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Abstract: The diseases dissemination always brings serious problems in the economy and livelihood 
issues. It is necessary to study the law of disease dissemination from multiple dimensions. Information 
quality about disease prevention has a great impact on the dissemination of disease, that is because 
only the real information can inhibit the dissemination of disease. In fact, the dissemination of 
information involves the decay of the amount of real information and the information quality becomes 
poor gradually, which will affect the individual’s attitude and behavior towards disease. In order to 
study the influence of the decay behavior of information on disease dissemination, in the paper, an 
interaction model between information and disease dissemination is established to describe the effect 
of the decay behavior of information on the coupled dynamics of process in multiplex network. 
According to the mean-field theory, the threshold condition of disease dissemination is derived. Finally, 
through theoretical analysis and numerical simulation, some results can be obtained. The results show 
that decay behavior is a factor that greatly affects the disease dissemination and can change the final 
size of disease dissemination. The larger the decay constant, the smaller final size of disease 
dissemination. In the process of information dissemination, emphasizing key information can reduce 
the impact of decay behavior. 
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1. Introduction 

Disease dissemination has a great impact on social stability and human life [1]. Studying and 
mastering the law of disease dissemination can provide strategies for controlling disease dissemination, 
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which is of great significance to maintain social stability and people’s happy life. Under the 
background of COVID-19, some scholars have used the epidemic dissemination models to predict the 
development of the local epidemic situation, so as to provide theoretical support for the government 
to grasp the development of the epidemic [2,3]. 

The study of disease transmission has a long history. Different from the research methods in many 
other fields, the experiments related to epidemic dissemination cannot be carried out in human groups. 
Therefore, when studying the dissemination of epidemic, scholars prefer to establish some theoretical 
models to describe the dissemination process of epidemic. McKendrick et al. divided the population 
into three categories according to the infection: susceptible, infected and removed. The famous SIR 
model is constructed [4]. And they put forward the SIS compartment model and the threshold theory 
to distinguish whether the disease is epidemic or not. In view of the differences in dissemination 
mechanisms, scholars expanded the classical models and established SEIR, SEIS and other models, 
which laid a foundation for the study of infectious disease dynamics. 

As a typical dynamic process on complex networks [5], epidemic dissemination has attracted 
extensive attention with the development of complex network theory [6–10]. With the emerging social 
media such as Twitter, Facebook and WeChat in the past few years, the dissemination dynamics of 
information such as news and rumors on online social networks has aroused much attention [11]. Based 
on the development of network science, a large number of efforts have been devoted to the study of 
information dissemination on complex social networks [12–15]. But most complex systems in the real 
world are coupled by multiple single networks with different structures and functions. The single 
network is a subnetwork in the whole multiple network, and there are many connections and 
interactions between the subnetworks. In a multiple network, each layer has a different structure, and 
the nodes in all layers are the same [16,17]. Understanding the dissemination dynamics on multiple 
networks will help to formulate more effective strategies to control or make full use of these dynamic 
processes. A large number of scholars have studied the coupling between information and disease [18–
22]. For example, Granell et al. through studying the relationship between disease transmission and 
infection awareness, found that the critical point for the onset of the epidemics has a critical value 
(metacritical point) defined by the awareness dynamics and the topology of the virtual network, from 
which the onset increases and the epidemics incidence decreases [23]. After that，them presented an 
extended analysis of a generalization of a model of competing spreading processes on multiplex 
networks. The results reveal that existence of a metacritical point is rooted in the competition principle 
and holds for a large set of scenarios [24]. Shang through studying the effects of three forms of 
awareness on the spread of a disease in a random network, found that awareness can raise the epidemic 
thresholds [25]. Wang et al. investigated the asymmetrical interplay between the two types of spreading 
dynamics and found that information spreading can effectively raise the epidemic threshold [26]. 
Zhang et al. studied the impact of individual behavioral response to disease information and found that 
the behavioral response brought by the number of infected people in adjacent nodes will reduce the 
scale of disease transmission [27]. 

