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Abstract: This paper mainly focuses on the dynamics behavior of a three-component chemotaxis
system on alopecia areata

u = Au— 1V - uVw) +w — pyu?, xeQ,t>0,
Vi = AV — oV - (WIW) +w + ruv — V2, xeQ,t>0,
w,=Aw+u+v-—w, xeQ,t>0,
Q= x € 0Q,1>0,

u(x,0) = upg(x), v(x,0) = vo(x), w(x,0) = wy(x), x €,

where QQ C R” (n > 4) is a bounded convex domain with smooth boundary 0Q, the parameters y;, u;
(i = 1,2), and r are positive. We show that this system exists a globally bounded classical solution if
i (i = 1,2) 1s large enough. This result extends the corresponding results which were obtained by Lou
and Tao (JDE, 2021) to the higher-dimensional case.
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1. Introduction

In this paper, we consider the spatio-temporal dynamics of a three-component chemotaxis system

u = Au— 1V - uVw) +w — pu?, xeQ,t>0,
vt:Av—)(zV-(va)+w+ruv—y2v2, xeQ,t>0,
w,=Aw+u+v-—w, xeQ, >0, (1.1)
M= ==, x€0Q,1>0,

1. 0) = 1), v(x. 0) = vo(r). w(x. 0) = wo(w). x € .
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where Q C R" (n > 4) is a bounded convex domain with smooth boundary dQ and v denotes the outer
normal vector to 0. Here, the parameters y;, i; (i = 1,2) and r are positive constants. The initial data
(ug, vo, wo) satisfies

Uy € C(Q), uo > 0and uy % 01in Q,

vo € C(Q), vo > 0and vy £ 0in Q, (1.2)

wo € WE(Q), wpy > 0in Q.

This system was originally proposed by Dobreva et al. [1] to describe the complex dynamic
behavior of alopecia areata (AA). Alopecia areata is mainly manifested as hair loss, which is caused
by the attack of the immune system on the hair follicle. Previous investigations [2, 3] have shown that
the development of AA is usually initiated by abnormally high production of pro-inflammatory
cytokines, such as interferon-gamma (IFN-y) which is the most influential inducer of hair follicles
immune privilege (HF IP) collapse. IFN-y is secreted by the two types of immune cells which are
CD4* T cells and CD8* T cells, and it diffuses and degrades, moreover, it is also the chemoattractant
for CD4* T cells and CD8* T cells; CD4* T cells which move randomly are triggered by IFN-y and
decrease on density-dependent death; CD8* T cells which also move randomly, are triggered by
IFN-y, proliferate with the help of CD4" T cells, and undergo density-dependent death. Based on the
above biological mechanism, in the system (1.1), the unknown functions u(x, 1), v(x,t) and w(x, )
respectively denote the density of CD4" T cells, the density of CD8* T cells and the concentration of
IFN-y.

From the mathematical perspective, Lou and Tao [4] recently studied global boundedness and the
asymptotic stability of the solution for (1.1), whenn = 2 or n = 3 and

r

2

4
+ 16, up > 8)(% + % + 16 as well as ,u]/lg > —7,

M >8X%+ 27

this system admitted a global boundedness classical solution. Furthermore, as

p1 < po < 3p, = o~y and X7 +x3 < Xo,

where y, was a positive constant, the classical solution was globally asymptotic stability.
Subsequently, Tao and Xu [5] showed the spatio-temporal evolution of IFN-y describing a
quasi-steady-state ~ approximation of the equation, and got the dimensionless
parabolic-parabolic-elliptic version of (1.1) by replacing the third equation in (1.1) with
0 = Aw + u + v — w, they proved the global boundedness of its solution when

-2 -2
n=2), (2x1 +)Q) + L and w, > (=2,
n 2 2 n

M1 > (2x2 +%)+r,

then the large-time behavior of (1.1) was also gained as
p1 < po < 3py, r=pp —py and x7 + x5 < 2By — o).

To better understand the system (1.1), the previously existing two-component chemotactic system
should be mentioned

{u,:Au—XV-(quHf(u), x€Q,1>0, (1.3)

vw=Av+u-—v, xeQ,t>0.
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Many known results about the system (1.3) have been obtained in past studies. For instance, as f(u) =
0, system (1.3) corresponds to the classical KS system [6], its global boundedness has been testified
in [7], and the blow-up behavior has also been constructed in a finite or infinite time (cf. [8—10], for
instance) which strongly relied on the spatial dimension and the domain . However, the logical
damping term f(u) = pu(1l — u) plays an important role in preventing the blow-up phenomenon. Then,
as n < 2, for an arbitrarily small coeflicient u > 0, the system (1.3) can admit a uniformly bounded
classical solution and prevent the blow-up phenomenon [11-13]. Whereas, n > 3, the global classical
solution of (1.3) exists and remains uniformly bounded if the coefficient u is large enough [14-17].
Moreover, it is worth mentioning that a variant of system (1.3) describes the movement of cells driven
in an incompressible fluid under the influence of chemoattractant which is a different but interesting
system called chemotaxis-Navier-Stokes system. The analysis of the solution of this system and its
variants have attracted wide attention in recent years, such as Winkler [18, 19] and Zheng [20-24].
For a more detailed discussion on (1.3) or its variants, we refer the reader to [8,25] and the references
therein.

