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Abstract: Monkeypox (MPX) is a global public health concern. This infectious disease affects people
all over the world, not just those in West and Central Africa. Various approaches have been used
to study epidemiology, the source of infection, and patterns of transmission of MPX. In this article,
we analyze the dynamics of MPX using a fractional mathematical model with a power law kernel.
The human-to-animal transmission is considered in the model formulation. The fractional model is
further reformulated via a generalized fractal-fractional differential operator in the Caputo sense. The
basic mathematical including the existence and uniqueness of both fractional and fractal-fractional
problems are provided using fixed points theorems. A numerical scheme for the proposed model
is obtained using an efficient iterative method. Moreover, detailed simulation results are shown for
different fractional orders in the first stage. Finally, a number of graphical results of fractal-fractional
MPX transmission models are presented showing the combined effect of fractal and fractional orders
on model dynamics. The resulting simulations conclude that the new fractal-fractional operator added
more biological insight into the dynamics of illness.
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1. Introduction

Monkeypox is a viral zoonotic disease caused by the monkeypox virus. This infection primarily
occurs in Central and West Africa. MPX emerged as a serious orthopoxvirus for human health in
1980, when smallpox infection was eradicated. The first outbreak of this infection outside of African
countries was reported in 2003 in the United States. Subsequently, many MPX-infected cases were
reported in African and European countries. In May 2022, the infection was confirmed in several non-
endemic areas. More than 3413 confirmed cases were reported with 1 death case to WHO from 50
countries/territories. The transmission of MPX occurs from animals to humans. Mostly, the hosts in
animals include a range of rodents and non-human primates. The infection can also be spread from
person to person through close contact, such as droplets released by talking, breathing, or sneezing. It
can also be transmitted through sexual contact with an infectious person. Environmental transmission is
also possible for MPX. In a recent investigation, the transmission of MPX from infected humans to pets
are reported [1, 2]. Different disease symptoms are observed in MPX-infected people. Some people
have less severe symptoms, while others develop more serious illnesses. Typical clinical symptoms
developed by infected individuals during recent outbreaks include headache, fever, back pain, myalgia,
lack of energy, swollen lymph nodes, and a rash lasting 2–3 weeks. Initially, a vaccine used against the
smallpox eradication program protects her MPX. Three vaccines against MPX are currently available.
Two of them, namely MVA-BN and LC16, have been approved to prevent this infection [1–3].

Many epidemiological aspects of MPX infection are still under investigation. Studies are under-
way to find out more about the transmission and treatment of this infection. Mathematical models are
one of the most effective tools for studying the dynamic aspects of infectious diseases. These mod-
els help design effective interventions and provide decision-makers and the health sector with useful
information for understanding disease dynamics and control. In this regard, a number of epidemio-
logical infection models based on various infectious diseases have been developed and studied in the
recent literature. These models are usually formulated using various differential derivatives (or oper-
ators), usually partial, stochastic, ordinary or fractional in nature [4–6]. The impact of treatment and
vaccination on the dynamics of MPX is analyzed through a classical integer case transmission model
in [7]. Recently, a new mathematical model-based MPX transmission is proposed in [8]. The authors
of [8] divided the population into human and non-human (animal) classes and performed a detailed
theoretical and numerical analysis of the problem. A mathematical model for the transmission of HIV
and MPX co-infection is analyzed in [9]. The authors in [9] analyzed the transmission in the HIV-
infected population and suggested some effective control interventions for disease eradication. In [10],
the authors recently reviewed a stochastic MPX transmission model with cross-infection. Most of the
existing MPX transmission models are established through classical integer-order differential equa-
tions. However, from an epidemiological point of view, Prior experience and history of an epidemic
have a substantial role in analyzing the disease dynamics in a quite realistic way. On the other hand,
the models with classical derivatives are local in nature and cannot model the dynamics of phenom-
ena between two integer values. Furthermore, these classical models are unable to possess memory
effects and hereditary properties which are found in many biological diseases. Subsequently, fractional
operators have been used in recent years to formulate the biological models. The well-known opera-
tors having fractional order used in the existing literature are Caputo [11], Caputo-Fabrizio (CF) [12]
and the Atangana-Baleanu operators(ABC) [13]. So far, only a few transmission models have been
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established with these operators. A fractional-order MPX transmission model was recently developed
in [14]. The authors of [14] formulated the model via the CF operator and estimated the parameters
using real data reported in Nigeria over a specific time period. Furthermore, a fractional Caputo-type
MPX transmission model is established in [15].

Besides the above-cited literature, the modeling approach with a novel fractal-fractional operator
was adopted after the introduction of these operators by Atangana in 2017 [16]. These novel operators
are actually the combination of fractional and fractal calculus. Recently, many researchers have applied
these new concepts successfully in various scientific problems including epidemiology. For instance,
a compartmental model to study the impact of commercial and rural banks via a fractional-fractal
modeling approach [17]. They have shown that by using a model with the fractional-fractal operator
one can provide a better fit to actual data. An application of fractional-fractal operators to analyze the
dynamics of the novel coronavirus pandemic can be found in [18].