Moreover, many scholars have coupled the unaware-aware-unaware(UAU) model with the 
infectious disease model to study the interaction between information and disease. Nie et al. introduced 
the inhibition intensity by taking the number of node neighbors as a reference. It was found that the 
infection threshold increased with the increase of inhibition intensity, and reached saturation when the 
inhibition intensity was large enough [28]. Fan et al. introduced the individual behavior state to each 
node in the multiple network. Through threshold analysis and numerical simulation, the research found 
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that the disease dissemination can be reduced by reasonably controlling the information transmission 
and individual behavior [29]. Hu et al. studied the impact of individual behavior on information 
dissemination on the basis of timeseries coupling network, and found that communication behavior 
will have a two-stage impact on information dissemination [30]. 

In the above multiplex network model, individuals are only divided into aware and unaware states. 
However, Rich et al. set up experiments to correct the behavior of people with different amounts of 
information, and concluded that implied misinformation is more difficult to correct than explicitly 
provided misinformation [31]. So, in the process of dissemination, the amount of real information is 
variable. Individuals with different amounts of information have different attitudes towards diseases. 
Elly et al. explained the problem of “why people accept information of different nature” from multiple 
psychological perspectives, such as emotionality, motivated reasoning and cognitive reasoning, 
including false news, misinformation and disinformation [32]. Shang studied a discrete-time epidemic 
dynamics with the presence of three forms of individual awareness and found that awareness can raise 
the epidemic thresholds [33]. People will change their behavior when they are aware of the existence 
of a disease [34,35]. 

Previous studies believe that the quality of information is invariable in the process of disease 
dissemination. In this paper, we will consider the impact of the quality of information about disease 
owned by individuals on disease dissemination. Decay behavior will lead to the loss of real information 
amount related to disease. When the amount of information is reduced through decay behavior, the 
disease prevention measures taken by individuals will be weakened, which will increase the probability 
of disease dissemination. Multiple decay eventually leads to the fact that the information has little 
inhibitory effect on the disease dissemination. Studying this factor can be closer to the actual situation, 
grasp the impact mechanism of information dissemination on disease dissemination and explore the 
strategies to inhibit disease dissemination. Based on the principle of dissemination and multiple 
networks, the paper connects the decay behavior of information with the disease dissemination model, 
and constructs the coupling network model of the information layer and physical contact layer. Based 
on the model, the threshold condition of disease dissemination in the coupled network is derived, and 
the numerical simulation is carried out to further analyze the decay constant, information spreading 
rate and conversion rate and other key factors affecting the spread of disease. Finally, some suggestions 
on the inhibitory effect of information dissemination on the spread of disease are given. 

The rest of this paper is organized as follows. This paper introduces the multiplex networks model 
and analyzes the spreading threshold in Section 2. In Section 3, we perform numerical simulations. 
Finally, the conclusions and suggestions are given in Section 4. 

2. Disease dissemination model on multiplex network 

2.1. Model assumptions 

The dissemination of disease and information is interactive. The physical contact between people 
makes the disease spread, and the dissemination process of disease is affected by the dissemination of 
relevant information. We construct a two-layer network to express and simplify the dissemination 
mechanism (see Figure 1). 
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Figure 1. The coupled spreading process on a multiplex network with two layers. 

The information dissemination process takes place in the upper network, in which the individuals 
have three states: the individuals with original information (V0), the individuals with second-hand 
information (V1) and the individuals with uncertain information (V2). The disease dissemination 
process occurs in the lower network, in which the individuals have two states: susceptible (S) and 
infected (I). We construct a two-layer multiplex network that shares the same individuals in two layers, 
each node in one layer will be solely mapped into the corresponding node in the other layer. 

