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Abstract: Objective: Non-invasive fetal ECG (NI-FECG) provides a non-invasive method to monitor
the health of the fetus. However, the NI-FECG is easily interfered by noise, which makes the signal
quality decline, leading to the fetal heart rate (FHR) monitoring becoming a challenging task. Methods:
In this work, an algorithm for dynamic evaluation of signal quality is proposed to improve the multi-
channel FHR monitoring. The innovation of the method is to assess the signal quality in the process
of multi-channel fetal QRS (FQRS) complexes detection. Specifically, the detected FQRS is used as
quality unit. Each quality unit can be a true R peak (TR) or a false R peak (FR). It is the basic quality
information in this work. The signal quality of each channel is estimated by estimating the correctness
of the detection results. Further, the TRs of all channels can be fused to obtain more reliable fetal heart
rate monitoring. Main results: Analysis results demonstrate that the proposed algorithm is capable of
selecting the good quality signal for FQRS detection achieving 97.40% PPV , 98.33% S E and 97.86%
F1. Significance: This work sheds light on the quality assessment of fetal monitoring signal.
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1. Introduction

Non-invasive fetal ECG (NI-FECG) provides a non-invasive method to monitor the health of the
fetus in the pregnant women [1–4]. The NI-FECG collects abdominal ECG (AECG) signals from the
abdomen of pregnant women [5–7]. The AECG is often contaminated by maternal ECG (MECG),
baseline drift and electronic random noise during acquisition [8–10]. The overlap of MECG and noise
results in a challenging problem of fetal QRS (FQRS) complexes detection [11, 12]. This raises a
related issue: how to quantify the quality of abdominal signals in the case of low signal-to-noise
(SNR)? This work focuses on evaluating the signal quality in the scene of FQRS detection.

Several methods have been proposed to solve the signal quality evaluation problem of adult
ECG. These methods include detection-consistency method, energy-based method and statistics-based
method [13–18]. The goal of the detection-consistency algorithm is to calculate the consistency of
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two different QRS detectors. Energy-based method is based on calculating the energy of target sub-
band. The objective of the statistics-based method is to analyze the high-order statistics of the ECG
data [19–23]. Above methods have achieved some effects on the scenarios of adult ECG. However, the
situation of fetal ECG (FECG) is more complicated. Due to the low SNR of FECG data and the overlap
of MECG, the performance of the adult ECG method will be reduced. The studies in [24] and [25] try
to improve the detection accuracy of the fetal QRS complexes. However, the problem of signal quality
assessment is still open.

Figure 1. An example of the abdominal ECG. The true R peaks of FECG are marked with
circle on the abdominal signal.

In this work, we develop a novel approach for NI-FECG signal quality assessment. When the
detected peak is the R peak of FQRS, it is a true R peak (TR), otherwise it is a false R peak (FR). False
R peak usually comes from the MECG residue or noise. The TR and FR information of a detected
FQRS is used as the basic quality information in the context of FQRS detection. Roughly speaking,
the FQRS detection result of a good channel should be better than that of a bad channel, because a
good channel can provide more TRs. Therefore, we can estimate the quality of a NI-FECG signal by
estimating the correctness of the detection results.

As shown in Figure 1, the morphology among the TRs are similar. After removing the maternal
ECG, the TRs show a higher morphological similarity compared with the noise or the MECG remnant.
Therefore, it is potential to utilize the correlation between FQRS to identify whether the current peak
is TR or not. In this work, on the basis of correlation features among the detected peaks, we use
an artificial intelligence technique for FQRS classification. An evaluating indicator, denoted T Pindex,
is applied to assess the quality of the NI-FECG signal. Furthermore, a robust strategy is applied
to combine the true peaks of all channels. The combined result is treated as final output for FQRS
detection. The contribution of this work is threefold:

• It is a novel signal quality assessment method that can be specifically used to improve the FQRS
detection.
• This work provides a solution to select the best channel. Thus, FQRS detection can be carried out

more consistently over channels of optimal quality.
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• In addition, multi-channel information combination is studied to achieve more effective FQRS
detection.

