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Abstract: Humanity has always benefited from an intercapillary study in the quantification of natural
occurrences in mathematics and other pure scientific fields. Graph theory was extremely helpful to
other studies, particularly in the applied sciences. Specifically, in chemistry, graph theory made a
significant contribution. For this, a transformation is required to create a graph representing a chemical
network or structure, where the vertices of the graph represent the atoms in the chemical compound
and the edges represent the bonds between the atoms. The quantity of edges that are incident to a vertex
determines its valency (or degree) in a graph. The degree of uncertainty in a system is measured by the
entropy of a probability. This idea is heavily grounded in statistical reasoning. It is primarily utilized
for graphs that correspond to chemical structures. The development of some novel edge-weighted
based entropies that correspond to valency-based topological indices is made possible by this research.
Then these compositions are applied to clay mineral tetrahedral sheets. Since they have been in use for
so long, corresponding indices are thought to be the most effective methods for quantifying chemical
graphs. This article develops multiple edge degree-based entropies that correlate to the indices and
determines how to modify them to assess the significance of each type.
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1. Introduction

The entropy of a probability measures the uncertainty of a system. This concept is strongly based
on statistical methodology. It is mainly used for chemical structures and their corresponding graphs. It
also provides information about graph structure and chemical topologies. It was used as a notion for
the first time in 1955. In many scientific and technical fields, entropy has applications. Intrinsic and
extrinsic entries are determined in this way. The idea of degree power is used to investigate networks as
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information functional. The authors put forward the idea of entropy for different topological indices.
The entropy of probability distributions is the foundation as described in. This parameter imparts a
lot of information about structures, graphs, and chemical topology of networks in network theory, by
which a parameter is known as degree powers. It is a base for graph theory in applied mathematics to
investigate networks as information functional. Authors, put forward the idea of entropy for a variety
of networks, like Shannon used for the entropy of probability distribution.

In modeling and designing any chemical network can be converted into a graph and this theory
plays a very important role. By using the graph theoretical transformation of a chemical network
or structure, we can determine many properties like physicochemical properties, thermodynamical
properties, and biological activities. Among them, by using the topological indies certain properties
can be characterized. Edge-weighted base entropy is also from the family of topological indices.

A simple molecular finite graph in chemical graph theory denoted both atom and chemical bond
in terms of vertices and edges, respectively. The numeric value of the topological index shows the
physical, chemical, and topological properties of a graph. With the help of chemical graph theory,
we can model the mathematical phenomenon of chemical networks. It has a relation to the nontrivial
application of graph theory for solving molecular problems. This theory plays a vital role in the field
of chemical science. Chem-informatics is the combination of chemistry, mathematics, and information
science. We can predict bio-activities and physical-chemical properties of the chemical compound by
using QSAR and QSPR, which are examined by chem-informative [1].

The authors of [2], computed some topological indies and corresponded to their entropies. They
discussed the relationship between numerical and graphical on the basis of topological indies and their
entropies. Furthermore, they also discussed the topological indies which give fruitful results for the
structural properties of g−C3N4, and some related applications are also available. According to [3], the
authors find the entropy value by applying different parameters like the total number of vertices, edges,
and degree of any graph. Then they compared the results with different graphs. They resulted that
increasing the vertices and edges of graphs, affects increasing the entropy of such graphs. Some crystal
structures based on non-kekulean benzenoid sub-structures are discussed in terms of entropies by using
the degree-based topological indices [4]. They also computed the relationship between degree-based
topological indices and degree-based entropy. They provided some applications in different topics like
chemical, biological, and physical reactivity processes. Given in the article [5], topological indices of
si2c3 − I and si2c3 − II and based on the results entropy measures are discussed. Here in [6], the
researchers contributed towards a tool for molecular graphs which is based on the weight of edges,
known as entropy. They relate the entropy measure with polynomial functions. Particularly, they
computed the entropy measure of magnesium iodide structure and find different entropies like Zagreb
and atom bond entropies.