One network (the upper network) is the information layer, and the other network (the lower 
network) is the physical contact layer. The number of nodes in the two layers is exactly the same. Since 
information can be spread through many ways, while disease can only be spread through physical 
contact, the degree of nodes in the two layers is different, where the degree of a node in the information 
layer (the physical contact layer) is denoted as k1(k2). The joint degree distribution  1 2,P k k  

represents the proportion of nodes whose information layer degree is 1k  and physical contact layer 

degree is k2. The average degrees of information layer and physical contact layer are 
 2111 ,

1
kkPkk

k   and  2122 ,
2

kkPkk
k  . Let’s explain the dissemination mechanism in the 

two-layer network. We assume the multiplex dissemination process according to the following rules. 
Assumption 1: Disease layer. In the physical contact layer, SIS model is used to explain the 

dissemination process of the disease, where each individual is either susceptible state (S) or infected 
state (I). If the susceptible individual contacts with the infected individuals, it will become infected 
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with probability   and 10   . The infected individuals will be cured with a certain probability 

  and transformed into healthy individuals, 10   . 

Assumption 2: Information layer. With the popularization of informatization and the diversified 
development of official media, in addition to traditional media such as news and newspapers, the 
government has also registered official accounts of major content platforms, so the coverage of 
information is very wide and most people will get the original information. Others will get information 
in other ways. As the information is passed from person to person, it loses its quality. In other words, 
original information about a disease case will lead to a much more determined reaction than 
information that has passed through many people before arriving at a given individual. Similar views 
have been mentioned in [35]. This phenomenon can be interpreted as the decay behavior of the amount 
of information. Decay behavior will lead to the loss of real information amount related to disease. In 
2020, some experts pointed out that 75% of alcohol can kill COVID-19. However, the news of 
“drinking high alcohol to fight the coronavirus” had spread widely. Although relevant elements are 
retained in the information, the amount of information has deteriorated. An individual obtains original 
information, which is the most authoritative and authentic. We name it original information and mark 
it with V0. Individuals get information from V0, we name it second-hand information and mark it with 
V1. Individuals get information from V1, we name it third-hand information and mark it with V2. 
According to this law, individuals get information from Vn–1, we name it nth-hand information and 
mark it with Vn. Although information can be spread many times, in order to facilitate research, we 
only divide information into three categories: V0 represents the original information; V1 represents the 
second-hand information; V2 represents the uncertain information (information is spread many times, 
the decay behavior of information quality will lead to a large loss of real information, and will bring a 
lot of false information). Uncertain information is not all false information, but the amount of real 
information possessed by this state is relatively minimal. People with more real information tend to be 
more persuasive in communication and can update the information of people with less real information. 
Multiple decay eventually leads to the fact that the information has little inhibitory effect on the disease 
dissemination. We think that the role of individuals who obtain uncertain information and those who 
do not have information is similar in the multiplex network. 

Assumption 3: According to the model, the node has six states, SV0 , SV1 , SV2 , IV0 , IV1 , 

IV2  . After the node is infected with the disease, it will take the initiative to find the most real 

information. We assume that once the individual is infected it becomes the infected state with original 
information immediately, that is, IV1  and IV2  become IV0  immediately. So individuals have four 

states: SV0  represents susceptible individuals with original information; SV1  represents susceptible 

individuals with second-hand information; SV2   represents susceptible individuals with uncertain 
information; IV0   represents infected individuals with original information. In order to make the 

paper more concise, we use 0S , 1S , 2S  and 0I  instead of SV0 , SV1 , SV2  and IV0  respectively. 

Assumption 4: The disease prevention measures taken by individuals with different amount of 
information are different, so their dissemination probabilities are different, which can be explained as 
follows: Individuals with more real information have relatively sufficient preventive measures for the 
disease, and the probability of contacting infected persons will be smaller, which can more effectively 
inhibit the dissemination of the disease. In order to vividly describe the impact of the decay behavior 
of the amount of information, we introduce the decay constant   , 10    , so that the disease 
dissemination probability increases with the loss of information quality, which is  11  i

i  , i = 0, 
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1, 2. 0   represents the probability of infection of individuals with original information 0V  . 1
represents the probability of infection of individuals with second-hand information 1V  . 2  

represents the probability of infection of individuals with uncertain information 2V . In other words, 

with the continuous loss of real information about disease, the decay constant governs how much the 
tendency to act is reduced with decreasing quality of information [35]. The inhibitory effect of 
information on disease dissemination will disappear if information is not refreshed. 