In existing literate, MPX transmission models are formulated with only animal-to-human transmis-
sion. Recently, transmission from humans to pets is being reported [2]. Based on the recent facts,
in this paper, we develop the MPX transmission model with animal-to-human and human-to-animal
transmission of infection. The proposed model is actually the extension of [10] by incorporating the
human-to-animal transmission. In addition, unlike the existing models, we formulate the present prob-
lem using the fractional and fractal-fractional operators in order to gain more insights into the disease
dynamics. The paper is classified into seven main sections with details as: Basic definition of the
fractional, as well as the fractal-fractional operators are discussed in Section 2. Section 3 briefly
introduces the model formulation for the integer case. The fractional MPX transmission model with
some of the basic analysis is established in Section 4. Section 5 presents the numerical scheme and
resulting simulation in the fractional MPX transmission model. The MPX model in fractal-fractional
the case is developed in Section 6. Moreover, this section includes the existence, uniqueness, and
novel numerical procedure along with simulation results and a brief discussion of the MPX model
with the fractal-fractional operator. Finally, concluding remarks are drawn in Section 7.

2. Basic definitions

This section provides basic details about fractional and fractal-fractional operators developed [11,
16].

Definition 2.1. Consider the function X(t) ∈ Cn, the Caputo derivative with n− 1 < ρ ≤ n as fractional
order and n ∈ N is given as:

CDρ
t (X(t)) =

1
Γ(n − ρ)

∫ t

0

Xn(ζ)
(t − ζ)ρ−n+1 dζ.

CDρ
t (X(t)) approaches to integer derivative as ρ→ 1.

Definition 2.2. A point x∗ is said to be the equilibrium point of the following Caputo-type system
defined by:

CDρ
t x(t) = f (t, x(t)), ρ ∈ (0, 1), (2.1)

if and only if f (t, x∗) = 0.
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Let X(t) be continuously fractal differentiable function on (a1, a2). The fractal and fractional param-
eters are respectively η and ρ. We recalled some definitions as follows [16]:

Definition 2.3. The fractal-fractional (FF) operator of the Riemann-Liouville (RL) type based on the
power-law kernel is defined as:

FF−PDρ,η
0,t

(
X(t)

)
=

1
Γ(n − ρ)

d
dtη

∫ t

0
(t − ζ)n−ρ−1X(ζ)dζ, (2.2)

where, n − 1 < ρ, η ≤ n ∈ N and dX(ζ)
dζη = limt→ζ

X(t)−X(ζ)
tη−ζη .

Definition 2.4. The corresponding FF integral operator of (2.2) is given as follows:

FF−PJρ0,t
(
X(t)

)
=

η

Γ(ρ)

∫ t

0
(t − ζ)ρ−1ζη−1X(ζ)dζ. (2.3)

3. Monkeypox model in integer case

This section briefly describes the proposed MPX transmission model. To develop the desired model,
the whole human population is classified into four mutually-exclusive epidemiological classless in-
cluding the susceptible human class S h(t), the infectious human class Ih(t), isolate/quartine human
class Qh(t) and the recovered human class Rh(t). The non-human population (animals) is divided into
two groups namely the susceptible animals S m(t) and the infectious animals Im(t). The considerable
assumptions taken into account are:

• Unlike the existing models, we considered the transmission of infection to succeedable animals
from infected humans.
• The disease-induced death rate is considered in infected and isolated compartments.
• The infectious human population can be recovered through proper treatment and natural recovery.

The susceptible human class is generated by a constant recruitment rate Λh and reduced by acquir-
ing infection after interaction with infectious humans and animals. The force of infection is β1Im +β2Ih,
where β1 and β2 are the effective contact rates (capable of transmitting infection) corresponding to in-
fectious animals and humans respectively. Each class containing the human population is reduced due
to natural death at the rate µ. The Monkeypox-induced death rate in the infected and isolated human
compartments are denoted by δ1 and δ2 respectively. The infectious human papulation becomes recov-
ered and joins Rh at the rated r1 and r2. The symbol r1 shows the natural recovery rate and r2 denotes
the recovery rate through specific treatment. The infectious human population is isolated and joins Qh

class at the transmission rate φ. The recovery rate of the isolated/quartine human population is denoted
by τ2 while τ1 shows the susceptibility rate of the isolated population.

In the animal population, Λm shows the recruitment rate while the natural death rate denoted is ν.
The force of infection is ζ1Ih +ζ2Im, where ζ1 and ζ2 are the respective transmission rates corresponding
to infected humans and animals.

Keeping the above discussion in mind the proposed MPX mathematical model is given in the fol-
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lowing system.

dS h

dt
= Λh − β1S hIm − β2S hIh − µS h + τ1Qh,

dIh

dt
= β1S hIm + β2S hIh − (µ + δ1 + ϕ + r1 + r2)Ih,

dQh

dt
= ϕIh − (τ1 + τ2 + µ + δ2)Qh,

dRh

dt
= (r1 + r2)Ih + τ2Qh − µRh,

dS m

dt
= Λm − ζ1S mIh − ζ2S mIm − νS m,

dIm

dt
= ζ1S mIh + ζ2S mIm − νIm.