Main results and ideas.

Compared with (1.3) or other pre-existing chemotaxis systems [26—28], the main differences come
from the terms w and ruv in the system (1.1), it is worth emphasizing that the nonlinear generation
term ruv is obviously different from the nonlinear proliferation term appearing in [29] or [30], which
is composed of the product of signal concentration and cell density. Inspired by Winkler [17] and
Xiang [16], we can deal with the three-component chemotactic system (1.1) by some appropriate
improvements for the functional y(7) := fQ uf + fQ |Vv|*? for any p > 1, ¢ > 1 and ¢ > 0. Motivated by
the above ideas, we shall study the evolution of the combined integral

fup+fvp+fw"+f|Vw|2‘1
Q Q Q Q

to address the difficulties from the activated term w and nonlinear production term ruv. We find that
the behavior of solution can be impacted by nonlinear diffusion, the nonlinear zero-order production
term ruv and logistic damping. Our main results are started as follows.

Theorem 1.1. Let Q C R" (n = 4,5) be a bounded convex domain with smooth boundary, y;,u; >
0@(=1,2)andr > 0. Forany e € (0,1), if

ﬂ1>%[\/§+ \/ng \/3:2+2m(\/§+ \/;/_i_e]

[+
xXi1+|—=—+=z|r+1

3 2
and
1| [3 1 [3Bn+4 V2 1
,u2>§[ ?+\/;+ (26 )+2Vn+8[\/§+ 1—6)X2+§r+1’

then for any initial data (ug, vy, wo) satisfying (1.2), then system (1.1) admits a globally uniformly
bounded solution, there also exists a constant K > 0 such that

e, Dllzo) + [VC, Dllze) + [IWC Dllwroy < K forall t > 0.
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Remark 1.1. It is worth noting that we add the convexity of Q to simplify the total process. However,
this assumption can be dropped by the methods in [31]. In fact, we first need to establish the estimates
on fQ u?, fQ Vv fQ w? and fQ IVw|* on non-convex domain Q, this will lead to stronger restrictions for
the parameters u; (i = 1,2).

Remark 1.2. This method can also be used to deal with the higher-dimensional case, however, the
estimates of lower bound for u; (i = 1,2) will be more complex, we omit here.

Compared with the asymptotic stability of some classical KS system in [32] or [33], it seems that
the nonlinear term ruv greatly changed the large-time behavior of the smooth solutions of (1.1). To see
this more intuitively, we first write

a+1
U, = , Vei=au, and w, = ,uluf, (1.4)
M1

\r+4 .
where a := % > (. Then we have the following theorem.

Theorem 1.2. Assume the conditions in Theorem 1.1 hold. Let
M1 < pp < 3y, (1.5)

and
ri=fy = My (1.6)

NG HXE<M

holds, where M = M(u,, lo, ug, vo, Wo) is a positive constant, then for any global classical solution
(u,v,w) of (1.1) with the initial data fulfilling (1.2), it satisfies the following property

If

u(-,t) - u,, v(-,t) > v, and w(,t) > w, inL°(Q)ast— co. (1.7)

Remark 1.3. According to (1.6) and in view of (1.4), we obverse that

u(-, 1) — 3, v(, 1) — 3 and w(-,t) - i in L”(Q) ast — oo. (1.8)
M H H
The structure of this paper is as follows: In Section 2, we provide some crucial lemmas which will
be used in the following context. In Section 3, we make some basal estimates which will help us to deal
with the boundary integrals on € in the next section. Then we show some priori estimates in Section
4 and prove the global boundedness of the classical solution of (1.1) in Section 5. In Section 6, we
mainly analyze the large-time behavior of the solution for (1.1).

2. Preliminaries

In this section, we start from local in time existence which is a crucial lemma for the existence of
globally bounded classical solutions.

Mathematical Biosciences and Engineering Volume 20, Issue 5, 7922-7942.
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Lemma 2.1. [34] Let Q C R" (n > 1) be a bounded domain with smooth boundary, y;, u; >0 (i =1,2)
and r > 0. Then for any initial data (uy, vy, wo) fulfilling (1.2), Lhere exists Ty € (O,_oo] and a unique
nonnegative solution (u, v, w) of (1.1) which satisfies u,v € C° (Q x [0, Tmax)) NC>! (Q x (0, Tmax)) and

we C° ([0, Tnar); W”’(Q)) NnC>! (ﬁ x (0, Tmax))for any p > n. Furthermore, if T\, < oo, then

li%n sup {Ilu(-, Dllz=@) + IV, Dl + ||W('J)||le°°<g)} = oo, (2.1)

— L max

Proof. The local in time existence of the classical solution to (1.1) follows from well-known standard
methods in [34, 35], we omit it here. m]

Next, we present a estimate of the Neumann heat semigroup which will be used in section 5.

