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Abstract: This article presents the existence outcomes concerning a family of singular nonlinear dif-
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1. Introduction

Due to its extensive applications in several fields like science and engineering, fractional calculus
(FC) has acquired remarkable generality and significance, especially within the last few decades. FC is
widely used to describe such practical problems as viscoelastic bodies, continuous media with memory,
transformation of temperature, etc. Compared with the traditional integer-order models, the fractional
order models can accurately reflect the properties and laws of related phenomena. Recently, there
has been a lot of literature on FC. Some of them focus on the basic theory of FC, and the others
focus their research on the solvability of initial problems or boundary problems in term of special
functions, readers can refer to references [1–7] for details. Researchers have made great advancement
in the study of qualitative and quantitative properties of solutions for fractional differential equations
(FDEs), including existence, uniqueness, boundedness, continuous dependence on initial data and so
on [8–15]. The methods used for analysis include fixed point theorems, the comparison principle, chaos
control, nonlinear alternatives of the Leray-Schauder type, upper and lower solutions and numerical
calculation. For various studies performed on FC, we refer the reader to more literature [16–23] and
the references therein.

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2023206


4438

In recent years, the issues related to singular FDEs (SFDEs) have been verified. The positive
solutions regarding a category of SFDEs were verified in [21] byDα

0+u(t) = f (t, u(t)), 2 < α ≤ 3, 0 < t < 1,
u(0) = u′(0) = u′′(0) = 0,

where f : (0, 1] × [0,+∞) and limt→0+ f (t, x(t)) = ∞. They employed the fixed-point theorem and the
Leray-Schauder type with nonlinear form in a cone to obtain two results for this problem.

Other works related to this kind of problem have been presented in [24–31].
FDEs have been investigated in various studies when integral boundary conditions (BCs) are

under consideration. This type of problems arose from many research areas such as heat conduction,
chemical engineering, underground water flow, population dynamics, and so forth. For further
information about FDEs with integral BCs, we refer the reader to the [32–39] and the references
therein. For instance, Ahmad and Agarwal [39] investigated both the existence and uniqueness of
solutions (EUS) for fractional boundary value problems (FBVPs) with some novel versions regarding
slit-strips conditions. One of the problems that they considered is as follows:

cDq
0+ x(t) = f (t, x(t)), n − 1 < q ≤ n, t ∈ (0, 1)

x(0) = x′(0) = x′′(0) = · · · = xn−2(0) = 0,

x(ζ) = a
∫ η

0
x(s)ds + b

∫ 1

ξ
x(s)ds, 0 < η < ζ < ξ < 1,

where cDq stands for a special derivative with order q called the fractional derivative of Caputo type
and a continuous mapping expressed by f (t, x(t)) in ([0, 1] × R) is considered. They obtained the EUS
conditions for the mentioned problems by applying fixed principles.

Researchers are also interested in singular nonlinear FDEs with integral BCs [40–44]. Yan [44]
investigated just such a problem. Specifically, the upcoming problem was studied:

Dα
0+ x(t) = f (t, x(t)), 0 < t < 1,

subject to conditions: x(0) = 0 = x′(0) and x(1) =
∫ 1

γ
x(τ)dτ, 0 < γ < 1. Both t = 0 and t = 1 lead to

the singular non-linear mapping f (t, x(t)).
Inspired by the mentioned studies, the current study discusses the following singular nonlinear FDE

containing nonlocal double integral BCs:

cDδ
0+ x(t) = f (t, x(t)), 0 < t < 1,

x(0) =
∫ η

0
x(τ)dτ,

x′(0) = x′′(0) = · · · = x(n−2)(0) = 0,

x(1) =
∫ 1

γ
x(τ)dτ

(1.1)

where cDδ
0+ is Caputo’s differentiation of order δ; δ, η and γ are real numbers satisfying 1 ≤ n−1 < δ ≤

n < +∞ and 0 < η < γ < 1, and n = [δ] + 1 is an integer number, the nonlinear term f (t, x(t)) ∈ ((0, 1)×
R,R) becomes singular when both t = 0 and t = 1, namely, limt→0+ f (t, ·) = ∞ and limt→1− f (t, ·) = ∞.