(3.1)

The initial conditions for the above system are

S h(t0) = S h0 ≥ 0, Ih(t0) = Ih0 ≥ 0, Qh(t0) = Qh0 ≥ 0, R(t0) = Rh0 ≥ 0,

S m(t0) = S m0 ≥ 0, Im(t0) = Im0 ≥ 0. (3.2)

In order to make the onward calculation simpler, we take

λh = (β1Im + β2Ih), λm = (ζ1Ih + ζ2Im), k1 = (µ + δ1 + ϕ + r1 + r2),
k2 = (τ1 + τ2 + µ + δ2).

Thus, the model (3.1) can be written as follows:

dS h(t)
dt

= Λh − λhS h − µS h + τ1Qh,

dIh

dt
= λhS h − k1Ih,

dQh

dt
= ϕIh − k2Qh,

dRh

dt
= (r1 + r2)Ih + τ2Qh − µRh,

dS m

dt
= Λm − λmS m − νS m,

dIm

dt
= λmS m − νIm.

(3.3)
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4. Fractional extension of MPX model

This section presents the extension of the integer MPX model to fractional order. The well-known
Caputo operator with a power law kernel is utilized to obtain the fractional model. The transmission
models establish with fractional operators provides biologically more significant output than integer
case problems and have a widespread application in real-life situations including epidemiology. It
is due to the memory and heredity properties of fractional operators. The procedure of developing
fractional-order mathematical model we proceed as follows:

dS h

dt
=

∫ t

t0
k(t − t

′

)
[
Λh − λhS h − µS h + τ1Qh

]
dt
′

,

dIh

dt
=

∫ t

t0
k(t − t

′

)
[
λhS h − k1Ih

]
dt
′

,

dQh

dt
=

∫ t

t0
k(t − t

′

)
[
ϕIh − k2Qh

]
dt
′

,

dRh

dt
=

∫ t

t0
k(t − t

′

)
[
(r1 + r2)Ih + τ2Qh − µRh

]
dt
′

,

dS m

dt
=

∫ t

t0
k(t − t

′

)
[
Λm − λmS m − νS m

]
dt
′

,

dRm

dt
=

∫ t

t0
k(t − t

′

)
[
λmS m − νIm

]
dt
′

.

(4.1)

In the above problem k(t − t
′

) describes the time-dependent kernel. Moreover,

k(t − t
′

) =
(t − t

′

)ρ−2

Γ(ρ − 1)
, (4.2)

Replacing (4.2) in (4.1), and taking the Caputo having order ρ − 1, it leads to

CDρ−1
t

[dS h

dt

]
= CDρ−1

t I−(ρ−1)
t

[
Λh − λhS h − µS h + τ1Qh

]
,

CDρ−1
t

[dIh

dt

]
= CDρ−1

t I−(ρ−1)
t

[
λhS h − k1Ih

]
,

CDρ−1
t

[dQh

dt

]
= CDρ−1

t I−(ρ−1)
t

[
ϕIh − k2Qh

]
,

CDρ−1
t

[dRh

dt

]
= CDρ−1

t I−(ρ−1)
t

[
(r1 + r2)Ih + τ2Qh − µRh

]
,

CDρ−1
t

[dS m

dt

]
= CDρ−1

t I−(ρ−1)
t

[
Λm − λmS m − νS m

]
,

CDρ−1
t

[dRm

dt

]
= CDρ−1

t I−(ρ−1)
t

[
λmS m − νIm

]
.

(4.3)
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After some manipulation the fractional MPX transmission model leads to the following system

CDρ
t S h = Λh − λhS h − µS h + τ1Qh,

CDρ
t Ih = λhS h − k1Ih,

CDρ
t Qh = ϕIh − k2Qh,

CDρ
t Rh = (r1 + r2)Ih + τ2Qh − µRh,

CDρ
t S m = Λm − λmS m − νS m

CDρ
t Im = λmS m − νIm,

(4.4)

subject to ICs (3.2). In the system (4.4), CDρ
t shows the Caputo derivative with order ρ ∈ (0, 1].

4.1. Basic analysis of the fractional MPX model

In this section we address some of the basic and necessary mathematical analysis of fractional MPX
disease model.

4.1.1. Invariant region

The feasible domain in terms of biological point view for the MPX fractional model (4.4) is con-
structed as follows:

Ωh =
{
(S h, Ih,Qh,Rh) ⊂ R4

+ : S h + Ih + Qh + Rh ≤
Λh
µ

}
,

Ωm =
{
(S m, Im) ⊂ R2

+ : S m + Im ≤
Λm
ν

}
,

(4.5)

Such that and we have Ω = Ωh ×Ωm ⊂ R
4
+ × R

2
+ is positively invariant.

The following theorem prove the positivity and bounded properties of solution of Caputo MPX
model.