Lemma 2.2. [36] Let (¢)0 be the_ Neumann heat semigroup in ), and let p € (0, c0]. Then there
exists C > 0 such that for all ¢ € C! (Q; R”) satisfying ¢ - v = 0 on 0Q, we have

_l_n
1€V - @],y < CT2 7 llgllpnqy  forall 1 € (0, Tpa). (2.2)

Then, we give some basic estimates for our following work.

Lemma 2.3. There exist m > 0 and h > 0 such that the solution (u,v,w) of (1.1) fulfills

fu(-, 1) <m, fv(-, 1) <m and fw(-, )<m forallte (0, T.), (2.3)
Q Q Q

Proof. This lemma can be proved by integrating three equations in (1.1) over €, then applying the
ODE comparison can complete it easily. The interested readers can get detailed proof from Lemma 2.2
of [4]. O

3. Estimates on fgu3, fgv3, wi3 and fQ [Vw|®
Refer to some previous results in [25] or [16], when n = 4 or 5, the global existence of classical

solution for (1.1) will be obtained by a priori bounds on fQ w, fQ V3, fQ w? and fQ IVwl[®. In order to
establish those estimates, we begin with the following energy inequalities.

Lemma 3.1. Let (u,v,w) be a solution of (1.1), then for any € € (0, 1) there holds that

i{fbﬁ+fv3+fw3}+6(1—e){fuqu|2+fv|Vv|2}
di\ Jo Q Q Q Q
+6fw|Vw|2+3,u1fu4+3,ugfv4+3fw3

Q Q Q Q 3.0
S3fu2w+3fv2w+3rfuv3+3fuw2+3fvwz

Q 0 Q Q 0

32 %
s f BV + 22 f VIV
26 Q 26 Q
forallt € (0, T,y
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Proof. Multiplying the first equation in (1.1) by u?, integrating by parts, we obtain

f ——2fuqu|2+2)(1fu2Vu-Vw+fuzw—ulfu4
3dt Q Q Q Q

for all ¢ € (0, T,.ux). Applying Young’s inequality with any € € (0, 1), we estimate

2
2X1fu2Vu-Vw§26fu|Vu|2+/ﬁfu3|Vw|2
Q Q 2€ Jq

for all t € (0, T},.x). Substituting (3.3) into (3.2) yields that

3)(% 3102
—fu +6(l—6)fu|Vu|+3,ulfu<3fuw+ fulel
Q 2e Q

for all ¢ € (0, T,,,,,). Similarly, testing the second equation of (1.1) by v?, we also have

2
V3+2(1—E)fV|VV|2+,szV4SfV2W+rqu3+&fV3|VW|2
Q Q Q Q Q 2e Jg

(3.2)

(3.3)

(3.4)

(3.5)

for all ¢ € (0, T,.,.). Finally, integrating the third equation of (1.1) behind multiplying w?, we know

1d
3% w —2[lew|+fuw+fvw—f

for all t € (0, T},4x). Combining with (3.4)—(3.6), we immediately deduce (3.1).
Next, we make a priori estimate for fg IVwl®.

Lemma 3.2. Let Q be convex, then we have

d
— f IVw|® + 3 f |Vw|2|V|Vw|2|2+6 f |Vwl®
dt Jo o 0

<3(n+8) f WIVwl* + 3(n + 8) f VAVw|  forallt € (0, T ).
Q Q
Proof. Using the third equation of (1.1) and 2Vw - VAw = AlVw|? - 2|D2w|2, we have

f|VW| = f|VW| Vw-V(Aw+u+v-—w)

f IVw[*A|Vw|?> — f VW ID*w[ + 2 f IVw|*Vu - Vw
Q
+2f|Vw| Vv-Vw — 2f|Vw|

oV
IVw[* | awl -2 f |Vw|2|V|Vw|2|2—2 f IVw* I D*w[
Q Q

40 v

+2 f IVw|*Vu - Vw + 2 f Vw[*Vy - Vw =2 f [Vwl®
Q Q Q

(3.6)

O

(3.7)

(3.8)
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for all t € (0, T},,4x). Thanks to the convexity assumption on €2 and %—f = 0 [37], we ensure that
o0

A|Vw|?
ov

<0 ondQ X (0, ). (3.9)
Moreover, due to |Aw]* < n|D*w[*, we know
2 f IVw[*Vu - Vw = =2 f ulVwl*Aw — 4 f ulVw>Vw - V|Vw]?
Q Q Q
<n f W|\Vwl* + f V| D*w[ (3.10)
Q Q

