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Abstract: We consider the Poisson equation by collocation method with linear barycentric rational
function. The discrete form of the Poisson equation was changed to matrix form. For the basis of
barycentric rational function, we present the convergence rate of the linear barycentric rational col-
location method for the Poisson equation. Domain decomposition method of the barycentric rational
collocation method (BRCM) is also presented. Several numerical examples are provided to validate
the algorithm.
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1. Introduction

Two-dimensional elliptic [1] boundary value problems

0 ou(t, s) 0 Ou(t,s)\ _
£y (a(t, s) P ) + s (b(t, s) s ) = f(t,5),(t,5) € Q (L.1)
with
u(t, s) = a(t, ), aug; D s, (s) € o (1.2)

where Q = [a,b] X [c,d] and f(t, 5), g(¢, 5), h(t, s) on €, can be used in many scientific areas, such as
electrostatics, mechanical engineering, magnetic fields, thermal fields and brain activity detection [2].
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Floater [3-5] proposed a rational interpolation scheme. In [6], a linear rational collocation method
was presented for the lower regular function. Wang et al. [7-10] successfully solved initial value prob-
lems, plane elasticity problems, incompressible plane problems and non-linear problems by colloca-
tion method. The linear barycentric rational collocation method (LBRCM) to solve nonlinear parabolic
partial differential equations [11], biharmonic equation [12], fractional differential equations [13], tele-
graph equation [14], Volterra integro-differential equation [15] and heat conduction equation [16] have

been studied.

In the following, we introduce the barycentric formula of a one dimensional function. Let

p(t) = > Li0f;

J=1

and

[] e-w
1k#)

Lit) = k:n’ .
[ (-2

k=1k#j

In order to get the barycentric formula, Eq (1.4) is changed into

=0-1)t-1)----1,)

and

1
wj= ’ j:192a""na
Hj;tk (tj_tk)
which means w; = 1//'(¢)).
Wj X
L) =) , J=12,--,n
r—t;

For Eq (1.2), we get

P =10 Y ==,
J=1 J

which means
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For the case uniform partition, we get

n!

Wy = (DG = ()

For the case the nonuniform partition is chosen, we take the second Chebyshev point [7] a

j— 1
tj:cos(] )ﬂ, j=1,---,n
n—1

with

1/2,j=1,n
1, otherwise

Wj:(—l)j5j, 6j: {

For the barycentric rational function, we first set

QU

n—

M

A(D)pi(t)

rf) = ——
> Ao
i=1
where
(—1)
/l,'t =
AT B
and
i+d  i+d f—t
J
p=) || 4
k=i j=i,j#k J
Combining (1.14) and (1.15), we have
n—d i+d i+d
Zaimpi(x)—Z( 1)’2 — 1 1; _tfk—Zt_tfk
i=1 ki ek K
where
i+d
Wi = Z( 1y l_[ :
i€y Jj=i,j#k e =

and J; = {i € I,k —d < i < k}. By taking p(t) = 1, we have

k=i j=i,j#k e =1

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)
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and then have

Wi
. 1.19
Py (1.19)

n—d
Si0-

i= k=1

Combining (1.16), (1.19) and (1.13), we get

Zt—t

1:1

r(l‘) = (120)

P
f—lj

=

where w; is defined as in (1.17).

In this paper, based on linear barycentric rational interpolation of one dimension, we construct
a barycentric rational interpolation of a two-dimensional Poisson equation. In order to get the dis-
crete linear equation of a two-dimensional Poisson equation, the equidistant nodes and second kind
of Chebyshev points were chosen as collocation point. For the general area, a domain decomposition
method of the barycentric rational collocation method is also presented.