In [7], the authors discussed the benzenoid hydrocarbon chemical structure. Shannon applied the
benzenoid entropy in the transmission rate of telephonic channels, optical communication, and
wireless. The impacts of high features in a different system. In this paper, the author discusses the
characteristics and effects of graph entropies in different topological indies like coronoid polycyclic
aromatic hydrocarbons. They computed the entropies through topological indies on degree terminal
vertices. In [8], researchers find the effective roll of metal-insulator transition superlattices (GST-Sw)
with different topological properties. Particularly, they discussed the atom-bond degree-based
topological indices which are applied in the heat formation of single crystal and monolayered
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structure of Ge-sb-te. The relation of this structure is also available. Researchers of [9], find different
entropies of crystallography chemical networks. The author particularly computed hyper and
augmented Zagreb, forgotten, and Balaban entropies for the crystallography structures of cup-rite
cu2o and titanium difluoride ti f2 by using different topological tools. First, second, modified and
augmented Zagreb indies, symmetric division, harmonic, inverse sum index, and forgotten indies are
computed in [10]. They computed these indices for two chemical structures crystal cubic carbon and
carbon graphite networks.

In [11], the author derived some degree-based temperature descriptors. He also computed
temperature entropies of molecular structure and related to degree-based temperature with the help of
specific information functions. He also compared graphically with the calculated function. All the
computed results from the given information provided more effective drug and covid-19 vaccines.
Authors of [12], focused on the carbon nanotubes which are useful in tissue engineering and
investigated the various entropies. They computed some entropies for different variants of carbon
nanotubes. They also investigated and compared the results of armchair carbon nanotubes with other
forms of structure. The researchers of [13], investigated the relation between the natural polymer of
cellulose network and pharmacological applicantion which provided a good result in a different
structure. They computed different K-Banhatti indices and their entropies. The nature polymer of
cellulose networks and their entropies are effective in various topics of chemical structural theory.
Structures of Polycyclic aromatic hydrocarbons are discussed in [14], and authors elaborated
intriguing properties based on the graph’s theoretical parameters. They discussed entropy measures
and their numerical values of given structures. Different entropies of the molecular structure of HCQ,
by using degrees of vertices and edges, are discussed in [15]. Particularly, they computed
degree-based topological characteristics of hydroxyethyl starch conjugated structures with
hydroxychloroquine. They also presented some relations of different entropies with other structures.
In the end, they compared the proven results in terms of numerical and graphical form.

Authors of [16], provide the main purpose of this article to study the properties of a graph and then
discuss the structure like hyaluronic acid (HA) curcumin conjugates. Moreover, the author computed
the entropies by using the degree-based topological indices with the help of the information function.
Indices are linked with total π-electron property and measured some entropies of trans-PD-(NH2)s
lattice and metal-organic super-lattice structures, by using the different graph parameters, in [17].
Structures of dendrimers based on cyclotriphosphazene (N3P3) which are applied to the topics of
balanced and computed the EPR temperature spectrum, are discussed in [18]. First of all the author
computed eccentricity-based indices and their entropies. After the above indices result the author
presented it numerically and graphically. Entropies of some variants of Y-shaped nano-junctions are
discussed in [19]. By using topological indices, knowledge discovery and representations of
molecular structures are considered in [20]. Particularly, authors computed topological indies like
atom-bond connectivity (ABC), the fourth version of ABC, geometric arithmetic (GA), and the fifth
version of GA. Finally, the authors computed the above indices for octa-nano sheets, equilateral
triangular, tetra sheets, rectangular sheets, and rectangular tetra sheets.

Graph entropies of porous graphene chemical networks are found in [21], by using some
topological indices. They also provide some application of chosen indices-based entropies,
particularly for the porous graphene structure. Different topological indies-based entropies of
armchair carbon nanotubes are found in [22]. They provide some applications of variants of carbon
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nanotubes, like capped uncapped, and semi-capped which are purely used in memory devices and
tissue engineering. Authors of [23] introduced the self-powered vertex degree topological indices and
computed the graph entropy measures for tessellations networks, such as the isentropic later which is
known as a non-isomorphic tessellation of kekulenes. Researchers of [24], computed the entropies of
the structures of fractal and Cayley tree-type dendrimers by using the different topological indies and
their degree-based results. The chosen structures are types of dendrimers denoted by Fr and Cm, n.

The Mostar, Padmakar-Ivan (PI), and Szeged indies of the molecular graph of two kinds of
dendrimers, in which one is Phthalocyanines and 2nd is Porphyrine are discussed in [25]. The author
also computed the entropies of these structures and relates these with other topological indies and
their entropies.