1
4= f VWPV + 8 f W3Vl
2 Q Q

for all t € (0, T},,). Similarly, we get

2 f IVw|*Vy - Vw = =2 f vIVwl*Aw — 4 f VIVwWPVw - V|Vw]?
Q Q Q

<n f VIVl + f IV D*w|” (3.11)
Q Q
1
+ = f VWVl + 8 f VA Vwl*
2 Ja Q
for all t € (0, T},..x). At the end, collecting the above results yields (3.7). O

The integrals fQ W |Vw|* and fgv2|Vw|4 appearing on the right-hand side of (3.7) can be treated
by utilizing the logical damping terms in (1.1) properly. To obtain this end, we shall establish the
following similar integrals fQ ulVw|* and fQ VIVl

Lemma 3.3. Let Q be convex, then there exist two positive constants €, and €, independent of system
parameters w;, x; (i = 1,2) and r such that

d 2
— f ulVwl* + 4 f ulVwl* + f u|V|Vw|2|2+(,u] —X—l) f u?|Vwl*
dt Jg Q Q 261 ) Jo

2
<2(e +6) f |Vw|2|V|Vw|2|2+— f IVul>[Vw]? + f w|Vw[* (3.12)
Q €& Jao Q

+(1+’l)fu3|Vw|2+4fu|Vw|2Vv-Vw

4 Q Q

d 2

— f vIVw|* + 4 f VIVw[* + f v|V|Vw|2|2+(u2—ﬁ) f VAV
dr Jg Q Q 261 ) Jo

2
<2 + &) f IVwWPIVIVW + = f Vv V) + f w|Vw[* (3.13)
Q € Ja Q

+ (1 + E)fv3|Vw|2 + 4fv|Vw|2Vu -Vw + rf wv|Vwl*
4 Q Q Q

forallt € (0, T,y

and
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Proof. Applying the u and w-equations of (1.1), then integrating it over Q, we know
i 4 _ 4 _ _ 2
ulVw|" = [Vw| (Au X1V uVw) +w — uu )
+4fu|Vw|2Vw-V(Aw+u+v—w)
Q

=—4 f IVw*Vu - VIV + 2y f ulVw|*Vw - VIVw]?
Q Q

(3.14)
A|Vwl*
4 f WV = g f VW +2 f W IV
Q Q 40 dv
-2 f ulVIVwl|’ - 4 f UVl D*w|” — 4 f ulVwl*
Q Q Q
+4 f ulVwl*Vu - Vw + 4 f ulVwl*Vy - Vw
Q Q
for all t € (0, T},..). Here, similar to (3.9), we get
A|Vw|*
<0 ondQ x (0, T,u0). (3.15)
ov
Moreover, we observe that
2 X2
2x1 f ulVwl*Vw - VIVw|* < 2¢ f IVwPVIVwP” + &= f W[ Vwl* (3.16)
Q Q 2e1 Jo
and
2
—4 f IVw|*Vu - VIVw]* < 26 f IVwlIVIVwl] + = f IVul*|Vw|? (3.17)
Q Q € Jo

for all t € (0, T'4) With some € > 0 and € > 0 independent of system parameters y;, y; (i = 1,2) and
r. Using the similar computation in (3.10), we have

4 f ulVw/*Vu - Vw = =2 f W IVwlPAw =2 f u’Vw - V|Vw|?
Q Q Q
<z f IV + 4 f ul Vw1 D*w|’ (3.18)
4 Q Q

+ f ulVIVwPl + f W3V
Q Q

for all ¢+ € (0,7,4). Combining with (3.14)—(3.18), we obtain (3.12). In the same way, by the
combination of v and w-equations in (1.1), we can also prove (3.13) easily. O

In order to deal with the terms fg [Vul’|[Vw|* and fQ [Vv*|Vw/? in the right-hand sides of (3.12) and
(3.13), let us establish estimates for fg u?|Vw|?> and fQ v2|Vw|?, respectively.
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Lemma 3.4. Let Q be convex. Then for any € € (0, 1), there exist two constants €5 > 0 and €, > 0
independent of system parameters p;, x; (i = 1,2) and r such that

d 2 2

—fu2|Vw|2+2 1-=f fIVu|2|Vw|2+2fu2|Vw|2+2 MI—X—l f 3|Vw)?

dt Jo 3 )Ja Q de;) Ja
3x? 2 3

<X f WVwlt + = f ulVul?> + = f ut + 26 + &) f ulVIVwP (3.19)
2e Jo €& Jo € Ja Q

2
+2 f uw| Vw2 + = f VY2V
Q 3 Q

d 2 2

—f 2vwP +2(1 - = fle|2|Vw|2+2fv2|Vw|2+2 ﬂz—ﬁ fv3|Vw|2

dr Jo 3 )Ja Q des ) Jo
3x3 2 3

<2 f VIVt + = f VIV + = f v 2e + ) f WVl (3.20)
2e Ja € Jo € Jo Q

2
+2 f oV + =5 f IVuP[Ywp + 2r f AV
Q 3 Q Q

forallt € (0,T,.,).