Theorem 4.1. Let S h (0) = S h0 , Ih (0) = Ih0 , Qh (0) = Qh0 , Rh (0) = Rh0 , S m (0) = S m0 , and
Im (0) = Im0 be the initial values of state variables. For the positive initial conditions, the region defined
in the set Ω will be positively invariant for all t > 0. Furthermore, Nh0 (t) ≤ Λh

µ
and Nm0 (t) ≤ Λm

ν
.

Proof. We start the proof by considering only the first equation of system (4.4). Let
S h0 , Ih0 , Qh0 , Rh0 , S m0 and Im0 , be all positive, the desired result is to prove that state variables
are positive. From system (4.4) we have

CDρ
t S h = Λh − λhS h − µS h + τ1Qh, (4.6)

then

CDρ
t S h + (λh + µ) S h = Λh + τ1Qh. (4.7)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6666–6690.



6673

Since Λh + τ1 Qh ≥ 0 implies that CDρ
t S h + (λh + µ) S h ≥ 0, by using the Laplace transform we have

L
[
CDρ

t S h

]
+ L

[
(λh + µ) S h

]
≥ 0,

sρS h (s) − sρ−1S h (0) + (λh + µ) S h (s) ≥ 0,

S h (s) ≥
sρ−1

(sρ + (λh + µ))
S h0 .

By applying the inverse Laplace transform we have

S h (t) ≥ Eρ,1 (− (λh + µ) tρ) S h0 . (4.8)

Since quantities on right hand side of (4.8) are positive therefore, we have S h ≥ 0 for t ≥ 0. Similarly,
it can be shown that Ih,Qh,Rh, S m, and Im ≥ 0 ∀t ≥ 0. Thus, the solutions in R4

+ × R
2
+ are positive.

In the second part, we prove the bounded property of the problem solution. The total population for
human is given by Nh (t) = S h (t) + Ih (t) + Qh (t) + Rh (t) , Such that

CDρ
t Nh (t) =C Dρ

t S h (t) +C Dρ
t Ih (t) +C Dρ

t Qh (t) +C Dρ
t Rh (t) . (4.9)

CDρ
t Nh (t) = Λh − (δ1Ih + δ2Qh) − µNh (t) ≤ Λh − µNh (t) ,

CDρ
t Nh (t) ≤ Λh − µNh (t) ,

Laplace transform on both sides yields to the following

L
[
CDρ

t Nh (t)
]
≤ L

[
Λh − µNh (t)

]
,

sρNh (s) − sρ−1Nh (0) + µNh (s) ≤ Λh
s ,

Nh (s) ≤ sρ−1

(sρ+µ) Nh (0) + Λh
s(sρ+µ) .

By applying inverse Laplace transform we have

Nh (t) ≤ Eρ,1 (−µtρ) Nh (0) + ΛhEρ,ρ+1 (−µtρ) . (4.10)

By taking limit t → ∞ we have implies that Nh (t) ≤ Λh
µ
, If Nh0 (t) ≤ Λh

µ
then Nh (t) ≤ Λh

µ
implies Nh (t)

is bounded. In similar way we can prove that Nm (t) is bounded. So we conclude that the region Ω is
epidemiological feasible and bounded.

4.2. Equilibria and R0

For equilibrium points, we consider the following system

CDρ
t S h = 0,

CDρ
t Ih = 0,

CDρ
t Qh = 0,

CDρ
t Rh = 0,

CDρ
t S m = 0,

CDρ
t Im = 0.

(4.11)
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The solution of (4.11) at disease free state (i.e., Ih = Qh = Rh = Im = 0) gives the following disease
free equilibrium (DFE).

E0 = (S 0
h, I

0
h ,Q

0
h,R

0
h, S

0
m, I

0
m) =

(
Λh

µ
, 0, 0, 0,

Λm

ν
, 0

)
,

By using the next generation method we compute R0.
Let X = (Ih,Qh, Im)t then have Jacobian of the linearized system at DFE is as follows

F =


β2Λh
µ

0 β1Λh
µ

0 0 0
ζ1Λm
ν

0 ζ2Λm
ν

 , V =


k1 0 0
−ϕ k2 0
0 0 ν

 , (4.12)

The next generation matrix is given by

FV−1 =


β2Λh
µk1

0 β1Λh
µν

0 0 0
ζ1Λm
νk1

0 ζ2Λm
ν2

 , (4.13)

R0 = (R1 + R2) = 1
2

(
(νβ2S 0

h+ς2k1S 0
m)

νk1
+

(νβ2S 0
h+ς2k1S 0

m)
νk1

√
1 +

4νk1S 0
mS 0

h(β1ζ1−β2ζ2)

(νβ2S 0
h+ς2k1S 0

m)2

)
.

Endemic equilibrium point The endemic equilibrium (EE) of the fractional MPX infection model
is obtain as follows:

S ∗h = k1k2Λh
µk1k2+(k1k2−φτ1)λ∗h

,

I∗h =
λ∗hS ∗h

k1
,

Q∗h =
φλ∗hS ∗h
k1k2

,

R∗h =
(r1+r2)λ∗hS ∗h

µk1
+

φλ∗hτ2S ∗h
µk1k2

,

S ∗m = Λm
ν+λ∗m

,

I∗m =
λ∗mS ∗m
ν
.