For the physical meaning of the integral BCs in (1.1), x(t) can be interpreted as the distribution of heat
on a linear body, and the integral condition x(0) =

∫ η

0
x(τ)dτ states that the heat absorbed or emitted by
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the body at t = 0 is equal to the variable of its heat over [0, η]. The other integral condition has a similar
explanatory and physical meaning. The current study aims to demonstrate the EUS to the problem
(1.1). The generalized Hölder’s inequality and fixed-point theories are applied in this paper, while the
use of the generalized Hölder’s inequality is the highlight of this article. This category of problems
discussed in this article and the methods used make a contribution to the existing literature.

This paper consists of a total of five parts. In the first part, the related situation of FDEs is intro-
duced. The second part mainly introduces some basic knowledge of FC, such as definitions and related
lemmas, which will be employed in the following content. The third part is the core of the manuscript,
including the key conclusions and their proofs. The fourth part includes an example, which aims to use
the results of this paper to solve the relevant problems. The last part is the summary of this paper.

2. Preliminaries

The characteristics of FC, the lemmas to be used, and pertinent principles are presented in the
current subsection.

Definition 2.1([3]) Consider that Ω = [a, b](−∞ < a < b < +∞) is a limited range in R. The fractional
integrals denoted by Iαa+ f and Iαb− f of order α ∈ C(<(α) > 0) called the Riemann-Liouville type can be
represented by

(Iαa+ f )(x) =
1

Γ(α)

∫ x

a

f (t)
(x − t)1−αdt(x > a;<(α) > 0)

and

(Iαb− f )(x) =
1

Γ(α)

∫ b

x

f (t)
(t − x)1−αdt(x < b;<(α) > 0),

respectively. In the above relations, Γ(·) stands for the gamma function.

Definition 2.2([3]) Consider y(x) ∈ ACn[a, b]. Now, the derivatives (cDα
a+y)(x) and (cDα

b−y)(x), called
the Caputo’s, can subsist nearly on the whole interval [a, b].
(1) If α < N0 , (cDα

a+y)(x) and (cDα
b−y)(x) are defined as follows:

(cDα
a+y)(x) =

1
Γ(n − α)

∫ x

a

y(n)(t)
(x − t)α−n+1 dt

and

(cDα
b−y)(x) =

(−1)n

Γ(n − α)

∫ b

x

y(n)(t)
(t − x)α−n+1 dt,

respectively, where D describes the derivative operator and n = [<(α)] + 1, α ∈ C,<(α) ≥ 0.
(2) If α ∈ N0, then

(cDn
a+y)(x) = y(n)(x), (cDn

b−y)(x) = (−1)(n)y(n)(x), n ∈ N0.

Lemma 2.1([3]) The FDE’s public solutions denoted by (cDα
a+y)(x) = 0 is derived as

y(x) =

n−1∑
k=0

y(i)(a)
i!

(x − a)i.
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Especially, for a = 0, this result can be presented as

y(x) = c0 + c1x + c2x2 + · · · + cn−1xn−1,

where ci =
y(i)(0)

i! (i = 0, 1, · · · n − 1) denotes certain constants.

Lemma 2.2 Suppose x(t) fulfills the subsequent BVP:

cDδ
0+ x(t) = h(t), 0 < t < 1,

x(0) =
∫ η

0
x(τ)dτ,

x′(0) = x′′(0) = · · · = x(n−2)(0) = 0,

x(1) =
∫ 1

γ
x(τ)dτ.

(2.1)

Now, BVP (2.1) possesses the following unique solution for a certain function h(t) ∈ C[0, 1]

x(t) =
1

Γ(δ)

∫ t

0
(t − τ)δ−1h(τ)dτ +

a + btn−1

Γ(δ)

∫ 1

0
(1 − τ)δ−1h(τ)dτ +

c + dtn−1

Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ

+
e + f tn−1

Γ(δ + 1)

∫ η

0
(η − τ)δh(τ)dτ +

a + btn−1

Γ(δ + 1)

∫ γ

0
(γ − τ)δh(τ)dτ (2.2)

where cDδ
0+ stands for the Caputo’s differentiation of order δ; δ, η, γ and n are defined as in problem

(1.1), and a = −
ηn

∆1
, b = −

n(1−η)
∆1

, c =
η

∆1
, d =

n+ηn−(n+1)η
∆1

, e =
n+γn−1

∆1
, f = −

nγ
∆1

and ∆1 = [(n − 1) + γn](1 −
η) + γηn.

