diagnosis flow chart. 

The two-pole synchronous generator fault diagnosis system studied in this paper mainly consists 
of the following basic functional modules: (l) data acquisition module: acquisition of various 
parameters, A/D conversion; (2) data analysis and processing module: analysis and processing of the 
sampled data, this paper is mainly to achieve harmonic voltage analysis and rotor excitation current 
prediction; (3) rotor winding state judgment module: through the analysis, determine what the rotor 
winding; (4) results in the output module. This paper uses a fuzzy neural network fault diagnosis 
method for permanent magnet synchronous generators to improve the recognition rate of one fault, 
which has practical value. It assembles a fuzzy neural network, which can learn complex data, has 
the advantages of strong adaptivity, fast operation and a good understanding of the fuzzy mechanism, 
and it can solve the irreversible relationship of the fuzzy system [33–35]. In the field of machine 
learning, the evaluation of models is very important, and only by choosing the evaluation method 
that matches the problem can we quickly find the problems of the algorithm model or the training 
process, and iteratively optimize the model. Model evaluation is mainly divided into two stages: 
offline evaluation and online evaluation [36]. And the evaluation metrics are chosen differently for 
different types of machine learning problems such as classification, regression, ranking, and 
sequence prediction. In this paper, the generator fault evaluation method based on fuzzy neural 
network modeling is used to pay more attention to the application in fault evaluation. 
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4. Analysis of results 

4.1. Fuzzy neural network model analysis 

Since the fuzzy neural network model adversarial neural network replaces all of the implicit 
layers of the generative adversarial neural network with convolutional layers, uses batch 
normalization in the generator and discriminator, and removes the fully connected layers. A relative 
comparison is applied to evaluate the effectiveness of the proposed fuzzy neural network-based 
adversarial neural network to expand the sample data and the generative adversarial neural network 
to expand the sample data and to verify the effectiveness of the generative adversarial neural network. 
The characteristics and demagnetization mechanism of the rotor permanent magnets of the 
permanent magnet synchronous motor were studied and analyzed. In this paper, the test set data is 
packaged and transferred to the training project file after the calibration of the dataset is completed. 
In the project folder, the author creates the init_weight file to assign the initial weights to the fuzzy 
neural network model and the weight_out folder to store the output weights after training. Then, the 
author creates the Traindata.cfg training file, import the config file, define the input layer, output 
layer, hidden layer, and activation function, and then call the Scikit-fuzzy algorithm API to determine 
the fuzzy layer. The training status is displayed every 10 iterations to view the gradient descent of the 
model loss function, and the systematic error is set to E = 1e – 2. The gradient of ke  decreases with 

the number of iterations as shown in Figure 4, and finally Matlibplot is called to plot the gradient of 
the error ke  during training of the fuzzy neural network. 

 

Figure 4. Gradient decreases with the number of iterations. 

In this experiment, because the experimental sample data used is not particularly large, there is 
no need to use a large computer for the experiment, and the machine performance of a personal 
computer is sufficient to complete the entire experimental process. The main configurations of the 
machines used in this experiment are shown in Table 1. 
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Table 1. Instrument configuration. 

Configuration Category Specific parameters 

Operating system Windows 10 operating system 

CPU Intel core i7-8750H 

Operating Memory 32.00 GB DDR4 

Video card 
NVIDIA RTX2060 
6G GDDR6 discrete graphics card 

Hard disk 512 GB SSD 

Development Platform ANSYS Maxwell 

Development Framework Tensorflow 

This paper analyzes the demagnetization mechanism of permanent magnets from the 
characteristics of permanent magnets, then theoretically analyzes the variation of torque and current 
signal under demagnetization fault. Finally, a finite element simulation model of the local 
demagnetization fault of the motor is built based on Maxwell software. In this paper, the trained 
weigh_out file path is imported into the test file, and the file uses the trained weights saved in 
weigh_out to build the input layer, output layer, hidden layer, and fuzzy layer. In turn, then the 
trained fuzzy neural network model is created. Finally, we import the test set to test the classification 
effect of the model. There are 200 calibrated samples in the test set, which are input into the fuzzy 
neural network model to obtain the input results. 

Table 2. Energy entropy of various types of faults. 