(4.14)

5. Numerical treatment of fractional MPX model

In this section, the iterative solution of the MPX model (4.4) in fractional case is being investigated.
Moreover, the resulting simulation will be analyzed in detail.
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5.1. Numerical scheme

The fractional Euler’s scheme as discussed in the recent literature [19, 20] is utilized to obtain
numerical scheme of the proposed model. For this purpose, we express the fractional model (4.4) in
the following problem {

CDρ
t p(t) = H(t, p(t)),

p(0) = p0, 0 < T < ∞,
(5.1)

where, p(t) = (S h, Ih,Qh,Rh, S m, Im) ∈ R6 and p0 stands for initial state vector. Further,
H(t, p(t)) = (H1(t, p(t)),H2(t, p(t)),H3(t, p(t)),H4(t, p(t)),H5(t, p(t)),H6(t, p(t))) denotes continuous
real valued vector function satisfying the Lipschitz condition such that

H1(t, p(t)) = Λh − λhS h − µS h + τ1Qh,

H2(t, p(t)) = λhS h − k1Ih,

H3(t, p(t)) = ϕIh − k2Qh,

H4(t, p(t)) = (r1 + r2)Ih + τ2Qh − µRh,

H5(t, p(t)) = Λm − λmS m − νS m,

H6(t, p(t)) = λmS m − νIm.

(5.2)

Taking the Caputo integral on both sides of (5.1) we obtained

p(t) = p0 +
1

Γ(ρ)

∫ t

0
(t − ς)ρ−1H(ς, p(ς))dς. (5.3)

Further, a uniform grid on the interval [0,T ], with h = T−0
m , denotes the step size and m ∈ N is

considered. Using the Euler method [20], the Eq (5.3) leads to the following result:
pn+1 = p0 + hρ

Γ(ρ+1)

∑n
ι=0((n − ι + 1)ρ − (n − ι)ρ)H(tι, p(tι)),

n = 0, , · · · ,m.
(5.4)

Utilizing the numerical procedure (5.4) and the expressions in (5.2), the following iterative formulae
are establish for MPX transmission model (4.4):

S hn+1 = S h0 +
hρ

Γ(ρ + 1)

n∑
ι=0

((n − ι + 1)ρ − (n − ι)ρ)
(
Λh − λhιS hι − µS hι + τ1Qhι

)
,

Ihn+1 = Ih0 +
hρ

Γ(ρ + 1)

n∑
ι=0

((n − ι + 1)ρ − (n − ι)ρ)
(
λhιS hι − k1Ihι

)
,

Qhn+1 = Qh0 +
hρ

Γ(ρ + 1)

n∑
ι=0

((n − ι + 1)ρ − (n − ι)ρ)
(
ϕIhι − k2Qhι

)
,
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Rhn+1 = Rh0 +
hρ

Γ(ρ + 1)

n∑
ι=0

((n − ι + 1)ρ − (n − ι)ρ)
(
(r1 + r2)Ihι + τ2Qhι − µRhι

)
,

S mn+1 = S m0 +
hρ

Γ(ρ + 1)

n∑
ι=0

((n − ι + 1)ρ − (n − ι)ρ)
(
Λm − λmιS mι − νS mι

)
,

Imn+1 = Im0 +
hρ

Γ(ρ + 1)

n∑
ι=0

((n − ι + 1)ρ − (n − ι)ρ)
(
λmvS mι − νImι

)
. (5.5)

5.2. Simulation

In this section, we simulate the fractional case MPX infection model (4.4) using the iterative scheme
derived in Eq (5.5). The time level considered in the graphical results of the model is 500 days. The
model is simulated for two sets of variables and five different values of fractional order ρ. The values
of parameters are taken from [10].

Case 1: In this case, we consider the parameters values as Λh = 10, β1 = 0.00001, β2 =

0.00002, µ = 0.05, δ = 0.0003, τ1 = 0.32, τ2 = 0.2;ϕ = 0.5, r1 = 0.041, r2 = 0.043, α1 =

0.004, δ2 = 0.002, Λm = 10, ζ1 = 0.000027, ζ2 = 0.000017, ν = 0.02. The graphical interpretation
for this case is shown in Figure 1(a)–(f). The dynamics of susceptible, infected, isolated and recov-
ered human population are depicted in Figure 1(a)–(d) respectively. The dynamics of susceptible and
infected animals population is shown in Figure 1(e),(f) respectively. These graphical interpretations
demonstrated that all solution trajectories converge to the DFE for all values of ρ.