2. Differentiation matrices of Poisson equation

Leta =1 < -+ <1, =bh="2"andc =s <-- <5, =d7 = %< with mesh point
(ti,s;),i=1,2,--- ,m;j=1,2,--- ,n. Then, we have
u(ti, s) = ui(s), (2.1)
on [a, b], and
u(t,s) = " > L(OM(s)uy 22)
i=1 j=1
where
Wi
Li() Ul (2.3)
Wi
-
and
Vj
S — Sj
Mj(s) = ———. 2.4)
Vi
S — Sj

w;, v; is the weight function defined as (1.6) or (1.17); see [17].
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We have
S MY (s) uy C? o CON Zh My () uig fi (s)
: +| : : =
Sy MY (S) U C o o || Sy My (s) fu ()

Then, we have

Sia M (s | [0 e R [ S Me(s)u || Ai(s)
: o : : -
S MY () e Cot - Con 1| iy Mi(s7) Fu(s))

@) _ yn
where Cij = L7(t;), and

’ ’ 1 . .
2Li(tj)(Li(ti)_ l‘~—l‘~)’ JF1
it
R AGS j=i.
i#j

i = (i, iy in] s fi = [firs foo oo find D = [fi (55 fi(52) 5+, fi(s,)]" . With the help of the matrix
form, the linear equation systems can be written as

C? = (2.5)

Uq uy f1
(L.®D?)| : |+(c?eL)| : [=]| : (2.6)
Up, Uy, fn
and DY = M'(s)),
2M;(s)) (M,‘(s,-) - — ) J#i
D? = B (2.7)
ij ” .
_ZMi (s, J=1L
i#j
Then, we have
[(C<2> ® In) + (1 ® D@))]U =F (2.8)
and
LU=F (2.9)
where
L=C?QI,+1,%D? (2.10)

and ® is the Kronecker product of the matrices. The Kronecker product of A = (a;;)mxn and B = (b;j)ix
is defined as

AXB= (aijB)m~k><n-l (2.11)
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where
aijbll aijb12 e Clijbu
a1B = a j‘bZl aij.b22 oo ajiby 2.12)
a; jbkl a; jbkz R ¢ jbkl

and the node of tensor is (;, s;),i = 1,2,--- ,m; j = 1,2,--- , n. Then, matrix A and B can be can be
changed to (m X n) column vectors as

t:[lla""t17t23""Z.Za"'atm"”?tm]
S = (81,80, 3 Sy S1, 82,0 5 Syt 5 81, 82,00, Sl
and then we get relationship of the partial differential equation and differential matrix as

ak+l u

- c® 0
g = CV @Dk IeN. (2.13)

3. Domain decomposition method of barycentric rational collocation method for Poisson
equation

Consider the generalized elliptic boundary value problems as
VIB(, s)Vu(t, s)] = f(t, 5),(t,s) € Q 3.1
with boundary condition
u(t,s) = uo(t, s),(t,s) el (3.2)

where f(t, s) is the diffusion coefficient, and V = (%, %) is the gradient operator.

Taking the rectangle domain Q into two sub-rectangle domains €;,i = 1,2, the boundary of the
domain is I', and the boundary of Q;,i = 1,2, is I'. Suppose S(¢, s) € CQ and the interface conditions
of I'y are

[ulr =0, [(BVu)en]r =0.

Suppose S(t, s) is not continuous on € and the interface conditions of Iy are

[u]r = 6(t’ S)’ [(ﬂvu) o n]F = V(I, S)-

In the following, we take the two sub-domain Q;,i = 1,2, (t1;, 1 ;), the function u, ;; = u(t;, s1,);
(trir $2,j),i = 1,2, ;my; j=1,2,--- ,nyand uy;; = u(ts;, $2.;).
On the sub-domain of Q, the barycentrix function is defined as

mp - nj

u(t,s) = Y > RUOR (s (3.3)

i=1 j=1
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where R, (1), R, j(s) are defined as (2.3) and (2.4).
Equation (3.1) can be written as