Three classes of reticular metal-organic frameworks, graph entropies, enumeration of circuits,
walks and topological properties are computed and analyzed in [26]. They also used different
properties like eccentricities, radius, diameter, vertex, and degree to find the thermochemistry for the
reticular network. In the [27] article, the authors describe and explain the characterization of
two-dimensional coronene fractals in terms of different topological indies. The author also computed
the entropy measure and compared it with other topological indies. they used machine learning
techniques for robust computation of enthalpies. Moreover, they used NMR and ESR spectroscopic
patterns of coronene fractals. In [28], the authors determine the data difficulty handling by using the
entropy measure. For this, they collected the data in a different field from science, for this research
work they faced a problem, the data is not accurate, and for this, they used the entropy measure to get
the non-redundant, non-correlated data. The authors computed a good solution by using good
algorithms for research and entropy measures. There is 25 entropy measure is taken for the
classification procedure and compares its result. The crystal structure of the polyphenylene network
for photocatalysis is discussed in [29], and find some topological indies. By using these indices they
work for the thermodynamic properties namely entropy and heat which are taken fruitful results for
the crystal structure. They concluded that effective application due to the chosen topological indies
and their corresponding entropies occurred.

A biochemistry network namely t-level hypertrees of corona product of hypertrees with path are
produced in [30]. The author also works with different topological indies like eccentricity-based indies
and their entropies for the chosen biochemical network. Crystal structure of titanium difluoride TiF2

and the crystallographic structure of CU2O are discussed in the paper given by [31]. The author also
computed the different entropies of these structures and relates them to different topological indies like
first, second, and third redefined Zagreb indices, fourth atom bond connectivity index, fifth geometric
arithmetic, and Sanskruti index and their entropies are discussed. For further results related to the topic
is found in [32–34]. Moreover, closely related work can be found in [35–45].

2. Methodology of proposed works

Let E(G) be the edge and V(G) be the vertex of a graph. The degree of a vertex v in a graph
determine by the attached edges with a vertex in the graph, and it is denoted by dv. A distance d(a, b)
between a and b vertices are the shortest length path of the graph. The order and size of the graph are
|V(G)| and |E(G)|, respectively. Following are some formulations of the topological indices we used to
develop the entropies.
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• First redefined Zagreb index

RZ1(G) =
∑

ab∈E(G)

da + db

dadb
. (2.1)

• 2nd redefined Zagreb index

RZ2(G) =
∑

ab∈E(G)

dadb

da + db
. (2.2)

• Third redefined Zagreb index

RZ3(G) =
∑

ab∈E(G)

dadb (da + db) . (2.3)

• Augmented Zagreb index

AZ(G) =
∑

ab∈E(G)

(
dadb

da + db − 2

)3

. (2.4)

• Albertson index

A(G) =
∑

ab∈E(G)

|da − db|. (2.5)

• Irregularity measure index

IM(G) =
∑

ab∈E(G)

(da − db)2 . (2.6)

• Reformulated Zagreb index

RZ(G) =
∑

ab∈E(G)

(da − db − 2)2 . (2.7)

• Forgotten index

F(G) =
∑

a∈V(G)

d3
a. (2.8)

• First gourava index

GO1(G) =
∑

ab∈E(G)

[da + db + dadb]. (2.9)

• First hyper gourava index

HGO1(G) =
∑

ab∈E(G)

[da + db + dadb]2. (2.10)
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• Second gourava index

GO2(G) =
∑

ab∈E(G)

[(da + db).(dadb)]. (2.11)

• Second hyper gourava index

HGO2(G) =
∑

ab∈E(G)

[(da + db).(dadb)]2. (2.12)

Given above is the first part of our methodology, corresponding to Eqs (2.1)–(2.12), the given below
are edge-weighted based entropies. Some of these entropies are developed already, but most of them
are new and we are developing and computing for the first time. The notation of entropy is used by the
letter λRα(G) for the topological index Rα for the graph G.