Case 2: In this case, we slightly modify the parameters values. The considered parameters values
are Λh = 10, β1 = 0.0001, β2 = 0.0002, µ = 0.05, δ = 0.0003, τ1 = 0.32, τ2 = 0.2;ϕ = 0.5, r1 =

0.041, r2 = 0.043, α1 = 0.004, δ2 = 0.002, Λm = 10, ζ1 = 0.00027, ζ2 = 0.00017, ν = 0.02. The
graphical results, in this case, are depicted in Figure 2(a)–(f). In Figure 2(a)–(d), we have shown the
dynamics of the susceptible, infected, isolated, and recovered human population respectively, while
in Figure 2(e),(f) describes the dynamics of susceptible and infected animals population respectively.
These simulations demonstrated that all solution trajectories converge to the EE for all values of ρ.
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Figure 1. Dynamics of the Caputo MPX transmission model (4.4) for different values of
fractional order ρ = 1, 0.95, 0.90, 0.85, 0.80. The parameters values given in case 1 are con-
sidered for simulation.
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Figure 2. Dynamics of the Caputo MPX transmission model (4.4) for different values of
fractional order ρ = 1, 0.95, 0.90, 0.85, 0.80 by considering parameter values given in case 2.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6666–6690.



6679

6. A fractal-fractional MPX model in Caputo sense

In the previous section, we extended the integer MPX transmission model to a fractional case. In
this part of the manuscript, we further extend the fractional model to obtain a more generalized problem
using the fractal-fractional operator in the Caputo sense. After formulating the model, we explore its
basic mathematical analysis including the existence and uniqueness of the solution. Moreover, the
model in the fractal-fractional case will be solved via an efficient numerical scheme to simulate the
model for different values of fractional as well as fractal orders. The fractal-fractional case MPX
transmission model can be established by the following system

FF Dρ,η
0,t

(
S h(t)

)
= Λh − λhS h − µS h + τ1Qh,

FF Dρ,η
0,t

(
Ih(t)

)
= λhS h − k1Ih,

FF Dρ,η
0,t

(
Qh(t)

)
= ϕIh − k2Qh,

FF Dρ,η
0,t

(
Rh(t)

)
= (r1 + r2)Ih + τ2Qh − µRh,

FF Dρ,η
0,t

(
S m(t)

)
= Λm − λmS m − νS m,

FF Dρ,η
0,t

(
Im(t)

)
= λmS m − νIm.

(6.1)

The fractional and fractal parameters in the above model (6.1) are expressed by ρ and η respectively.
We proceed with the basic analysis of the model (6.1) in the next section.

6.1. Existence and uniqueness

The current part of the work explores the existence of the uniqueness of the proposed model solution
using the well-known Picard-Lindelöf theorem coupled with the fixed point approach. To move further,
the fractal-fractional system (6.1) can be expressed in the following general Cauchy problem{ FF Dρ,η

0,t p(t) = H(t, p(t)),
p(0) = p0, 0 < t < T < ∞,

(6.2)

where, p(t) = (S h, Ih,Qh,Rh, S m, Im) consists of state variables and H representing a continuous
vector function as described in Subsection 5.1. The corresponding initial condition are stated as
p0 = (S h(0), Ih(0),Qh(0),Rh(0), S m(0), Im(0)).

The problem (6.2) leads to the following result after utilizing the fractional integral

1
Γ(1 − ρ)

d
dt

∫ t

0
(t − ς)−ρH(t, p(t))dς = ηtη−1H(t, p(t)). (6.3)

After the replacement of right hand side by the Caputo derivative and then implementing the integral
we obtain [21]:

p(t) = p(0) +
η

Γ(ρ)

∫ t

0
(t − ς)ρ−1ςη−1H(ς, g(ς))dς. (6.4)
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Further, with the help of Picard-Lindelöf theorem, let we define
b∏
a

= In(tn) × A0(p0),

where,
In(tn) = [tn−a, ta+n], A0(p0) = [t0 + b, b + t0].

Defining the following operator

Λ.C[In(tn),Ab(tn)]→ C(In(tn),Ab(tn)),

such that

Λφ(t) = p(0) +
η

Γ(ρ)

∫ t

0
(t − ς)ρ−1ςη−1H(ς, φ(ς))dς. (6.5)

Our focus is to confirm the fact that operator defined in (6.5) maps a complete norm empty metric
space into itself. Moreover, it is necessary to establish that it also possesses the contraction mapping.
In the first attempt we show that

‖Λφ(t) − p(0)‖ ≤ c. (6.6)

The following norm is taken into account

‖Λφ(t) − p(0)‖ ≤
η

Γ(ρ)

∫ t

0
(t − ς)ρςη−1‖H(ς, p(ς))‖∞dς

≤
η

Γ(ρ)
K

∫ t

0
(t − ς)ρςη−1dς, (6.7)

where,
K = ‖H‖∞,

and the norm is defined by
‖χ‖∞ = supt∈

∏b
a
‖χ(t)‖.