0u  0*u\ 0BOu 6ﬁ ou
ﬁ(ﬁ* asz) oo T asgs JBENER
Taking Eq (3.3) into Eq (3.4), we have

mp  nj mp nj

B, s) [Z D RUOR (i + D > R(ORY (s

i=1 j=1 i=1 j=1

L9
ﬁ(t 5) Z Z R (DR, j(5)u 5

i=1 j=1

a ni
,3(l s) Z ZR“(I)RI J(s)ul,J f(t,9),(t,5) € Q

i=1 j=1
Taking (1, s1,;) on the sub-domain of Q,, we have

m; - nj mp o nj

Bt ks S1,0) Z Z RY (1 )R j(s1.0u1,ij + Z Z Ry i(t )R [(s1.0)u1

i=1 j=1 i=1 j=1

3,6’(t 51D Y
YT ZZRl,i(ll»k)Rl,j(sl,l)ul,,j

i=1 j=1

a (t L S10) X ’
9P(t14; 51.0) ZZRl,i(tl,k)Rl’j(sl”)ul’i‘/

i=1 j=1
= f(tig, 510, (1, 5) € Q.
As we have used
Ry i(tix) = 0ni, Ry ,~(s1 1) = 61
R (t11) = C,ii(]), 1) =
R () =C”, R (s10) =

1(1)

1 (2)

Take the notation

B = diag(B(t1 1, 51.1),B(t1.1, 512)s -+ s BE11s Sim)s o s
B mys 510, B my > $12)s 5 BEmys S1.m)s

By = diag(B(t11, 51.1), Be(t1.15 S12), -+, Beti1s S1my)s -7 s
ﬁt(tl,ml s Sl,l)’ﬁt(tl,ml’ S1,2)5 ot ’ﬁt(tl,ml’ Sl,nl))’

B, = diag(B(t1.1, 51.1), Bs(ti1, 812)s -+ Bs(tins Sim ) s
Bs(timys $1.1)BsEmys S1.2)s 5 Bs(Eimys S1m,)s

Fi = diag(f(ti11, 51.,1), f(t1,1, S12)s - 5 (1, Sim ) s
S S1)s f@ms S12)s 5 fEms S1n))s
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U, = diag(u(ty 1, s1.1), u(ti1, S12), -+, ulty 1, Stim)s s
Uty > S1,1)s Uy s S12)5 70 5 ULy s S1ny))- (3.12)

The matrix equation of (3.5) can be written as
[B(C'?®I, +1, ®D'?) +B;;(C'V®1,) + Bjr1,, ® DU, = F, (3.13)

where C'D, C!@ D! D! are the one order and two order differential matrices, and I,,,, 1, are the
identity matrices. Then, we write

L,U, =F,. (3.14)
Similarly in the sub-domain €,, we get the matrix equation
[B(C*?® @ L, + L,, ® D*?) + B (C*V ® L,,) + Boo(I,, ® D*?)U, = Fy, (3.15)
and
L,U, = F,. (3.16)

Combining Eq (3.14) and Eq (3.16), we get

L, 0 U | | F
5 2l
Then, we have
LU=F, (3.18)
and
Ly 0 L | F
L[l 0] u] U] e[ o

Points of the boundary are 2(m; + m, — 2) + n; + n,. S, denotes the number of the domain, and
boundary points are denoted as (¢, sz), k € . The boundary condition can be discrete, as

efnln1+m2n2U = uO(t]1Z7 Si)
m m
u(tyig, S1i0) = Z Z Ry ()R j(si)ur i (3.20)
i1 =1
my no
u(tyig, $2i1) = Z Z R i(t2i )R>, j(52i)u2 i (3.21)

i=1 j=1
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mp - nj

u(tig, S1i0) = Z Z R (ti)Ryj(sinuy

i=1 j=1

mp  np

u(t2ig, $2i1) = Z Z R} (t2i )R, j(52i.0) U,

i=1 j=1

mp - 1

us(tiiss S1i1) = Z Z Ryt )Ry (sipu i

i=1 j=1

nmy - ny

us(tig, $2i1) = Z Z Ry (12i DR, [(52i0)u2.4f

i=1 j=1
where [ =0,1,--- ,mgp, and
(t1i0> S100) = (D20 $2i0) = (Eigs Sia)-
Define