• Entropy of first redefined Zagreb index

λRZ1(G) = −
1

RZ1(G)
log

 ∏
ab∈E(G)

(
da + db

dadb

) da+db
dadb

 + log (RZ1(G)) . (2.13)

• Entropy the second redefined Zagreb index

λRZ2(G) = −
1

RZ2(G)
log

 ∏
ab∈E(G)

(
dadb

da + db

) dadb
da+db

 + log (RZ2(G)) . (2.14)

• Entropy the third redefined Zagreb index

λRZ3(G) = −
1

RZ3(G)
log

∏
ab∈E(G)

[dadb (da + db)][dadb(da+db)] + log (RZ3(G)) . (2.15)

• Entropy the augmented Zagreb index

λAZ(G) = −
1

AZI(G)
log


∏

ab∈E(G)

( dadb

dadb − 2

)3
(

dadb
dadb−2

)3 + log (AZ(G)) . (2.16)

• Entropy of Albertson index

λA(G) = −
1

AI(G)
log

 ∏
ab∈E(G)

(|da − db|)(|da−db |)

 + log (A(G)) . (2.17)

• Entropy irregularity measure

λIM(G) = −
1

IM(G)
log

 ∏
ab∈E(G)

[
(da − db)2

](da−db)2
 + log (IM(G)) . (2.18)
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• Entropy reformulated Zagreb index

λRZ(G) = −
1

RZ(G)
log

 ∏
ab∈E(G)

[
(da − db − 2)2

](da−db−2)2
 + log (RZ(G)) . (2.19)

• Entropy of forgotten index

λF(G) = −
1

F(G)
log

 ∏
a∈V(G)

[
d3

a

]d3
a

 + log (F(G)) . (2.20)

• Entropy of first gourava index

λGO1(G) = −
1

GO1(G)
log

 ∏
ab∈E(G)

(da + db + dadb)(da+db+dadb)

 + log (GO1(G)) . (2.21)

• Entropy of first hyper gourava index

λHGO1(G) = −
1

HGO1(G)
log

 ∏
ab∈E(G)

(da + db + dadb)(da+db+dadb)

 + log (HGO1(G)) . (2.22)

• Entropy of second gourava index

λGO2(G) = −
1

GO2(G)
log

 ∏
ab∈E(G)

[(da + db) dadb][(da+db)dadb]

 + log (GO2(G)) . (2.23)

• Entropy of second hyper gourava index

λHGO2(G) = −
1

HGO2(G)
log

 ∏
ab∈E(G)

[(da + db) dadb][(da+db)dadb]

 + log (HGO2(G)) . (2.24)

3. Chemical structure for the computational works

Clay mineral tetrahedral sheets are represented by the notation TS CMβ,γ. Various edge degree-
based entropy measurements are applied to tetrahedral sheets in the aforementioned paper. One of the
platonic graphs, the tetrahedral graph, has four vertices and six edges. It can be seen as a solid. The
only planer construction of its isomorphic graphs, such as the complete graph K4 and wheel graph
W4, is the tetrahedral graph. Chemical graph theory uses tetrahedral sheets made by tetrahedral graph
polymerization to reflect silicone and other clay minerals. On tetrahedral sheets, interdisciplinary
topics can be accommodated via combinatorial properties such as labeling, coloring, enumeration, and
indexing as well as algorithmic operations such as shortest path and spanning tree. Figure 1 depicts the
tetrahedral sheets of clay minerals TS CMβ,γ for β = 2, γ = 2. There are topological indices available
in [46] for Eqs (4.1)–(4.12).

The graph TS CMβ,γ contains 10βγ + 7β + γ are vertices and 24βγ + 12β total count of edges. In
TS CMβ,γ there are two types of vertices having degrees 3 or 6. The vertex set of TS CMβ,γ can be
distributed according to their degrees.
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Let

Vi = {a ∈ V(TS CMβ,γ) : da = i}.

This indicates that the vertices of degrees i are present in the set Vi. According to their degree, the set
of vertices is as follows:

V3 = {a ∈ V(TS CMβ,γ) : da = 3}
V6 = {a ∈ V(TS CMβ,γ) : da = 6}

Since |V3| = 4βγ + 6β + 2γ and |V3| = 6βγ + β − γ, we can also subdivide the edges of TS CMβ,γ into
following three subsets according to the degree of its end vertices.

E3,3 = {ab ∈ TS CMβ,γ : da = 3, db = 3}
E3,6 = {ab ∈ TS CMβ,γ : da = 3, db = 6}
E6,6 = {ab ∈ TS CMβ,γ : da = 6, db = 6}

Note that E(TS CMβ,γ) = E3,3 ∪ E3,6 ∪ Eβ,γ. The number of edges incident to one vertex of degree 3
and other vertices are 3, 6 are 4β + 2γ, 12βγ + 10β + 2γ respectively, so |E3,3| = 4β + 2γ, |E3,3| =

12βγ+ 10β+ 2γ. The edges that are incident to two vertices of degree 6 are now the remaining number
of edges, which are |E6,6| = 12βγ − 2β − 4γ.