To the best of our knowledge, it is the first work on the use of FQRS correlation for assessing the
quality of fetal signal. Because of this, we believe this work makes a contribution to the research
community.

2. Materials and methods

This work presents a signal quality evaluation method that can be used to improve the multi-channel
FQRS detection. Figure 2 shows the flow of the signal quality evaluation algorithm, which consists
of three phases. Phase 1: Signal preprocessing; Phase 2: FQRS recognition; Phase 3: Signal quality
evaluation.

Phase 1: Signal preprocessing

Inter-QRS feature extraction

FQRS classification 

Phase 2: FQRS   recognition

Phase 3: Signal quality evaluation
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Figure 2. The flow of the signal quality evaluation algorithm. For demonstration purposes,
the location of FQRS is marked with circle on the original figure.

2.1. NI-FECG databases

The NI-FECG data from three databases are used to illustrate the efficiency of the proposed method.
These databases include the abdominal and direct fetal electrocardiogram database (ADFECGDB),
set a of 2013 PhysioNet/Computing in cardiology challenge database (PCDB) and Daisy database
(DDB) [26, 27].

• The abdominal recordings in the ADFECGDB database are recorded from five women during
pregnancy. A recording contains four channels of abdominal ECG and one channel of scalp
ECG. FQRS reference from the scalp ECG is available. The signal is sampled at fs = 1 kHz and
lasts for five minutes.
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• The PCDB database contains 75 abdominal recordings. Each recording has four channels of
abdominal ECG with the FQRS reference. The signal is sampled at fs = 1 kHz and lasts for one
minutes. To date, the PCDB database is the largest publicly available dataset.
• DDB database consists of five channels of abdominal ECG and three channels of thoracic ECG.

The signal is sampled at fs = 250 Hz and lasts for 10 s without reference annotations.

As suggested in [22, 28], seven AECG recordings (a33, a38, a47, a52, a54, a71 and a74) in PCDB
database are discarded because of inaccurate reference annotations. PCDB database is used as training
set. ADFECGDB database and DDB database are applied as test set. The training set is used to train a
FQRS classification model, and the test set is used to test the trained model.

2.2. Phase 1: Signal preprocessing

A three-step procedure is used to preprocess the AECG signals in this phase. First of all, a band-
pass filter is used to eliminate the high-frequency noise and baseline wander. Secondly, the main
interference in the abdominal signal, MECG component, is removed to extract the FECG component.
Specifically, an open source template subtraction method is used for FECG extraction [27, 29]. Re-
searchers can choose different FECG extraction methods according to their own tasks. This does not
limit the use of the proposed method, because the evaluation of signal quality is carried out after the
FECG extraction operation. Finally, we use a QRS detector to detect the location of the FQRS com-
plexes [30].

As shown in the Figure 3, the extracted signal consists of fetal signal and some noise after the FECG
extraction. Such that the potential R peak of FQRS can be detected on the extracted signal channel.

Figure 3. An example of the signal preprocessing. Above is a filtered abdominal channel,
and below the extracted FECG. The potential location of FQRS is marked with square.

2.3. Phase 2: FQRS recognition

In this phase, FQRS recognition consists of two steps. In step 1, association features are constructed
from the detected fetal peaks. A classification algorithm is used to identify the detected FQRS in step
2.
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Step 1 focuses on constructing the association features. For high-quality signals, the fetal waveform
has a high SNR compared with the noise signals around it after the FECG extraction operation. In
order for the model to learn this pattern, 200 ms data before and after the potential location of FQRS
are extracted as features of single FQRS. The features of several adjacent FQRS are combined as the
association features, which indicates the inter-QRS correlation of adjacent FQRS. Specifically, features
of detected fetal peaks with index i ∈ [ j − β, j + β] are used as the association features of the j-th
detected FQRS. It represents the waveform similarity between the detected FQRS and its surrounding
2β FQRS complexes. For better real-time effect of the algorithm, the parameter β is set to 2. The size
of association feature is 1 ∗ 500 when the sampling frequency is 250 Hz. Each association feature is
given a quality label of TR or FR. As shown in the Figure 4, compared with the noise, the waveform
similarity between true peaks is higher.