Ry (7)) = [Rio(ti), Ria(tig)s -+ 5 Ry (8:0)]
Ryi(sin) = [Rio(sin), Ria(sin)s -+ 5 Rin (8i0)]
Ryi(ti1) = [Rao(ti1)s Rai (1), -+ - 5 Romy (i1)]
Roi(si0) = [Roo(8in)s Ra1(Sia)s -+ s Rony (8i0)]
R i(ti) = [R] o(tin), Ry (tin), - -+ L R}, (tin)]
R1i(si0) = [R]o(sin), Ry 1 (si)s o R, (si)]
Rpi(ti)) = [Ryo(tin), Ry (tin), - -+ L RS, (i)
Roi(si0) = [R5 o(5i0), Ry 1 (8in), -+ R, (5i0)].
Take as the matrix equation

u(tiig, 1) = (L @ MU

u(tzig, $2i1) = (Lo ® Mp)U

u(thigs s100) = Ly @ My U

u(t2i g, $2i0) = (L ® Mp U

us(tiig, s1:0) = (L ® My 1)U

us(taig, $2i0) = (Loy ® Mo, )U.

The discrete boundary condition condition can be given as

()t = u(t2igs $200) — ultiig, S1i0) = 6(Eig, Sia)

[(BVW) - n]q,,50,0 = [t2i0, S20.0M0 — wg(t2i1, S2i)741]

—[w(t1ig, S1ing — us(tiig, s1ingl = y(tis, sip).

The matrix equations of (3.40) and (3.41) are

(Lo @My, — Ly ; @ My JU = 6(2, 5i1)
Bal(Lin; @ My )ng — (Lo ® Mg ng]U
—Bil(Ls; @M, Py — (L @ My Dng]U = y(t, si1)

Mathematical Biosciences and Engineering

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
(3.27)
(3.28)
(3.29)
(3.30)
(3.31)
(3.32)
(3.33)

(3.34)
(3.35)
(3.36)
(3.37)
(3.38)
(3.39)

(3.40)

(3.41)
(3.42)

(3.43)

(3.44)

Volume 20, Issue 3, 4782-4797.



4791

4. Numerical examples

Example 1. Consider
~Vu+u=f

with f(t,s) = t* — 2 ; its analytic solutions are

u(t,s) =1 + e

where Q = [-1,1] x [-1, 1].

Figure 1. Error estimate of equidistant nodes with m = 20;n = 20;d, = d, = 9.

Table 1. Errors of equidistant nodes with d; = d,.

mxn di=dy=1 2 3 4 5

8x8 2.6911e-02 1.6610e-03 7.1154e-04 7.2691e-05 4.0731e-05
16 X 16 8.0799¢e-03 2.3171e-04 4.5299¢-05 2.9892e-06 6.1418e-07
32x32 2.4157e-03 2.9843e-05 2.8178e-06 1.0109e-07 9.4081e-09
64 x 64 7.1483e-04 3.7641e-06 1.7520e-07 3.2724e-09 3.8841e-10
h“ 1.7448 2.9285 3.9959 4.8130 5.5594

In Table 1 convergence rate is Oh®*Yy with d, = d, = 2,3,4,5. In Table 2, for the Chebyshev
nodes, the convergence rate is O(t*?) with d, = d, = 2,3,4,5.
Figure 1 shows the error estimate of equidistant nodes, and Figure 2 shows the error estimate of
Chebyshev nodes.

Mathematical Biosciences and Engineering
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Figure 2. Error estimate of Chebyshev nodes with m = 20;n = 20;d, = d, = 9.

Table 2. Errors of non-equidistant nodes with d = d,.

mXn di=d,=1 2 3 4 5

8x8 6.2451e-02 1.5475e-03 5.5808e-04 1.8735e-05 2.2295e-06
16 X 16 1.5433e-02 1.1791e-04 9.1048e-06 4.3131e-07 7.8660e-08
32 x32 3.5514e-03 6.8688e-06 2.0908e-07 4.9400e-09 3.2320e-10
64 x 64 8.4301e-04 3.9526e-07 4.5490e-09 4.9775e-09 4.3803e-09
h* 2.0703 3.9783 5.6349 3.9593 2.9971

Example 2. Consider
~Vu+u=f

with f(t,s) = 3sin(t + s). Its analytic solutions are
u(t, s) = sin(t + s)

where Q = [-1,1] x [-1,1].