2.2. Dissemination process 

The specific dissemination process of the information is shown in Figure 2. Assumption 2 
mentions that the more individuals have real information, the greater their influence. So individuals 
with original information are the most authoritative and authentic. Individuals with second-hand 
information or uncertain information will be transformed into individuals with original information 
with a certain probability   when they communicate. Individuals with uncertain information will be 
transformed into individuals with second-hand information with a certain probability   when they 
communicate.   represents information spreading rate and 10   . Due to decay or other factors, 
the quality of information will be reduced with a certain probability   .    represents information 
conversion rate and 10   . 

 

Figure 2. Dissemination process of information layer. 

The specific dissemination process of the disease is shown in Figure 3. When individuals 
)2,1,0( iSi   contacts 0I  , iS   will become 0I   with a certain probability  11  i

i   . 

Individuals 0I  will be cured with a certain probability   to convert the 0S . 

 

Figure 3. Dissemination process of physical contact layer. 
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The dissemination rules are as follows: 

1112 SSSS           (1) 

0002 SSSS           (2) 

0002 ISIS           (3) 

0001 SSSS           (4) 

0001 ISIS           (5) 

0000
0 IIIS           (6) 

0001
1 IIIS           (7) 

0002
2 IIIS           (8) 

10 SS 
         (9) 

21 SS            (10) 

00 SI           (11) 

2.3. Dynamic model 

Let 0

21,
S

kk , 1

21,
S

kk , 2

21,
S

kk , 0

21,
I

kk be the fractions of nodes within degree compartment  21,kk  in the 

states 0S  , 1S  , 2S  , 0I  , respectively. 
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kk  , 1k  and 2k  are different node degrees of the same node in the information layer 

and the physical contact layer respectively. They satisfy the normalization condition 
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kk   , for each set of  21,kk  . A heterogeneous mean-field (HMF) theory 

could be developed for the evolution of these fractions as follows: 
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where    
1

0

21

0

21 ,,211
1

1 ,
1

k

I
kk

S
kkkkPk

k
  denoting the possibility that a randomly chosen link in the 

information layer will reach 0A  state node,  
1

1

21 ,211
1

2 ,
1

k

S
kkkkPk

k
  denoting the possibility that a 

randomly chosen link in the information layer will reach 1A   state node, and 
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0

21 ,212
2

3 ,
1

k

I
kkkkPk

k
   denoting the possibility that a randomly chosen link in the physical 

contact layer will reach a 0I  state node. 

Condition (12) describes the change process of 0S   state node. In the information layer, the 

probability of connecting an 2S   node with a degree of 1k   to an 0S   node or an 0I   node is 
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degree of 1k  to an 0S  node or an 0I  node is    
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 . Therefore, the 

number of 0S  nodes increased by information exchange is 1
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2

21 ,11,11
S
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S

kk kk   . Due to the decay 

of information quality, the number of 0S  nodes reduced is 0

21,
S

kk . In the physical contact layer, the 

probability of connecting an 0S   node with a degree of 2k   to an 0I   node is 
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2

0

21 ,212
2

3 ,
1

k

I
kkkkPk

k
 . Therefore, the number of 0S  nodes reduced by disease dissemination is 

0

21,320
S

kkk  . Due to disease recovery, the number of 0S  nodes increased is 0

21,
I

kk . Corresponding to 

Eqs (13)–(15), 1S , 2S  and 0I  will also be affected by the information layer and the physical contact 

layer, so as to change their own state. 