Failure Energy entropy 
Normal 0.005226  0.004584  0.004353  0.000726  0.005085  
Short circuit between turns 0.001281  0.006790  0.002736  0.004741  0.008752  
Demagnetization 10% 0.006472  0.006851  0.004716  0.002793  0.009262  
Demagnetization 20% 0.009090  0.008633  0.002316  0.006074  0.008170  
Demagnetization 30% 0.001623  0.009116  0.001359  0.000776  0.006982  
Demagnetization 40% 0.000166  0.003745  0.003484  0.008410  0.004476  
Demagnetization 50% 0.009139  0.008525  0.005160  0.005842  0.006051  
Demagnetization 60% 0.005972  0.005848  0.009768  0.005234  0.008451  

In this paper, we take the permanent magnet synchronous motor demagnetization fault and 
winding turn-to-turn short circuit fault as the research object and extract the current data of the motor 
in the normal state, 10%, 20%, 30% uniform demagnetization state and turn-to-turn short circuit state 
respectively through the experimental platform, and get the IMF (intrinsic mode function) 
components by VMD (virtual machine disk) decomposition based on the collected data. The energy 
entropy of each piece is eventually merged as the feature vector. The energy entropy of each type of 
fault designed in this paper is shown in Table 2. Each category includes 500 samples, and there are 5 
categories in total, so there are 2500 samples in the data set, and the sample labels have experts to 
give evaluation results. Since it is necessary to set up training data and test data for fault diagnosis by 
using the fuzzy network, 400 samples from each category are selected as the training set. The total 
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number of samples constituting the training set is 2000. The remaining 100 samples of each class, 
500 samples in total, are used as the test set to test the accuracy of the PNN (probabilistic neural 
network) model, PSO (particle swarm optimization) -PNN model and FCM (fuzzy clustering mean) 
-PSO-PNN model. The fuzzy neural network is trained based on the historical fault data records of 
the generator. When the input exceeds the training set, the trained fuzzy neural network can adjust 
itself online and generalize. The unsupervised training of the depth model using data from the normal 
operation of the equipment allows the trained self-encoder model to extract the features of the data in 
normal operation; then the test data is fed into the trained depth model, so that the reconstruction 
error will be smaller if the test data is normal, and larger if it is faulty data. 

This paper is compared with the conventional fuzzy fault diagnosis to verify the designed 
unspecific neural network generator for fault diagnosis. Matlab/Simulink is used to build the unclear 
fault diagnosis and fuzzy neural network fault diagnosis models, respectively. These two controllers 
are used as speed regulators for the vector diagnosis system of permanent magnet synchronous 
motors. The PMSM parameters used in the simulation are pole log p = 1, Rs = 0.901N, stator 
inductance ld = lq = 6.553 mH, and rotational inertia J = 1.2 × 10-4kgm2. The learning rate η = 0.33 
and momentum factor 0.01  , kp = 0.9, ki = 0.1 are obtained by reviewing the data and performing 
simulation debugging. The no-load speed curve for fault diagnosis is shown in Figure 5, given a 
speed of 1000 r/min, and the no-load start of the motor system with fuzzy PI control, and fuzzy 
neural network fault diagnosis, respectively. 

 

Figure 5. No-load speed curve for fault diagnosis. 

The training results of the fuzzy neural network with residual connections are shown in Figure 6. 
The number of convolutional layers is 48 for both down-sampling (average pooling) and overlapping 
pooling, and the loss rate of the deep convolutional neural network with residual connections is 0% 
after 3000 iterations of the diagnostic model. The trained neural network is used to perform 
error-free fault diagnosis of permanent magnet motors on 200,000 test samples. The recursive fuzzy 
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neural network controller is used in the PMSM vector control system. The sensor obtains the PM 
motor’s speed information, and the error is received by the difference between the feedback speed 
information and the given speed. Then the speed error variation is obtained by its derivation. The 
speed error and the error variation are used as two inputs to the recursive fuzzy neural network 
controller. 

 

Figure 6. Training results of fuzzy neural network with residual connections. 