Proof According to Lemma 2.1, one can gain

x(t) =
1

Γ(δ)

∫ t

0
(t − τ)δ−1h(τ)dτ + c0 + c1t + c2t2 + · · · + cn−1tn−1 (2.3)

for some c0, c1, c2 · · · cn−1 ∈ R. From the condition x(0) =
∫ η

0
x(τ)dτ, we get

c0 =

∫ η

0
x(τ)dτ (2.4)

By differentiating x(t) based on the expression in (2.3), the following relations are obtained

x′(t) =
1

Γ(δ − 1)

∫ t

0
(t − τ)δ−2h(τ)dτ + c1 + 2c2t + 3c3t2 · · · + (n − 1)cn−1tn−2,

x′′(t) =
1

Γ(δ − 2)

∫ t

0
(t − τ)δ−3h(τ)dτ + 2c2 + 3 · 2c3t · · · + (n − 1)(n − 2)cn−1tn−3,

...

x(n−2)(t) =
1

Γ(δ − n + 2)

∫ t

0
(t − τ)δ−n+1h(τ)dτ + (n − 2)(n − 3) · · · 2 · 1cn−2 + (n − 1)(n − 2) · · · 2 · 1cn−1t.

From the BCs x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, x(1) =
∫ 1

γ
x(τ)dτ in (2.1), we have

c1 = · · · = cn−2 = 0 (2.5)
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and

cn−1 =

∫ 1

γ

x(τ)dτ −
1

Γ(δ)

∫ 1

0
(1 − s)δ−1h(τ)dτ −

∫ η

0
x(τ)dτ (2.6)

Combining (2.3)–(2.6) gives

x(t) =
1

Γ(δ)

∫ t

0
(t−τ)δ−1h(τ)dτ−

tn−1

Γ(δ)

∫ 1

0
(1−τ)δ−1h(τ)dτ+(1− tn−1)

∫ η

0
x(τ)dτ+ tn−1

∫ 1

γ

x(τ)dτ (2.7)

Both sides’ integration of (2.7) regarding the lower and upper bounds of 0 and η, respectively is
denoted by∫ η

0
x(t)dt =

1
Γ(δ + 1)

∫ η

0
(η−τ)δh(τ)dτ−

ηn

nΓ(δ)

∫ 1

0
(1−τ)δ−1h(τ)dτ+(η−

1
n
ηn)

∫ η

0
x(τ)dτ+

1
n
ηn

∫ 1

γ

x(τ)dτ.

By transposing and rearranging, we can get the following from the above formula

(n + ηn − nη)
∫ η

0
x(t)dt− ηn

∫ 1

γ

x(τ)dτ =
n

Γ(δ + 1)

∫ η

0
(η− τ)δh(τ)dτ−

ηn

Γ(δ)

∫ 1

0
(1− τ)δ−1h(τ)dτ (2.8)

Both sides’ integration of (2.7) by using the lower and upper bounds γ and 1, respectively is repre-
sented by∫ 1

γ

x(t)dt =
1

Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ −

1
Γ(δ + 1)

∫ γ

0
(γ − τ)δh(τ)dτ −

1 − γn

nΓ(δ)

∫ 1

0
(1 − τ)δ−1h(τ)dτ

+
n + γn − nγ − 1

n

∫ η

0
x(τ)dτ +

1 − γn

n

∫ 1

γ

x(τ)dτ.

By transposing and rearranging, we can get the following from the above formula

(n + γn − nγ − 1)
∫ η

0
x(t)dt − (n + γn − 1)

∫ 1

γ

x(τ)dτ =
n

Γ(δ + 1)

∫ γ

0
(γ − τ)δh(τ)dτ

+
1 − γn

Γ(δ)

∫ 1

0
(1 − τ)δ−1h(τ)dτ −

n
Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ (2.9)

Equations (2.8) and (2.9) constitute a system with
∫ η

0
x(τ)dτ and

∫ 1

γ
x(τ)dτ as the unknown

elements, and the coefficients of this system are represented by

∆ =

∣∣∣∣∣∣ n + ηn − nη −ηn

n + γn − nγ − 1 −(n + γn − 1)

∣∣∣∣∣∣ = −n[(n − 1) + γn](1 − η) − nγηn < 0.