2.4. Threshold on heterogeneous networks 

Order that 0
0

21 , 
dt

d S
kk , 0

1

21 , 
dt

d S
kk , 0

2

21 , 
dt

d S
kk , 0

0

21 , 
dt

d I
kk , the steady-state solution of Eq 
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(15) is  
 432
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, *
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

I
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kkk   (16) 

 32221112  kkk           (17) 

     321321113203  kkkk     (18) 

    322320214  kkk        (19) 

when 3 0   , it means that all nodes are in the susceptible state. Therefore, only 03    can the 

disease be prevalent. Considering the equation    321,, 212
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2121
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I

kkkk
   and 

 321 ,, f   is strictly monotonically increasing function, the existence condition of non-zero 

solution for 3  is  
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21111
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           (20) 

here,  2122
2
2 ,

2
kkPkkk

k ,    10 ,  2
1 1   ,  3

2 1   . Therefore, the threshold of 

the model is 
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we get the epidemic threshold c , above which epidemics are possible, but below which epidemics 

cannot occur. As can be seen from Eq (21), the threshold c   is determined by 1   and 2  . The 

number of infected nodes is almost zero when   approaches the threshold c . Therefore, the nodes 

in the multiplex network reflect the dissemination process of information. When   is close to the 

threshold c , 1  and 2  are irrelevant to the epidemic dissemination. Obviously, when 021  , 

the inhibition of information layer disappears, and the situation in the physical contact layer returns to 

the single layer. we can get  32
2

2'

1

1







k

k
c , which is the critical threshold of disease only under the 

influence content of the decay behavior of information. As    increases, '
c   decreases and the 

disease becomes more easily transmitted. Therefore, decay behavior is an important factor in the 

disease dissemination. when 0 , we can get 
2
2

2''

k

k
c  , which is consistent with the threshold of 
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the traditional SIS model. 

3. Numerical simulation 

In this paper, a multi-layer network model is constructed by using the scale-free network 
generation algorithm, which is composed of 5000 nodes. The new nodes added in each iteration of the 
information layer have 6 edges, and the new nodes added in each iteration of the disease layer have 3 
edges. Each simulation takes the average of 50 iterations as the output of the result. 

 
(a)                                  (b) 

Figure 4. Stationary state and critical thresholds of the disease with different spreading rates. 

The color maps represent the prevalence levels of disease. Dynamical parameters: information 
layer conversion rate 4.0 , physical contact layer recovery rate 6.0 , 5.0 (a), 8.0 (b). 

Each point in the grid 40 × 40 of the figure is obtained by averaging 50 numerical simulations. 
As depicted in Figure 4, an increase in   can promote an epidemic. In the single subgraph of 

Figure 4, when the system is not affected by the information layer, the dissemination threshold is 
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c , which is the solid line part in the Figure 4. When the information layer will affect 

the dissemination of disease, the critical threshold shifts significantly, as shown in the dotted line. From 
Figure 4 (a),(b), we can find that the decay constant increases, the dissemination threshold of disease 
becomes larger and the dissemination scale of disease becomes smaller. And the change is obvious. 
The main reason for this result is that the greater the decay constant, the smaller the impact on the 
individual receiving information and taking precautionary measures. 

We can see the final size of 0I  with the influence of information dissemination (see Figure 5). 

Under the same decay constant  , the final size of 0I  will increase with the increase of disease 

spreading rate  . Under the same disease spreading rate  , the final size of 0I will decrease with 

the increase of decay constant  . When the decay constant   varies from 0.2 to 0.4, the final size 
of 0I  does not change greatly. When the decay constant   varies from 0.4 to 0.8, the final size of 

0I  has decreased significantly. It shows that the inhibitory effect on disease has an incremental trend 

with the increase of decay constant  . With the increase of decay constant, the threshold of disease 

increases and the transmission scale decreases. From the above description, it can be concluded that 
the decay constant   , as the control parameter of decay intensity, has a great impact on the 
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dissemination of disease. Therefore, the government needs to improve official credibility and strive to 
cultivate people’s cognitive ability to reduce the decay of information quality, which will effectively 
curb the dissemination of disease. 