and

Proof. By directly computing the coupling of u? and [Vw|*, we obtain

d
—fulewlz=ZfMIVWIZ(Au—)aV-(qu)+w—y1u2)+2fu2Vw-V(Aw+u+v—w)
dt Jq Q Q

=-2 f IVul[Vw|* — 4 f uVu - VIVwl* + 2y, f ulVw|*Vu - Vw
Q Q Q

(3.21)
+ 2x1 f wWVw - VIV +2 f uw|Vwl* — 24, f WVw* +2 f w’Vu - Vw
Q Q Q Q
A|Vwl*
+ 2fu2Vv V- 2fu2|Vw|2 + f 2V 2fu2|D2w|2
Q Q Q0 v Q
for all t € (0, T,,,,). As before, we have
oIV
<0 onoQ x (0, T, (3.22)
ov
and by applying Young’s inequality, we derive
2 X
2x1 f WVw - V|Vw]? < 26 f ulVIVwP|” + == f | Vw)? (3.23)
Q Q 26 Jo
and
2
—4quu-V|Vw|2 < 264fu|V|Vw|2|2 + —fuIVuI2 (3.24)
Q Q € Jo
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for all t € (0, T'4) With some €5 > 0 and €, > 0 independent of system parameters y;, y; (i = 1,2) and

r. Moreover, we also have
2 3
2fu2Vu~VwS—Gfqu|2|Vw|2+—fu4,
Q 3 Ja 2e Jo

(3.25)
2 3
2 f e i f VR VW + — f u*
Q 3 Jo 2e Jg
and
2 3y2
2x1 f WVWPVu - Vw < 25 f IVul*|Vw|* + dl f W2 Vwl* (3.26)
Q 3 Jo 2e Jo
for all € (0, T,,,,) With € € (0, 1). In addition, it is obvious that
2 f D*w| <0 forallf € (0, T)py). (3.27)
Q

Then (3.19) can be proved by taking (3.23)—(3.27) into (3.21). For the similarity of (3.20) and (3.19),
the same operation can be done to testify (3.20). O

As usual, we rely on Gronwall’s inequality to get L*~boundedness of u, v and w and L°~boundedness
of Vw. For this purpose, set

y(t) = 61{fu3+fv3+fw3}+62{fu2|Vw|2+fv2|Vw|2}
Q Q Q Q Q
+53{ f ulVwl* + f v|Vw|4}+54 f IVl
Q Q Q

for all € [0, T},.) With 6; > 0 (i = 1,2, 3,4) independent of system parameters y;, x; (i = 1,2) and r.
Then we combine Lemmas 3.1-3.4 and choose appropriate parameters to get the following lemma.

(3.28)

Lemma 3.5. Let Q be convex and and the initial data (ug, vy, wo) fulfill (1.2). Then for any € € (0, 1),
assume that [y, o satisfy

,u1>% \/g+\/g+\/;:2+2\/m(\/§+ \/1£—6)X1+(?+%]r+1 (3.29)
and
m%[éﬂgh/“’@z:“hzm[«m \/1@6))(2+%r+1, (3.30)
then we find a positive constant K, to ensure that
el 230 + IVIl3) + IWll3) + IVWls) < K1 forall t € (0, Tpax). (3.31)
And there also exists a constant K, > 0 such that
Wllzoy < Ko forallt € (0, T pay). (3.32)

Mathematical Biosciences and Engineering Volume 20, Issue 5, 7922-7942.



7932

Proof. For the convenience of readers, we divide the proof into the following two steps:
Step 1. In this step, we deal with the coupling terms appearing on the right-hand side of Lemma

3.1-Lemma 3.4 to approach Gronwall’s inequality.

A direct linear combination Lemma 3.1-Lemma 3.4 after multiplying 6, > 0 (i = 1, 2, 3,4), we have

3
v (1) + 26, {f u3+fv3+—fw3}+2(52 {f u2|Vw|2+fv2|Vw|2}
Q Q 2 Q Q Q
+ 46, { f ulVwl* + f v|Vw|4}+661 f wiVwl* + A, f ulVul* + A, f V| Vv?
Q Q Q Q Q
+A, f IVul?IVw|* + A, f Vv Vw]? + As f UVl + As f VVIVWP
+A4f|Vw| [VIVw[} +A5fu +A*fv +A6fu|Vw| +A*f VIV