Figure 1. A particular example of tetrahedral sheets of clay mineral.

4. Main results and some computational works

In this section, we will present our main results and some computational work in terms of
topological indices and corresponding entropies.
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RZ1I (G) =60βγ + 20β − 5γ. (4.1)

RZ2I(G) (G) =77128βγ + 972β − 1296γ. (4.2)

RZ3I(G) (G) =
32752512

42875
βγ +

83883843
686000

β −
178136253
1372000

γ. (4.3)

AZ (G) =144βγ + 60β − 6γ. (4.4)

A (G) =36βγ + 30β + 6γ. (4.5)

IM (G) =108βγ + 90β + 18γ. (4.6)

RZ (G) =1392βγ + 345β − 270γ. (4.7)

F (G) =1404βγ + 378β − 162γ. (4.8)

GO1 (G) =603βγ + 234β − 108γ. (4.9)

HGO1 (G) = 36396βγ + 3582β − 7308γ. (4.10)

GO2 (G) =7128βγ + 972β − 1296γ. (4.11)

HGO2 (G) =2554416βγ − 9944β − 688176γ. (4.12)

Now discuss the following properties of general topological invariant (IG) based on degree of
vertices in a graphs (G).

• Entropy of first redefined Zagreb index

λRZ1 (G) = −
1

RZ1(G)
log

 ∏
ab∈E(G)

da + db

dadb

da+db
dadb

 + log (RZ1(G)) .

Computing the First Redefined Zagreb index by using Eq (2.1), we will get the result given in
Eq (4.1). Now using Eq (4.1) in the formula of entropy of First Redefined Zagreb index, which is
given in the Eq (2.13). After simplification, we will get the result given in the Eq (4.13).putting
the values

λRZ1 (G) = −
1

10βγ + 7β + γ
log


(2

3

) 2
3


4β+2γ

×

(1
2

) 1
2


12βγ+10β+2γ

×

(1
3

) 1
3


12βγ−2β−4γ .
λRZ1 (G) = −

1
10βγ + 7β + γ

log [(0.7631)(0.7071)(0.6934)] + log
[
10βγ + 7β + γ

]
. (4.13)
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• Entropy the second redefined Zagreb index

λRZ2 (G) = −
1

RZ2(G)
log

 ∏
ab∈E(G)

[
dadb

da + db

][ dadb
da+db

] + log (RZ2(G)) .

Computing the Second Redefined Zagreb index by using Eq (2.1), we will get the result given
in Eq (4.1). Now using Eq (4.1) in the formula of entropy of Second Redefined Zagreb index,
which is given in the Eq (2.13). After simplification, we will get the result given in the Eq (4.14).
Putting the value

λRZ2 (G) = −
1

60βγ + 20β − 5γ
log


2
3

2
3
4β+2γ

×

[
1
2

]12βγ+10β+2γ

×

[
1
3

] [
1
3

]12βγ−2β−4γ


+ log
[
60βγ + 20β − 5γ

]
.

λRZ2 (G) = −
1

60βγ + 20β − 5γ
log [1.8371427] + log

[
60βγ + 20β − 5γ

]
. (4.14)

• Entropy the third redefined Zagreb index

λRZ3 (G) = −
1

RZ3(G)
log

 ∏
ab∈E(G)

[dadb(da + db)]dadb(da+db)

 + log (RZ3(G)) .

Computing the Third Redefined Zagreb index by using Eq (2.2), we will get the result given in
Eq (4.2). Now using Eq (4.2) in the formula of entropy of Third Redefined Zagreb index, which is
given in the Eq (2.14). After simplification, we will get the result given in the Eq (4.15). Putting
the values

λRZ3 (G) = −
1

7128βγ + 972β − 1296γ
log


3
2

3
2
4β+2γ

×
[
(2)2

]12βγ+10β+2γ

×
[
(3)3

]12βγ−2β−4γ
]
+ log

[
7128βγ + 972β − 1296γ

]
.