Sample data capacity is essential for the learning efficiency and accuracy of deep neural 
networks. Therefore, to verify the effect of expanding the sample data capacity by deep convolution 
generative adversarial networks (DCGAN) on the accuracy of inter-turn short-circuit fault diagnosis 
of the permanent magnet motor. The original average and inter-turn short-circuit fault data are used 
in the ratio of 2:1 to build the training set, and the number of samples in the training set is 2400. 
After the sample data expansion by the DCGAN, the sample size increases from 2400 to 3200, and 
the ratio of “normal” data to “inter-turn short-circuit fault” in the training set is about 1.7. Also, 400 
sets of data are randomly selected from the inter-turn short-circuit fault sample data as the test set to 
test the effect of inter-turn short-circuit fault diagnosis. 

4.2. Permanent magnet synchronous generator fault diagnosis method implementation 

In machine learning and data mining applications, Scikit-Learn is a powerful Python package 
that we can use for classification, feature selection, feature extraction, and aggregation. In this paper, 
a fault in a two-pole synchronous generator generates a second harmonic voltage on the stator side of 
the synchronous generator. It causes a change in the rotor current. Therefore, the input variables are 
determined as the percentage of the stator’s second harmonic voltage relative to the total rated 
voltage and the percentage deviation of the rotor current from the standard condition. The fault type 
is used as the output variable. 

For the linguistic value fields of the input and output variables and the corresponding affiliation 
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functions, the number of linguistic values is often chosen as 3, 5 and 7. Then the defined fuzzy set 
defines its affiliation function, and the affiliation function should cover the whole range of values. If 
a range of values needs to be sensitive, then the corresponding affiliation function can be “dense”. In 
addition, there should be an overlap between the affiliation function, the general overlap of 25% to 
50%, to improve its robustness. 

 

Figure 7. Transformation of motor current and fault components. 

For the generator, rotor winding turn-to-turn short circuits, one-point grounding, and two-point 
grounding faults, any fault that the Fourier transform can detect can also be seen by the wavelet 
transform, and the wavelet transform has less volatility. The transformation of motor current and 
fault components is shown in Figure 7. Therefore, this paper uses the wavelet transform to analyse 
the simulated excitation current signal and extract the higher harmonics that reflect the fault 
components. 

By solving the formal equations and performing ANOVA for each transition equation with a 
significance test, the multifactor regression method was used to find out that the factors that have 
more influence on the rotor current from the stator side of the synchronous generator are: stator 
current, active power, reactive power, and power factor, and their regression coefficients are 0.0075, 
–0.0018, –0.3902, –0.13930. The regression coefficients are 0.0075, –0.0018, 1.3902, and –0.13930, 
and other factors are not significant to the rotor current, so they are not considered. Thus, the above 
four factors are used as the input to the rotor’s current prediction system. 

To verify the correctness and accuracy of the analytical model of the direct drive permanent 
magnet synchronous motor (DDPMSM) no-load back EMF (electromotive force) with different 
degrees of demagnetization of any number of permanent magnets, the irreversible demagnetization 
of 75%, 50%, 25% of the permanent magnets with number 1 at rated speed and 100 r/min, and the 
irreversible demagnetization of 75%, 50%, 25% of the permanent magnets with number 1 and 
number 2 at the same time was compared with the finite element results. The analytical calculations 
of the single coil no-load back potential and the narrow element results are compared and analyzed, 
as shown in Figure 8. It can be seen that the analytical results of the DDPMSM single coil no-load 
counter potential and the finite element calculation results agree. Still, there is a specific error caused 
by the neglect of the harmonic component in the analytical model. Simultaneously, with the increase 
of the demagnetization degree, the error between the analytical calculation results and the finite 
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element calculation results becomes larger and larger. This is because the harmonic content of the 
potential increases with the increase of demagnetization, so the error caused by ignoring the 
harmonics also increases. Therefore, the developed analytical model of DDPMSM no-load reactive 
potential can analyze the single-coil no-load reactive potential when different degrees of 
demagnetization faults occur in arbitrary numbered permanent magnets. 
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Figure 8. Fuzzy neural network for permanent magnet synchronous generator fault 
diagnosis before and after comparison analysis. 