So, using the Cramer’s rule, we can get∫ η

0
x(t)dt =

n + γn − 1
∆1Γ(δ + 1)

∫ η

0
(η − τ)δh(τ)dτ +

η

∆1Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ

−
ηn

∆1Γ(δ)

∫ 1

0
(1 − τ)δ−1h(τ)dτ −

ηn

∆1Γ(δ + 1)

∫ γ

0
(1 − τ)δh(τ)dτ (2.10)
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and∫ 1

γ

x(t)dt = −
n + ηn − nη
∆1Γ(δ + 1)

∫ γ

0
(γ − τ)δh(τ)dτ −

(1 − η)(1 − γn) + (1 − γ)ηn

∆1Γ(δ)

∫ 1

0
(1 − τ)δ−1h(τ)dτ

+
n + ηn − nη
∆1Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ +

n + γn − nγ − 1
∆1Γ(δ + 1)

∫ η

0
(η − τ)δh(τ)dτ (2.11)

where ∆1 = [(n − 1) + γn](1 − η) + γηn > 0.
The result can be derived after substituting Eqs (2.10) and (2.11) into Eq (2.7). This finishes the

proof.
Banach’s fixed point theorem and its subsequent theorem help to attain the main outcomes of the

current article.
Lemma 2.3([45]) (The fixed point theorem by Krasnoselskii) Suppose that M is defined as a

non-empty subset of a Banach space X with properties of closedness, boundedness and convexity.
Moreover, consider that A and B stand for the operators meeting the subsequent requirements (a)
Ax + By ∈ M, for x, y ∈ M; (b) both compactness and continuity of A exist; (c) a contraction mapping
is represented by B. Now, z ∈ M exists such that z = Az + Bz.

This part ends with showing some fundamental understanding of the Lp space and introducing an
inequality and its corresponding extended format called the Hölder’s inequality [46].

Consider that an open (or measurable) set is denoted by V ⊂ Rn and a measurable mapping of real
numbers defined on V is denoted by g(x). |g(x)|p turns out to be measurable on V for 1 ≤ p < ∞ and∫

V
|g(x)|pdx is meaningful. Now, we introduce a function space Lp(V) as follows:

Lp(V) = {g(x)|g(x) is measurable on V,
∫

V
|g(x)|pdx < ∞}.

For g ∈ Lp(V), the upcoming norm is defined

‖ g ‖p= (
∫

V
|g(x)|pdx)1/p.

1 < p1 and p2 < ∞ are called conjugate exponentials of each other if 1
p1

+ 1
p2

= 1.
Lemma 2.4([46]) (Hölder’s inequality) Consider that V ⊂ Rn is an open set, p1 and p2 are conjugate

exponentials, g(x) ∈ Lp1(V), h(x) ∈ Lp2(V) and g(x)h(x) is integrable on V , while the following equality
holds ∫

V
| g(x)h(x) | dx ≤‖ g ‖p1‖ g ‖p2 .

The mentioned result is extended as∫
V
| g1(x) · · · gn(x) | dx ≤‖ g1 ‖p1 · · · ‖ gn ‖pn ,

where gi(x) ∈ Lpi(V) and
∑n

i=1
1
pi

= 1. The above expression is just called the generalized Hölder’s
inequality.
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3. Main results

Suppose that E = C([0, 1],R) encompasses continuous function space on interval [0, 1]. Now, a
Banach space is denoted by X = (E, ‖ · ‖), where ‖ · ‖ is the maximum norm ‖ x ‖=maxt∈[0,1] | x(t) |
with x(t) ∈ E.

Define an operator φ : X → X as

(φx)(t) =
1

Γ(δ)

∫ t

0
(t − τ)δ−1 f (τ, x(τ))dτ +

a + btn−1

Γ(δ)

∫ 1

0
(1 − τ)δ−1 f (τ, x(τ))dτ

+
c + dtn−1

Γ(δ + 1)

∫ 1

0
(1 − τ)δ f (τ, x(τ))dτ

+
e + f tn−1

Γ(δ + 1)

∫ η

0
(η − τ)δ f (τ, x(τ))dτ +

a + btn−1

Γ(δ + 1)

∫ γ

0
(γ − τ)δ f (τ, x(τ))dτ (3.1)

There exists equality between the solutions of the problem (1.1) and the fixed points regarding the
operator φ. This paper presents the following assumptions that are put on f (t, x(t)) that appears in (1.1)
in the sequel.