λRZ3 (G) = −
1

7128βγ + 972β − 1296γ
log

[
[(54)(54)(162)(162)](432)(432)

]
+ log

[
7128βγ + 972β − 1296γ

]
. (4.15)

• Entropy the augmented Zagreb index AZ(G)

λAZ (G) = −
1

AZ(G)
log


∏

ab∈E(G)

( dadb

dadb − 2

)3
(

dadb
dadb−2

)3 + log (AZ(G)) ,

= −
1

32752512
42875 βγ +

83883843
686000 β −

178136253
1372000 γ

.
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Computing the augmented Zagreb AZ(G) index by using Eq (2.3), we will get the result given in
Eq (4.3). Now using Eq (4.3) in the formula of entropy of augmented Zagreb AZ(G) index, which
is given in the Eq (2.15). After simplification, we will get the result given in the Eq (4.16).

λAZ (G) = −
1

32752512
42875 βγ +

83883843
686000 β −

178136253
1372000 γ

log
[[

(54)54
][4β+2γ]

× [(162)(162)]
[12βγ+10β+2γ]

×
[
(432)(432)

][12βγ−2β−4γ]
]
+ log

 1
32752512

42875 βγ +
83883843

686000 β −
178136253

1372000 γ

 .

log

(6
4

) 6
4
(
18
7

) 18
7
(
36
10

) 36
10
 + log

[
32752512

42875
βγ +

83883843
686000

β −
178136253
1372000

γ

]
. (4.16)

• Entropy for variation of Randić index R′(G)

λR′ (G) = −
1

R′(G)
log

 ∏
ab∈E(G)

[
1

max(dadb)

][ 1
max(dadb)

] + log
(
R′(G)

)
Computing the Variation of Randić index R′(G) by using Eq (2.4), we will get the result given in
Eq (4.4). Now using Eq (4.4) in the formula of entropy of Variation of Randić index R′(G),
which is given in the Eq (2.16). After simplification, we will get the result given in the Eq (4.17).
Putting the values

λR′ (G) = −
1

144βγ + 60β − 6γ
log


(729

343

) 729
343


4β+2γ

×

(729
512

) 729
512


12βγ+10β+2γ

×

(5832
4913

) 5832
4913


12βγ−2β−4γ + 1

144βγ + 60β − 6γ
.

λR′ (G) = −
1

144βγ + 60β − 6γ
log

[
1

max 3
1

max 6
1

max 6

]
+

[
144βγ + 60β − 6γ

]
. (4.17)

• Entropy Albertson index

λA (G) = −
1

A(G)
log

 ∏
ab∈E(G)

(|da − db|)(|da−db |)

 + log (A(G)) .

Computing the Albertson index by using Eq (2.5), we will get the result given in Eq (4.5). Now
using Eq (4.5) in the formula of entropy of Albertson index, which is given in the Eq (2.17). After
simplification, we will get the result given in the Eq (4.18). Putting the values

λA (G) = −
1

36βγ + 30β + 6γ
log

[
(3)12βγ+10β+2γ

]
+ log

[
36βγ + 30β + 6γ

]
. (4.18)
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• Entropy irregularity measure

λIM (G) = −
1

IM(G)
log

 ∏
ab∈E(G)

[
(da − db)2

](da−db)2
 + log (IM(G)) .

Computing the Irregularity measure by using Eq (2.6), we will get the result given in Eq (4.6).
Now using Eq (4.6) in the formula of entropy of Irregularity measure, which is given in the
Eq (2.18). After simplification, we will get the result given in the Eq (4.18). Putting the values

λIM (G) = −
1

108βγ + 90β + 18γ
log

[(
(9)9

)12βγ+10β+2γ
]
+ log

[
108βγ + 90β + 18γ

]
. (4.19)

• Enrtopy Reformulated Zagreb index

λRZ (G) = −
1

RZ(G)
log

 ∏
ab∈E(G)

[
(da − db − 2)2

](da−db−2)2
 + log (RZ(G)) .

Computing the reformulated Zagreb index by using Eq (2.7), we will get the result given in
Eq (4.7). Now using Eq (4.7) in the formula of entropy of Reformulated Zagreb index, which is
given in the Eq (2.19). After simplification, we will get the result given in the Eq (4.20). Putting
the values

λRZ (G) = −
1

1392βγ + 345β − 270γ
log

[[
(4)4

]4β+2γ
×

[
(25)25

]12βγ+10β+2β

×
[
(4)4

]12βγ−2β−4γ
]
+ log

[
1392βγ + 345β − 270γ

]
. (4.20)

• Entropy of forgotten index

λF (G) = −
1

F(G)
log

 ∏
a∈V(G)

[
d3

a

]d3
a

 + log (F(G)) .