In the actual operation of PM motors, due to the compact structure of PM motors, when a 
particular fault occurs in PM motors, failure to deal with it in time can cause damage to other parts of 
PM motors, resulting in multiple defects or concurrent faults in PM motors. Many scholars currently 
use a specific PM motor signal as a characteristic quantity for PM motor fault diagnosis. When a 
single fault occurs in a PM motor, a single signal as a distinct quantity can correctly diagnose the 
type of PM motor fault. When multiple defects or concurrent faults occur in a PMM (pulse mode 
multiplex), a single signal is not used as the characteristic quantity to correctly diagnose the type of 
PMM faults. Since the stator current signal and vibration signal contain the fault characteristics of 
the PM motor in different states, the stator current signal and vibration signal are used as the fault 
characteristics of the PM motor in this paper when multiple faults or concurrent faults occur in PM 
motors. The correct rate of PM motor fault diagnosis results using a single feature signal as PM 
motor fault diagnosis feature quantity is lower than the correct rate of PM motor fault diagnosis 
results using a composite feature signal as PM motor fault diagnosis feature quantity. To better 
validate the effectiveness of fuzzy neural networks in generator fault diagnosis. Using the same 
experimental environment, another fault data sample is used to train the fuzzy neural net. The 
analysis of the diagnosis results shows that the degradation fault degree prediction results obtained 
by using the fuzzy neural network-based local degradation fault diagnosis method proposed in this 
paper are more accurate than the degradation fault degree prediction results obtained based on the 
single domain feature parameters. 

5. Conclusions 

A permanent magnet motor is important driving equipment that is widely used in various 
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industries, whether the normal operation of a permanent magnet motor directly affects the operation 
status of production equipment, the study of permanent magnet motor fault diagnosis has a high 
economic and academic significance. Through reading a lot of literature about motor fault diagnosis 
and neural networks. Learn various fault diagnosis methods, and understand the advantages of each 
method and the differences between each method. In the era of big data, the learning ability of 
shallow neural networks seriously affects the accuracy of their fault diagnosis due to their weak 
generalization ability. In this paper, based on the summary of previous research, we propose a 
permanent magnet motor based on stator current characteristics and vibration characteristics by 
combining the powerful learning ability of deep neural networks in the context of big data. A fault 
diagnosis method of fuzzy neural network based on residual connection is proposed. As the generator 
fault phenomenon and the fault, cause have a close relationship, each fault phenomenon may be 
caused by one or more fault causes, and each spot will cause some corresponding sensation. The 
complexity and ambiguity of the fault phenomena, causes, and mechanisms of large generators are 
difficult to be described by accurate mathematical models, and it is difficult to rely on deterministic 
criteria to determine the nature of the fault. Currently, the fuzzy method is used for status monitoring 
and diagnosis based on obtaining the comprehensive effect of system status, accumulating 
maintenance experience, and concentrating expert opinions. Artificial intelligence technology and 
fault diagnosis technology can achieve more accurate fault diagnosis. This paper studies the 
mathematical model of a short circuit between turns of a permanent magnet synchronous motor. The 
analysis of the mathematical model reveals that the effect of an inter-turn short course on the engine 
can be expressed as a voltage component related to the number of shorted turns and fault resistance 
added to the fault-free motor mathematical model. A finite element simulation model was developed 
based on the equivalent circuit model. The FEM (finite element modeling) simulation shows that the 
current amplitude of the stator fault phase increases in the turn-to-turn short-circuits fault condition, 
the phase difference of the stator three-phase current is no longer 120°, the negative sequence current 
component of the stator recently increases as the number of turns increases and the fault resistance 
decreases, and the frequency-dependent member of the stator current spectrum changes. The 
simulation shows that the fuzzy neural network model with residual connections has faster learning 
efficiency and accuracy in PM motor fault diagnosis. When multiple faults or concurrent faults occur 
in PM motors, the accuracy of PM motor fault diagnosis results using composite feature signals as 
feature quantities is higher than that using single feature signals as feature quantities. 

The fuzzy neural network has a variety of cross-connected modules, and the residual connection 
module used in this paper is only one of them. If different diagnostic methods have different 
diagnostic results for the same feature quantity, it may be possible to analyze various 
cross-connected modules separately and integrate various cross-connected modules to achieve an 
online diagnosis of permanent magnet motors. The selection of optimal hyperparameters for neural 
networks is selected by experience and continuous repetition of trials regardless of whether it is a 
shallow neural network or a deep neural network. However, this method of selecting the optimal 
hyperparameters is not only time-consuming but also consumes the researchers’ efforts. Therefore, 
there is a need to design an optimization algorithm that can automatically delete the optimal 
hyperparameters of neural networks to improve the efficiency of researchers. 
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