Figure 4. The association features of the true FQRS and false FQRS.

In step 2, a convolutional neural network (CNN) classifier is applied to distinguish whether the
detected peak is true R peak. The CNN classifier has achieved excellent performance in many areas
such as medical image classification and arrhythmia detection [31,32]. In this work, the CNN classifier
takes the inter-QRS features as input and outputs a sequence of quality labels P = [p1, p2] (TR or FR).

Figure 5 shows the structure of the CNN classifier. The CNN classifier contains five convolutional
layers (Conv1-Conv5), two fully connected layers and a softmax layer. The parameter of the convolu-
tional layer (a*b@c) in the CNN model in Figure 5 indicates that the filter size is a*b and the number
of filters is c. Convolutional layers perform α convolutions between convolutional filter wi and the
feature map v,

si(n) =

k∑
m=−k

wi(m)v(n − m) i = 1, 2, ..., α (2.1)

where si(n) corresponds to the n-th parameter of the i-th feature map of output. The wi(m) corresponds
to the m-th weight of the i-th convolutional filter.

Each convolutional layer is followed by a batch normalization (BN) and a Relu function. The Relu
function can be formulated as,

fRelu(y) = max(y, 0) (2.2)
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Figure 5. Schematic diagram of CNN structure used in this study.

The convolutional output of a layer can be formulated as,

oi(n) = fRelu(si(n) + bi) i = 1, 2, ..., α (2.3)

where oi(n) is the n-th parameter in the i-th feature map of output, and the bi is the term of bias.
The loss function is the cross-entropy function, which is defined as

Loss(r, p) = −

k∑
i=1

r(i)logp(i) (2.4)

where r and p are the actual output and target output, respectively. Table 1 provides the parameters of
the CNN classifier. Specifically, the input size and output size are 1*500 and 1*2, respectively. Filter
size of all the convolutional layers is 1*3. Stride size is set at 1, and the number of filters in Conv1-
Conv5 are 32, 64, 128, 64 and 32, respectively. A stochastic gradient descend (SGD) optimizer with
learning rate 10−4 is used to train the CNN model. Overall, the trained CNN classifier maps a sequence
of features to two sample classes, which can identify whether a detected FQRS is a true peak.

Table 1. Hyper parameters of the CNN classifier.

Hyper parameters Considered values
Input size 1*500
Output size 1*2
No. of filters in Conv1-Conv5 32, 64, 128, 64, 32
Filter size in Conv1-Conv5 1*3
Stride size in Conv1-Conv5 1
Learning rate 0.0001
Optimizer SGD
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2.4. Phase 3: Signal quality evaluation

After identifying the detected fetal peaks, the signal quality of the NI-FECG is evaluated in this
stage. A good signal channel should have more TRs for FQRS detection than a bad channel. We
propose a true R peaks indicator, denoted T Pindex, to evaluate the quality of the NI-FECG signal.
T Pindex is formulated as,

T Pindex =
NTR

NFQRS
(2.5)

where NTR corresponds to the number of detected FQRS classified as true peaks. NFQRS corresponds
to the number of all detected FQRS.

Intuitively, the T Pindex represents the percentage of classified true peaks in a lead of NI-FECG
signal. It indicates the channel’s ability to offer TRs among all detected FQRS it provides. In other
words, data with higher T Pindex has better signal quality. Then the signal with higher T Pindex value has
the potential to provide better performance in FQRS detection. The best lead for FQRS detection can
be obtained by selecting the channel with the highest T Pindex.

T Pindex provides a solution to select the best channel for FQRS detection. However, due to the
influence of noise, the optimal channel cannot guarantee that the FQRS can be effectively detected
all the time, while other channels may detect the FQRS in this period. Therefore, the fusion of multi-
channel results can provide more accurate FQRS detection performance. In this work, a robust strategy
is used for multi-channel information fusion from all available channels.

Channel 4

TR-fused channel

Time/s

TP-index

42.86

71.43

57.14

85.71

Channel 1

Channel 2

Channel 3

Detected peaks in Channel 1 Detected peaks in Channel 2

Detected peaks in Channel 3 Detected peaks in Channel 4

Figure 6. Procedure of multi-channel TRs fusion. When the fusion channel contains unde-
tected peaks, the peaks of other channels are considered to be added to the fusion channel.