+A7fu|Vw| +A§fv|Vw| +664f|Vw|
Q Q Q

S2(51fu3+261fv3+361fu2w+361fv2w+361fuw2+351fvw2
Q Q Q Q Q Q

+3r(51fvuv3+2r(52fVuv2|Vw|2+2ciszuw|Vw|2+252]VVWIVWI2
Q Q Q Q

+ 763 f w|Vw|* + 265 f wiVw[* + 46, f ulVw>Vv - Vw + 465 f VIVW*Vu - Vw
Q Q Q Q

for all € (0, T,,4,), Where

Then applying Young’s inequality, we estimate

A =6(1-€06 - 26, A,
A3 = 63 - 2(63 + 64) 07, A4
A5 = 3/.1151 - 262, A;
32 .
Ag —2(/.11 )52—(14- )53—%51, A6
3 2
A7 ::(#I_E) 3—3(n+8)54—%62, A; =

1= 2(1 - €) 6, — 265,
= 3(54 - 4(61 + Ez) (53,
:= 3201 — 26,

= 2(#2 - E)az —(1+2)6y - 224,

(/12 - g)53 —3(n+8)d64— 3)(252

3
251fM3S—r61fu4+C1,
Q 4 Q
4
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1
351fVW2S—53fW3+(52fV4+C4,
o) 3 o) o)
3y? 2
2(52fuw|Vw|2§ ﬁ52fu2|Vw|4+—53fw3+C5
Q 26 Q 3 Q

and

3,2 1
26, f oV < 226, f VIV + =65 f W+ Cq (3.36)

for all ¢ € (0, T},,,) with some positive constants C; (i = 1,2,3,4,5,6). Apart from those, we also have

9 3
3r61fuv3s—r§1fu4+—r(51fv4,
Q 4 Q 4 Q
2r6, f w?|Vwl? < 126, f IVwl* + 6, f v
265 f wVw|* < 53 f IVw|® + 53 f (3.37)
rés f uv|Vw|* 5—53 f W |Vwl* +—53 f VAV,
Q 2 Q 2 Q

4
45, f ulVw>Vv - Vw < 365 f WPVt + =6, f Vv |IVw)?
Q Q 3 Q

and

4
45, f VIVW|*Vu - Vw < 365 f VZIVW|4+§63 f [Vul> [ Vw|? (3.38)
Q Q Q

for all t € (0, T},.,). Together with (3.33)—(3.38), we can find a positive constant C to ensure that

Y (f) + 26, {f u3+fv3+3fw3}+262 {f u2|Vw|2+fv2|vW|2}
Q Q Q Q Q
+ 465 { f ulVwl* + f v|Vw|4}+654 f IVwl® + 66, f w|Vw|?
Q Q Q Q

+ B, f 1w |Vw|* + B; f VIVw|* + B, f u*|Vw|* + B f VIVwl* + Bs f u

Q Q Q Q Q (3.39)
+ B; f v + By f \Vul*|Vw|* + B, f IVv2|Vw]* + Bs f u|Vul* + Bs f V|V

Q Q Q Q Q

+ Bg f ulVIVwP + Bg f VVIVWP + B, f Vw2 VIV
Q Q Q
<C forallre 0,T,.),
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2
B =2y - 22) 65— (142 s
=2 - 8 2-( +-)53-—51,
B, — X1 X? 2
9 = ,ul————r—3 53—3(I’l+8)54— + 770,

2¢€;

4
B; := ﬂz—f—j_-r—3)53—3(n+8)54——52, (3.40)
By :=3(u — 1o — (2+ &) 6, B :=3(uy — )61 — (2+ &) 6n,
By:=2(1-€)6,— (2 +4%)0s, Bs:=6(1-€)8; — 26,

Bg := 03 — 2(6} + 64) 07, B; = 354 - 4(61 + 62) 03.

Step 2. To deal with the extra terms on the left of (3.39), we choose to ignore them if the coefficient
in front of them is positive. This requires that the parameters y; (i = 1,2) satisfy certain conditions.
Here weneed B; > 0(i=1,2,---,7) and Bj. >0 (j =1,2,3), and from (3.40), we find that the fourth
constraint B, has something special in common with the sixth constraint Bg, then we have

1-¢€ 2 € €
<

2(65+ &) < =4 < —.
§+é (I-e (63+64)(1+§62) €

(3.41)

We use the fact that
@ +b*>2Vab forall a>0and b >0,

then the inequality manipulations from (3.41) and B; > 0 (i = 1,2, 3,7) show that

26, 3)(1 51 20, 3)(1 61 nos 3)(% 07 262 153
3yz—-——+——+=-—F+——+ ==+ ——=+r"=+ ==
661 8¢ 52 351 8e 62 862 € 63 63 252

3
Xl Xl +3( +8)—+2r+3

3n % 3 (3.42)
[\/; \/’ /26] 2—61+—+4(n+8)(61+€2)+(\/§+§)r+3
> \/E+ \/I+ w/3—n+2\/n+8 V2 + V2 X +(\/§+§)r+3
€2 € 2e Vi—el© 2 ’

and the following inequality comes from (3.41), Bj. >0(j=1,2,3)and B; >0

3 1 3(n+4) V2
\/;+\/;+ - +2 (n+8)(\/§+ 1_6]