 

Figure 5. The final size of spreading dynamics 0I  with different disease spreading rate 

   and decay constant   . Dynamical parameters: information layer spreading rate 

5.0  and conversion rate 4.0 , physical contact layer recovery rate 6.0 . 

 

Figure 6. The final size of spreading dynamics 0I  with different information spreading 

rate   and decay constant  . Dynamical parameters: information layer conversion rate 

4.0 , physical contact layer spreading rate 5.0  and recovery rate 6.0 . 
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Figure 6 shows the impact of different information spreading rates and decay constants on disease 
dissemination. Under the same decay constant   , the final size of spreading dynamics 0I   will 

decrease with the increase of information spreading rate   . However, this change is not obvious, 
indicating that the impact of information spreading rate is limited. Under the same information 
spreading rate  , the final size of spreading dynamics 0I  will decrease with the increase of decay 

constant  . When the change of decay constant   is very small, the change of the final size of 0I  

is still obvious, which further explains the importance of decay behavior. Therefore, in the process of 
controlling the dissemination of disease, improving the information quality may be more effective and 
cost-effective than expanding the dissemination channels of information and increasing the probability 
of information acquisition. 

Figure 7 reflects the impact of the information layer on disease dissemination. Under the same 
information spreading probability, the final size of 0I will increase with the increase of conversion 

rate. This change is relatively obvious, so the information needs to be repeated in the process of 
dissemination to reduce the conversion rate. Under the same conversion rate, the final size of 0I will 

decrease with the increase of information spreading rate. When   is between 0–0.4, the final size 
change of infected nodes is obvious, and when it is between 0.4–1, the change is not so obvious. In 
other words, in order to suppress the dissemination of disease, it is necessary to increase the spread of 
information, but when the information spreading rate increases to a certain value, the inhibitory effect 
is not so obvious. Therefore, when the government takes relevant measures to curb the dissemination 
of the disease, it should not simply expand the dissemination of information. Considering the cost, it 
is time to take other measures after the dissemination of information reaches a certain intensity, which 
can not only achieve a good suppression result and reduce the cost of spreading information, but also 
further suppress the spread of the disease through other means. 

 

Figure 7. The final size of spreading dynamics 0I  with different information spreading 

rate    and conversion rate   . Dynamical parameters: physical contact layer disease 
spreading rate 5.0 , recovery rate 6.0  and decay constant 5.0 . 
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4. Conclusions 

In this paper, the decay constant is introduced to build a multiplex network model of interaction 
between information and disease. Through mathematical analysis and numerical simulation, the 
influence of information dissemination on disease dissemination was finally concluded. Compared 
with the single study of information dissemination or disease dissemination, it is more practical and 
persuasive. Through the simulation analysis of the model, we concluded that the information layer has 
a certain inhibitory effect on the dissemination of disease. The influence of information spreading rate 
and conversion rate is relatively small, but the reduction of information quality caused by decay 
behavior will greatly affect the spread of disease. 

Therefore, the government should pay attention to the dissemination of disease-related 
information during epidemic prevention and control. Our suggestions are as follows:  

(1) In addition to expanding the intensity of information dissemination, we need to take timely 
measures to curb the dissemination of diseases, for example, the government issued masks, restricted 
travel and so on during the period of COVID-19. Because after the information spreading rate increases 
to a certain value, its inhibitory effect on diseases decreases to a great extent. 

(2) The government should emphasize the importance of key information to minimize the impact 
caused by information decay behavior. For example, the conditions and environment of disease 
dissemination should be repeatedly emphasized for many times. Individual grasping key information 
can reduce the impact of decay behavior. 

This paper directly considers the influence of information decay behavior on disease 
dissemination. In the future, we hope to build a multi-layer network model containing individual 
behavior to study the impact of information on behavior and the impact of behavior on disease 
dissemination, which will be closer to reality. In addition, the active state of individuals at different 
times is different. It is also a good choice to discuss temporal networks with decay behavior. 
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