Further, letting ς = ty, the above expression is converted to

‖Λφ(t) − p(0)‖ ≤
ηK
Γ(ρ)

tρ+η−1B(ρ, η), (6.8)

‖Λφ(t) − p(0)‖ < c =⇒ K <
cΓ(ρ)

ηaη+ρ−1B(η, ρ)
. (6.9)

Taking φ1, φ2 ∈ C[In(tn), Ab(tn)], we obtained the following result,

‖Λφ1 − Λφ2‖ ≤
( ηL
Γ(ρ)

tη+ρ−1B(ρ, η)
)
‖φ1 − φ2‖

<
( ηL
Γ(ρ)

aη+ρ−1B(ρ, η)
)
‖φ1 − φ2‖. (6.10)

Thus, we deduce that the contractive property is arrived after the fulfilment of following criteria

L <
Γ(ρ)

ηaη+ρ−1B(ρ, η)
. (6.11)

Hence, complete the proof.
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6.2. Numerical scheme for fractal-fractional MPX model

This section briefly presents a novel numerical scheme for the fractal-fractional MPX transmission
model (6.1) in order to obtain the impact of fractional and fractal orders graphically. The procedure
presented in [21] is utilized for this purpose. The model presented in (6.1) is firstly converted to
Volterra form as the fractional integral operator is differentiable. Further, the fractal-fractional Caputo
model in the form of RL operator can be expressed as:

1
Γ(1 − ρ)

d
dt

∫ t

0
(t − ς)−ρ f (ς)dς

1
ηtη−1 . (6.12)

Therefore, the problem (6.2) can be transform as

RLDρ
0,t

(
p(t)

)
= ηtη−1

[
H(t, p(t))

]
. (6.13)

Further, the RL derivative is replaced with the Caputo derivative such that to make the use of the
integer-order initial conditions. The Eq (6.13) gives the following expression:

p(t) = p(0) +
η

Γ(ρ)

∫ t

0
ςη−1(t − ς)ρ−1H(ς, p(ς))dς. (6.14)

Upon the grid points t = tn+1, (6.14) can be written as follows:

pn+1 = p0 +
η

Γ(ρ)

∫ tn+1

0
ςη−1(tn+1 − ς)ρ−1H(ς, p(ς))dς,

= p0 +
η

Γ(ρ)

n∑
v=0

∫ tv+1

tv
ςη−1(tn+1 − ς)ρ−1H(ς, p(ς))dς. (6.15)

Moreover, utilizing the Lagrangian piece-wise interpolation procedure over the finite interval [tv, tv+1]
for the functionH(ς, p(ς)) in (6.15) we have

H(ς, p(ς)) ≈ Pv(ς) =
ς − tv−1

tv − tv−1
tη−1
v H(tv, p(tv)) −

ς − tv

tv − tv−1
tη−1
v−1H(tv−1, p(tv−1)). (6.16)

Using the approximation made in (6.16), the (6.15) leads to the following:

pn+1 = p0 +
η

Γ(ρ)

n∑
v=0

∫ tv+1

tv
λη−1(tn+1 − ς)ρ−1Pv(ς)dς. (6.17)

Finally, the solution of (6.17) leads to the following equation:

pn+1 = p0 +
ηhρ

Γ(ρ + 2)

n∑
v=0

[
tη−1
v H(tv, g(tv))

×
(
(n + 1 − v)ρ(n − v + 2 + ρ) − (n − v)ρ(n − v + 2 + 2ρ)

)
−tη−1

v−1H(tv−1, g(tv−1)) ×
(
(n + 1 − v)ρ+1 − (n − v)ρ(n + 1 − v + ρ)

)]
. (6.18)
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Thus, implementing the scheme derived in (6.18) on the proposed fractal-fractal MPX transmission
model (6.1), the following recursive formulae are established:

S n+1
h = S 0

h +
ηhρ

Γ(ρ + 2)

n∑
v=0

[
tη−1
v H1(tv, p(tv))

×
(
(n + 1 − v)ρ(n + 2 − v + ρ) − (n − v)ρ(n + 2 − v + 2ρ)

)
−tη−1

v−1H1(tv−1, p(tv−1)) ×
(
(n + 1 − v)ρ+1 − (n − v)ρ(n + 1 − v + ρ)

)]
,

In+1
h = I0

h +
ηhρ

Γ(ρ + 2)

n∑
v=0

[
tη−1
v H2(tv, g(tv))

×
(
(n + 1 − v)ρ(n + 2 − v + ρ) − (n − v)ρ(n − v + 2 + 2ρ)

)
−tη−1

v−1H2(tv−1, p(tv−1)) ×
(
(n + 1 − v)ρ+1 − (n − v)ρ(n + 1 − v + ρ)

)]
,

Qn+1
h = Q0

h +
ηhρ

Γ(ρ + 2)

n∑
v=0

[
tη−1
v H3(tv, g(tv))

×
(
(n + 1 − v)ρ(n + 2 − v + ρ) − (n − v)ρ(n + 2 − v + 2ρ)

)
−tη−1

v−1H3(tv−1, p(tv−1)) ×
(
(n + 1 − v)ρ+1 − (n − v)ρ(n + 1 − v + ρ)

)]
,

Rn+1
h = R0

h +
ηhρ

Γ(ρ + 2)

n∑
v=0

[
tη−1
v H4(tv, g(tv))

×
(
(n + 1 − v)ρ(n + 2 − v + ρ) − (n − v)ρ(n + 2 − v + 2ρ)