After fixing € (i = 1,2,3,4), it is possible for us to ignore some of the terms on the left of (3.39) if
u; (i = 1,2) are sufficiently large to obtain

Y1) + 26 fu +fv + = (1——)f }+262{fu|Vw|2+fv2|VW|2}
Q
+4(53{ f UVl + f e }+254(3-—) f Tl (3.44)
Q a

<C forallte (0,T,.),

X2+ §r + 3. (3.43)

3/12 > 7
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then we obverse that y(7) fulfills
Y () +&y(t) < C  forallt€ (0, Tu).
93

where ¢ = min {2, 3 (1 - E) ,2 (3 - %)}. Applying Gronwall’s inequality will yield

y(t) < Ky = max {y(O), g} forall € (0, T,ar),
which means
el 230 + VI3 + Wll3) + IVWls) < Ky forall £ € (0, Tyay)-
Then there exists a constant K> > 0 such that
Wl < K,  forall £ € (0, Tay), (3.45)
due to the parabolic regularity [34,38]. This completes the proof. O
4. Proof of Theorem 1.1

In Section 3, we get L*-boundedness of w which plays an important role in our subsequent proof.
In this section, we will use heat semigroup theory to prove Theorem 1.1.

Lemma 4.1. Let Q C R" (n < 5) be a convex domain and the initial data (uy, vy, wo) satisfy (1.2), then
there exists Kz = Kz(n,m, K, K») > 0 such that

(-, Dllz=) < K3 4.1)
and
Iv(:, Dllz~) < K3 4.2)
as well as
Iw(, Dllwis) < K3 4.3)

forallt € (0,T,.,).
Proof. The proof is based on [31]. Given T € (0, T,,,), write

M(T) := sup [Ju(:, D)||z=)-
te(0,7)

Since u;, = Au — 1V - @Vw) + w — pyu? in Q X (0, T,ax), We represent u(-, t) for each t € (0, Tpuy)
according to

u(-, 1) = e 1) -y f TN - (u(-, S)VWC, 5))ds + f TN, 8) — (-, 8))ds 44

= (-, 1) + ur(-, 1) + uz(-, 1),
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where t) := (¢ — 1),. Here by the maximum principle, we can estimate

o1 (-, Dllzo) < Muollz=y if £ € (0, 1], 4.5)

whereas if # > 1, then standard L?” — L? estimates for the Neumann heat semigroup (cf. [7, Lemma 1.3
(1)], for instance) provide C; > 0 such that

1 G, Dl Loy < Ci(t = o) 2[luC-, to)ll 1y = CilluC:, Wl < Cim (4.6)
holds because of (2.3).
Next, according to (3.32), sup|w(x,t)| < K, forallt € (0, T,,.,) can be obtained. Again by the
xeQ
maximum principle, we have
t t
us(-, 1) < f e"Iw(-, 8)ds < f " Kyds = Ky (t — ty) < K. 4.7)
1) to

At the end, to estimate u,, we choose an arbitrary p € (n,6). Then invoking known smoothing
properties of (€"),5 ( [7, Lemma 1.3 (iv)]) and applying the Holder inequality to find a constant
C, > 0 such that

s
s Dl < Ca f (t = ) B (e, VW $)llnds
To

t

_1_n

< sz(t—S) 22 luC N e NIVWC, $llsds
f L&7 (Q)

t
_l_n 1-
<G f (t = )75, e g lluC Nty IVWE llzsds,
1o

where a = % € (0, 1). In view of (2.3), (3.31) and the definition of M(T), this yields that

!
12 u
lea (-, Dl < CzKlml_af n 2 rdn- MYT),

fo
so that since % + % < 1 according to our limitation p > n. Combining with (4.4)—(4.7), we obtain
C;3 > 0 such that

(-, D)l = sup u(x, ) < sup u;(x, t) + sup ua(x, t) + sup us(x, t)
xeQ xeQ xeQ xeQ

< C3+ C3M*“(T)
for all r € (0, T),4.). Therefore, we know
M(T) < C5+CsM“(T) forallte (0, T),
this implies
1
M(T) < max {1, (2@)@} for all £ € (0, Tyyy),
this completes the proof of (4.1). Then we can get
2 < (VK3)2
)

With this, (4.2) can be proved by the same operations as u. Then we obtain (4.3) due to the parabolic
regularity. Collecting (4.1)—(4.3), we can easily find a positive constant K to prove Theorem 1.1. O

ruy — ,u2v2 < rKsv — v forall r € (0, T,,0x)-
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5. Proof of Theorem 1.2

Theorem 1.1 claims the global existence and boundedness of the classical solution of (1.1) if y; (i =
1,2) are sufficiently large. In this section, we shall show the proof of Theorem 1.2, which relies on
constructing the Lyapunov functional

I'(r) = L {M(‘, ) —u, —u,In M(L:)} + j;{v(., f)—v.—v.In V(‘;’:)}

ot
+2f{w(-,t)—w*—w*lnw( )} forall £ > 0,
Q

£

5.1

where u., v, and w, are given in (1.4). As a matter of fact, the above Lyapunov functional has been
widely used in asymptotic analysis (cf. [33, 39], for instance). Similar to the previous work [4], we
begin with some basic calculations and outline the main ideas of the proof.