Table 3 shows the convergence is O(h**"Ywithd, = d, = 2,3,4,5. In Table 4, for the non-uniform
partition with Chebyshev nodes for d, = d, = 2, 3,4, 5, the convergence rate is O(t2*?),

We choose m = 20;n = 20;d; = 9;d, = 9 to test our algorithm.

Figure 3 shows the error estimate of equidistant nodes, and Figure 4 shows the error estimate of
Chebyshev nodes.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4782-4797.



4793

=d, =09.

20;n = 20;d,;

Figure 3. Error estimate of equidistant nodes with m

=d, =9.

20;n = 20;d,

Figure 4. Error estimate of Chebyshev nodes with m

Volume 20, Issue 3, 4782-4797.
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Table 3. Errors of equidistant nodes with d; = d,.

mXxn d=d, =1 2 3 4 5

8x8 5.0201e-03 1.0360e-03 3.7701e-04 4.8362e-05 2.5361e-05
16 X 16 1.7960e-03 1.4558e-04 2.1324e-05 1.9874e-06 3.1977e-07
32 x32 6.0280e-04 1.8624e-05 1.2263e-06 6.5505e-08 4.2192e-09
64 x 64 1.9404e-04 2.3331e-06 7.2859¢e-08 2.0682e-09 2.8110e-10
h* 1.5644 2.9315 4.1124 4.8377 5.4871

Table 4. Errors of Chebyshev nodes with d; = d,.

mxn di=d, =1 2 3 4 5

8x8 1.3288e-02 9.9717e-04 1.1162e-04 7.8012e-06 1.8963e-06
16 X 16 2.8908e-03 6.3908e-05 4.7613e-06 3.3689¢-07 4.0815e-08
32 x32 6.2445e-04 4.1969¢-06 1.0285e-07 3.7866e-09 1.4989e-10
64 x 64 1.4493e-04 2.4827e-07 2.4237e-09 1.4696e-09 1.8797e-09
h* 2.1729 3.9906 5.1637 4.1247 3.3262

Figure 5. Error estimate of equidistant nodes with m; = m, = 20;n; = n, = 20;d, =d, = 9.

x 10

Example 3. Consider the Poisson equation Au = -2 sin(nt) cos(rs), (t,s) € Q and Q = Q| JQ, =
{t,s: -1 <t<l,-1<s<1}U{t,s:0<t<1,0< s < 1}. Its analytic solutions are

u(t, s) = sin(mrt) cos(ms)

Mathematical Biosciences and Engineering
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with the boundary condition

[u]r() = 0’ [ul‘]r() = O-

We choose m; = my = 20;n; = ny = 20;d; = 9;d> = 9 to test the domain decomposition method of
the barycentric rational collocation method. Figure 5 shows the errors under equidistant nodes. From
Figure 5 we know that the error can reach 1077 with 21 collocation points.

Example 4. Consider ru(t,s) = 6ts(t*> — s> =2),(t,s) € Qand Q=Q, Qb ={t,s : -1 <t<1,-1<
s<1}U{t,s : —0.5 <t <0.5,—-1 < 5 < 0}. Its analytic solutions are

u(t, s) = ts( — 1)(s* = 1)

with condition

[ulr, = 0, [u,]r, = 0.

We choose m; = my, = 20;n; = ny, = 20;d; = 9;d, = 9 on each Q;,i = 1, 2, to test the domain de-
composition method of the barycentric rational collocation method. Figure 6 shows the error estimate
of equidistant nodes, and Figure 7 shows the error estimate of Chebyshev nodes. The error of both
equidistant nodes and Chebyshev nodes can reach 107!, which shows the accuracy of our algorithm.

Figure 6. Error estimate of equidistant nodes with m; = m, = 20;n; = n, = 20;d, =d, = 9.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4782-4797.
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-12

x 10

Figure 7. Error estimate of Chebyshev nodes with m; = m, = 20;n; = n, = 20;d, =d, = 9.
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