)
−tη−1

v−1H4(tv−1, p(tv−1)) ×
(
(n + 1 − v)ρ+1 − (n − v)ρ(n + 1 − v + ρ)

)]
,

S n+1
m = S 0

m +
ηhρ

Γ(ρ + 2)

n∑
v=0

[
tη−1
v H5(tv, g(tv))

×
(
(n + 1 − v)ρ(n + 2 − v + ρ) − (n − v)ρ(n + 2 − v + 2ρ)

)
−tη−1

v−1H5(tv−1, p(tv−1)) ×
(
(n + 1 − v)ρ+1 − (n − v)ρ(n + 1 − v + ρ)

)]
,

In+1
m = I0

m +
ηhρ

Γ(ρ + 2)

n∑
v=0

[
tη−1
v H6(tv, g(tv))

×
(
(n + 1 − v)ρ(n + 2 − v + ρ) − (n − v)ρ(n + 2 − v + 2ρ)

)
−tη−1

v−1H6(tv−1, p(tv−1)) ×
(
(n + 1 − v)ρ+1 − (n − v)ρ(n + 1 − v + ρ)

)]
. (6.19)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6666–6690.



6683

6.3. Simulation of the fractal-fractional MPX model

The MPX transmission model (6.1) is simulated using the iterative scheme established in (6.19).
The values of parameters and initial conditions are the same as considered in the fractional model. The
model is simulated for three cases, considering different values of fractal order η and fractional order
ρ. Model simulations are analyzed numerically in Figures 3–5. In each figure, we present the impact
of the fractional and fractal orders ρ and η respectively on the solution of the model.

Case 1: In this case, the fractal order η is fixed and the fractional order ρ is varied by taking four
different values, i.e., 1, 0.95, 0.90, 0.80. The simulation for this set of parameters is analyzed in Figure
3(a)–(f). The dynamics of susceptible, infected, isolated, and recovered human population classes are
shown in Figure 3(a)–(d) respectively. The dynamics of susceptible and infected animal population is
analyzed in Figure 3(e),(f) respectively.

Case 2: This case presents the simulation of the fractal-fractional model (6.1) when the order of the
Caputo fractional operator is fixed to integer case, i.e., ρ = 1 and considered four different values, i.e.,
η = 1, 0.9, 0.80, 0.70 of the order of fractal operator. The simulation obtained from this scenario is
depicted in Figure 4(a)–(f). The dynamics of human population classes are shown in Figure 4(a)–(d)
respectively, whereas the dynamic of susceptible and infected animal compartments are respectively
analyzed in Figure 4(e),(f).

Case 3: In the third case, we simulate the fractal-fractional MPX transmission model (6.1) when
both the fractional order ρ and fractal order η varied equally or differently. The simulation results
produced for this scenario are analyzed in Figures 5 and 6 with subplots (a)–(f). From these figures,
we observed that in all three cases the solution curves converge to steady states. However, in the
third case (by taking non-integer values of both ρ and η) the converges to a steady state is attained
comparatively over a longer time period. Overall, we conclude that the fractal-fractional derivatives
can be utilized in order to provide a better understanding of disease dynamics.
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Figure 3. Case 1: Dynamics of the fractional-fractal MPX transmission model (6.1) when
the fractional order is ρ = 1, 0.95, 0.90, 0.80 and the fractal order is η = 1.
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Figure 4. Case 2: Dynamics of fractional-fractal MPX model (6.1) when fractional order is
ρ = 1 and fractal order is η = 1, 0.95, 0.90, 0.80.
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Figure 5. Case 3: Dynamics of the fractional-fractal MPX transmission model (6.1) when
fractional order is ρ = 1, 0.95, 0.90, 0.80 and fractal order is η = 1, 0.95, 0.90, 0.80.
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Figure 6. Simulation of the fractional-fractal MPX transmission model (6.1) when fractional
order is ρ = 1, 0.98, 0.95, 0.90 and fractal order is η = 1, 0.95, 0.98, 0.85.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6666–6690.



6688

7. Conclusions

In this manuscript, a new Monkeypox epidemic model with human-to-animal transmission is ana-
lyzed. Although few cases have been reported on such transmission. To the best of over knowledge,
this is the first attempt to consider such transmission in the Monkeypox transmission model. We de-
veloped the model with integer-order derivative and then extended it to fractional order via the Caputo
operator to analyze the impact of memory index on the disease incidence. The basic mathematical
analysis of the fractional Monkeypox model including the existence and uniqueness of the solutions
is carried out in the initial stage. The fractional model is then solved numerically and the simulation
is shown for two cases choosing different values of parameters demonstrating the stability of model
equilibria graphically. Moreover, the model is reformulated via the novel fractal-fractional operator in
order to obtain the generalized model. The existence and uniqueness of the problem solution in this
case are provided via the Picard-Lindelöf approach. An efficient numerical procedure based on the
Adams-Bashforth approach is used for the solution of the fractal-fractional Monkepox model. Sim-
ulation is presented for three different cases by considering various values of fractal and fractional
paraments. In all cases, we observed that the solution curves converge to the model’s steady state.
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