Lemma 5.1. Let
M1 < po < 3y (5.2)

and
r=Uu — M. (53)

and let L,, > 0. Then whenever /)(% +)(§ < M, where M = M(uy, iy, ug, vo, wo) > 0, and (u,v,w) is a
positive global classical solution of (1.1) in Qx (0, 00) with the initial data (ug, vy, wo) fulfill (1.2) and

WG, Dz~ < L,  forallt >0, 5.4)

then the Lyapunov functional (5.1) holds the decay property:

3 —
o<1~ f(u R f(v “v)?  forallt> 0, (5.5)
2 Q 2 Q

which implies that
u(-,t) = u,, v(-,t) > v, and w(-,t) > w, inL7(Q)ast— oo. (5.6)

Proof. Starting from structuring the functional (5.1), we divide the proof process into the following
steps:
Step 1. Using the three equations in (1.1), and computing it straightforward to obtain

%F(t) < {(,u]uf + V2 — ru*v*) -2 ( V2uw, + V2v.w, — W*)} Q)

+(1—a)fu+(1——)fv—f(2w* Xl”*+X2V*)|Vw|2 (5.7)
- ,11—5 f(;(u—u*)z— ,12—5 L(v—v*)z for all z > 0.

Under the assumption of (5.3) and the definition of @ in (1.4), we obverse that

to = 1 + (U2 — 1) + 4o

O<a=
2o

=1, (5.8)
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then we have

Uy = —, Vo= —, W, = — 5.9

and

o + v = v, = 203 2uw, + A 2v.w, = w.)

4 2 4 4 (5.10)
= 2/11 TS T 212412 — - — — —1]=0.
H M1 M1 Mg

Let M := Li, and in view of (5.9), we get

_(Zw* )(%u*+)(§v*)<_( 8 X%+X§)

w? - 4 /’tngv 2/,(1
b (5.11)
= 5 M)

Without losing generality, we let O < x4, x> < 1. Then since the L™ of w only depends on the upper
bound of y; (i = 1,2) and on the lower bound of y; (i = 1,2) as well as on the initial data (ug, vy, wo),
we notice that L, has the following dependence relationship:

L, = L,(u, 1z, up, vo, wo).

Therefore, in view of (5.4), it is possible for us to fix some M = M(u;, uz, uo, vo, wo) > 0 such that

whenever /)(f +)(§ < min {1, M}, (5.11) holds. Then collecting (5.7)—(5.11), we obtain (5.5).

Step 2. Applying Holder regularity [42, Theorem 1.3] and [40] to establish weak convergence of u
and v in L*(Q). According to (1.1), there exist 8 € (0, 1) and C > 0 such that

uel

+ (vl (5.12)

0.9 0.9 + 1+, 140 <
C”2 (Qx[t,t+1]) C”2 (QX[t,t+1]) C 2 (QX[te+1])

forall r > 1.
Step 3. Due to the fact that s — 1 —Ins > 0 for all s > 0, I is non-negative. In view of (5.5), we
obverse that I'(1) is finite due to positivity of (u(-, 1), v(-, 1), w(-, 1)) in Q, then integrating (5.5) in time

shows that . .
f f(u—u*)2+f f(v—v*)2 < 00, (5.13)
1 Jo 1 Jo

u(-,t) - u, and v(-,t) > v, inL®(Q)ast— oo, (5.14)

which implies that

due to the contradiction argument (cf. [41], for instance).
Step 4. Multiplying the third equation in (1.1) by w — w,, using Young’s inequality again to obtain

fifW‘MY<m’ (5.15)
1 Q
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which implies
w(,t) > w, inL”(Q)ast— oco. (5.16)

This completes the proof.

We are now in a position to prove Theorem 1.2.
Proof of Theorem 1.2. Theorem 1.2 is a direct consequence of Lemma 5.1, and the interested readers
may refer to [4, Lemma 6.1] for a detailed proof. O

6. Conclusions

In this work, we considered the dynamics behavior of a three-component chemotaxis system on
alopecia areata in the higher-dimensional case. We mainly proved the existence of the global bounded
classical solution for the discussed chemotaxis system if u; (i = 1,2) is large enough. In the further
work, we will consider this chemotaxis system with the nonlinear self-diffusion, nonlinear
chemotactic sensitivity and the generalized logistic sources. Moreover, the chemotaxis system with
singular chemotactic sensitivity can also be discussed.
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