Computing the forgotten Zagreb index by using Eq (2.8), we will get the result given in Eq (4.8).
Now using Eq (4.8) in the formula of entropy of Forgotten Zagreb index, which is given in the
Eq (2.20). After simplification, we will get the result given in the Eq (4.21). Puttting the values

λF (G) = −
1

1404βγ + 378β − 162γ
log

[[(
(3)3

)27
]4βγ+6β+2γ

×

[(
(6)3

)216
]6βγ+β−γ

]
+ log

[
1404βγ + 378β − 162γ

]
. (4.21)

• Entropy of first gourava index

λGO1 (G) = −
1

GO1(G)
log

 ∏
ab∈E(G)

(da + db + dadb)(da+db+dadb)

 + log (GOI1(G)) .
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Computing the first gourava index by using Eq (2.9), we will get the result given in Eq (4.9). Now
using Eq (4.9) in the formula of entropy of First Gourava index, which is given in the Eq (2.21).
After simplification, we will get the result given in the Eq (4.22). Putting the values.

λGO1 (G) = −
1

603βγ + 234β − 108γ
log

[[
(15)15

]4β+2γ
×

[
(27)27

]12βγ+10β+2γ

×
[
(48)48

]12βγ−2β−4γ
]
+ log

[
603βγ + 234β − 108γ

]
. (4.22)

• Entropy of first hyper gourava index

λHGO1 (G) = −
1

HGO1(G)
log

 ∏
ab∈E(G)

(da + db + dadb)(da+db+dadb)

 + log (HGO1(G)) .

Computing the first hyper gourava index by using Eq (2.10), we will get the result given in
Eq (4.10). Now using Eq (4.10) in the formula of entropy of First Hyper Gourava index, which
is given in the Eq (2.22). After simplification, we will get the result given in the Eq (4.23).
Putting the values

λHGO1 (G) = −
1

36396βγ + 3582β − 7308γ
log

[[
(15)15

]4β+2γ
×

[
(27)27

]12βγ+10β+2γ

×
[
(48)48

]12βγ−2β−4γ
]
+ log

[
36396βγ + 3582β − 7308γ

]
. (4.23)

• Entropy of second gourava index

λGO2 (G) = −
1

GO2(G)
log

 ∏
ab∈E(G)

[(da + db) dadb][(da+db)dadb]

 + log (GO2(G)) .

Computing the second gourava index by using Eq (2.11), we will get the result given in Eq (4.11).
Now using Eq (4.11) in the formula of entropy of Second Gourava index, which is given in the
Eq (2.23). After simplification, we will get the result given in the Eq (4.24). Putting the values.

λGO2 (G) = −
1

7128βγ + 972β − 1296γ
log

[[
(54)54

]4β+2γ
×

[
(162)162

]12βγ+10β+2γ

×
[
(432)432

]12βγ−2β−4γ
]
+ log

[
7128βγ + 972β − 1296γ

]
. (4.24)

• Entropy of second hyper gourava index

λHGO2 (G) = −
1

HGO2(G)
log

 ∏
ab∈E(G)

[(da + db) dadb][(da+db)dadb]

 + log (HGO2(G)) .

Computing the scond Hyper Gourava index by using Eq (2.12), we will get the result given in Eq
(4.12). Now using Eq (4.12) in the formula of entropy of Second Hyper Gourava index, which is
given in the Eq (2.24). After simplification, we will get the result given in the Eq (4.25). Putting
the values

λHGOI2 (G) = −
1

2554416βγ − 99144β − 68817γ
log[

(
(54)54

)4β+4γ
×

(
(162)162

)12βγ+10β+2γ
]

+ log
(
(432)432

)12βγ−2β−4γ
+ log

[
2554416βγ − 99144β − 688176γ

]
. (4.25)
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5. Conclusions

A network or structure’s edge weight-based entropy offers structural details and in-depth content in
the form of mathematical equations. This study contained the edge valency-based entropies of
tetrahedral sheets of clay minerals. It highlights the molecular attributes in the form of a logarithmic
function and offers the structural information of chemical networks or their related build-up graphs.
These entropies are newly developed in this work and can be considered as an application or
computational work for other networks or structures as a future direction for the researchers.
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