Figure 6 shows the procedure of multi-channel information fusion. After the FQRS recognition, we
collect the TRs from the detected fetal peaks of all available channels. TRs in the channel with the
highest T Pindex value (Channel 4 in Figure 6) is used as the basic FQRS of TR-fused channel, and the
FRs are not used in the later processing. Distance between two detected peaks can be calculated from
the fetal heart rate (FHR),

D = 60/F (2.6)

where F ∈ (FL, FH) is the FHR. D ∈ (DL,DH) is the distance between two FQRS. As suggested in [33],
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the lower limit of FHR FL is set to 110 bpm and the upper limit FH is set to 180 bpm.
The distance between two FQRS in the TR-fused channel can be assessed as,

D > 2 ∗ DL (2.7)

When this formula is satisfied, it indicates that there are fetal peaks in the TR-fused channel that are
not detected. The detected peaks of other channels can be considered to be added to the corresponding
interval of the fusion channel. When selecting the TRs of a channel, the priority of the channel can be
set based on the T Pindex value (Channel 3 in Figure 6).

After the multi-channel TRs combination, there may be wrongly detected fetal beats or missed fetal
beats in the fusion channel. Here an operation based on the distance between two detected peaks is
used to correct the false positive (FP) and false negative (FN). FP represents the wrongly detected fetal
heart beats. FN represents the missed fetal heart beats. The distance between two FQRS complexes is
assessed as,

D < DL (2.8)

When this formula is satisfied, it indicates that there is a FQRS complexes in the TR-fused channel
that are wrongly detected. Two fetal beats corresponding to the interval can be discarded. The Eq (2.7)
is used to check the FN of fusion channel. When the Eq (2.7) is satisfied, several wave peaks can be
placed in the corresponding intervals. Finally, the fused channel integrating multi-channel information
can be used for reliable FQRS detection.

2.5. Evaluation metrics

Positive predictive value (PPV), Sensitivity (SE) and F1 are usually used as the evaluation metrics
for FQRS detection [23, 27, 32].The definitions of these metrics are given by

PPV =
T P

T P + FP
(2.9)

S E =
T P

T P + FN
(2.10)

F1 = 2 ×
PPV × S E
PPV + S E

(2.11)

where TP is the number of correctly detected FQRS complexes. FP is the number of wrongly detected
FQRS complexes. FN is the number of missed FQRS complexes. The PPV measures the proportion
of true FQRS that have been detected out of all the detected FQRS in a channel. The S E measures
the proportion of true FQRS that have been detected out of all the true FQRS in a channel. The F1

measures the harmonic mean of PPV and S E.

3. Results

Table 2 summarizes the experimental results of FQRS complexes detection on ADFECGDB
database. In the multi-channel fetal heart monitoring scenario, each channel can provide a monitoring
result. The goal of a channel selection method is to select the channel with the best FQRS detection
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result. Therefore, the results of the actual best channel (Best channel in Table 2) are compared with
the proposed method in this paper. It represents the best results that a channel selection method can
achieve. In order to show the effect of the proposed method in selecting high-quality signal chan-
nels, the results of the selected optimal channels (Selected channel in Table 2) are shown in the table.
Furthermore, the results of the fused channels (Fused channel in Table 2) demonstrates its ability in
multi-channel information fusion. It can be noted that the channel selection performance of the pro-
posed method on ADFECGDB database are 95.87% PPV , 96.88% S E and 96.37% F1, respectively.
Multi-channel fusion performance of the proposed method on ADFECGDB database are 97.40% PPV ,
98.33% S E and 97.86% F1, respectively.

Table 2. The results of FQRS complexes detection on ADFECGDB database.

PPV (%) SE (%) F1(%)
Best channel 96.14 97.24 96.68
Selected channel 95.87 96.88 96.37
Fused channel 97.40 98.33 97.86

Figure 7 shows the results of FQRS complexes detection on DDB database. It can be seen that the
proposed method can select high-quality signals (Channel 1 in Figure 7), which is helpful to obtain
reliable FQRS detection results. The proposed method is also compared with the other three methods
in Figure 8. These methods include detection-consistency method, energy-based method and statistics-
based method [14, 15, 20]. Results show that the proposed method achieves the best performance.

      Channel 1
(Selected channel)

Channel 2

Channel 3

Channel 4

Channel 5

Figure 7. The results of FQRS complexes detection on DDB database. Detected FQRS is
marked with circle on the channel 1.
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Figure 8. Comparison of different methods on PPV, SE and F1.

4. Discussion

Electronic monitoring system is prone to noise in the process of prenatal monitoring. It is important
to distinguish between signals of good quality and signals of poor quality. Otherwise, the wrongly
detected FQRS in the poor quality signals would reduce the effectiveness of FHR estimation when an
automated algorithms is used for fetal monitoring. In this study, a signal quality evaluation method is
specifically designed to improve the FQRS detection.

Because of the strong interference of the MECG, eliminating the MECG is a routine operation of
signal preprocessing. So the quality evaluation of the NI-FECG signal is carried out on the residual
signal after the signal preprocessing. The residual signal can intuitively represent the signal quality
of fetal component and provide reliable results for FQRS detection. Figure 9 shows an illustration
of error detection. In the process of fetal ECG extraction, if the maternal ECG is not effectively
removed, the residual maternal ECG components are often incorrectly detected as the FQRS. As shown
in Figure 9, the proposed algorithm can effectively identify this situation. Based on the ability on FQRS
recognition, CNN classifier can distinguish the error detection as FR. By getting the exact location of
the error detections, the proposed method can accurately reflect the data mutation and provide the
status of signal quality in a real-time manner.

In the multi-channel fetal monitoring scene, the status of signal quality varies from channel to
channel. Effective technology is required to select signals with good quality. For example, in the task
of fetal ECG extraction, selecting good signals is helpful to extract clear fetal ECG waveforms. The
method in this paper provides a new solution for the selection of high-quality channels. Specifically, the
T Pindex is applied to reflect the overall status of a NI-FECG channel. At the same time, a T Pindex-based
method is also presented for best channel selection. It can be noted in the Table 2 that the results of
the selected channels are comparable with the results of the actual best channel. These results indicate
that the method can tell whether the signal quality is good or bad.

Multi-channel FQRS combination is also considered in this work. NI-FECG is easily interfered by
various noises. Therefore, FQRS may not be available in some parts of the channel, making error detec-
tion inevitable. Even the signal with the best quality may have error or missed detection fragments. At
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this time, other channels may accurately detect the fetal peaks. It is possible to use multi-channel FQRS
combination and correction of error detection to further improve FQRS detection results. Considering
these aspects, a robust strategy is presented to fuse the multichannel FQRS. Specifically, combining the
FQRS detection results of all available channels can be used for more reliable fetal heart monitoring.
As shown in the Table 2, the performance of the fused channel is better than that of the actual best
channel through the effective fusion of multiple channels.

TR

FR

TR TR TR TR TR TR TR
TR

Figure 9. An illustration of error detection. The detected FQRS is marked with square.

FQRS detection has important clinical value in fetal monitoring. It can provide accurate information
of fetal heart rate to diagnose arrhythmia, making the timely disease intervention possible. Selecting
an effective FECG extraction method can help to obtain good results on FQRS detection. However,
when the signal quality of all channels is poor, even the best channel is hard to provide good FECG
for FQRS detection. The future work should study the method to improve the efficiency of fetal ECG
extraction under the condition of poor signal quality.

5. Conclusions

In this contribution, a signal quality evaluation method is presented for the task of FQRS detection.
Since the T Pindex can evaluate the quality status of NI-FECG signal, it can be used to select the channel
with good quality. Further, a robust strategy is investigated to combine multi-channel FQRS complexes.
Results on two clinical datasets indicate that the technique can effectively evaluate the signal quality of
NI-FECG and improve the performance of FQRS detection. It has a promising application in automatic
identification of reliable signals for fetal monitoring.
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