(H1) Both t = 0 and t = 1 lead to a singular f (t, x(t)) which satisfies

limt→0+ f (t, ·) = ∞, limt→1− f (t, ·) = ∞.

Besides, there are two constants σ1 > 0 and σ2 > 0, where tσ1(1 − t)σ2 f (t, x(t)) is a continuous
function in [0, 1].

By the assumption of (H1), it can be deduced that a number N0 exists and meets

|tσ1(1 − t)σ2 f (t, x(t))| ≤ N0 (3.2)

where t ∈ [0, 1] and x(t) ∈ E. Throughout the rest of this article, we always employ s, s1 and s2 to
represent any set of real numbers that meet the following conditions

(H2) (i) s > 1, s1 > 1, s2 > 1; (ii) 1
s + 1

s1
+ 1

s2
= 1; (iii) 0 < s1σ1 < 1, 0 < s2σ2 < 1.

Accordingly, avoiding excessive conjugate exponent notations is possible while using the general-
ized Hölder’s inequality in different contexts.
Lemma 3.1 Assume that 1 ≤ n − 1 < δ ≤ n, and s, s1, s2, σ1 and σ2 are positive constants satisfying

(H2). Define an operator Kl(t) for some real number l ≥ 1 as

Kl(t) =

∫ t

0
(t − τ)lτ−θ1(1 − τ)−θ2dτ, t ∈ [0, 1].

Then, the following results are valid:

(1) limt→0+ Kl(t) = 0;

(2) Kl(t) ≤
1

s√1 + sl

1
s1
√

1 − s1σ1

1
s2
√

1 + s2σ2
for any t ∈ [0, 1];

(3) For any t1, t2 ∈ [0, 1], | Kl(t1) − Kl(t2) |<
l

s√1 + s(l − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 + s2σ2
| t1 − t2 | .
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Proof (1) Recall Lemma 3.2 in [44].
(2) According to the generalized Hölder’s inequality, one obtains

Kl(t) =

∫ t

0
(t − τ)lτ−θ1(1 − τ)−θ2dτ

≤ [
∫ t

0
(t − τ)sldτ]1/s[

∫ t

0
τ−s1σ1dτ]1/s1[

∫ t

0
(1 − τ)−s2σ2dτ]1/s2

≤
1

s√1 + sl

s√
t1+sl 1

s1
√

1 − s1σ1

s1
√

t1−s1σ1
1

s2
√

1 − s2σ2

s2
√

1 − (1 − t)1−s2σ2

≤
1

s√1 + sl

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2
.

(3) Deriving the function Kl(t) and using the generalized Hölder’s inequality, one can obtain

K′l (t) = l
∫ t

0
(t − τ)l−1τ−θ1(1 − τ)−θ2dτ

≤ l[
∫ t

0
(t − τ)s(l−1)dτ]1/s[

∫ t

0
τ−s1σ1dτ]1/s1[

∫ t

0
(1 − τ)−s2σ2dτ]1/s2

≤
l

s√1 + s(l − 1)
s√
t1+s(l−1) 1

s1
√

1 − s1σ1

s1
√

t1−s1σ1
1

s2
√

1 − s2σ2

s2
√

1 − (1 − t)1−s2σ2

≤
l

s√1 + s(l − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2
.

By the mean value theorem, we have

| Kl(t1) − Kl(t2) |≤ K′l (ξ) | t1 − t2 |≤
l

s√1 + s(l − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 + s2σ2
| t1 − t2 |,

where ξ is a number between t1 and t2.
Lemma 3.2 Assume that 1 ≤ n − 1 < δ ≤ n and a function h(t) : (0, 1) → R is continuous and

satisfying limt→0+ h(t) = ∞ and limt→1− h(t) = ∞. A new function H(t) is defined as

H(t) =
1

Γ(δ)

∫ t

0
(t − τ)δ−1h(τ)dτ +

a + btn−1

Γ(δ)

∫ (

0
1 − τ)δ−1h(τ)dτ +

c + dtn−1

Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ

+
e + f tn−1

Γ(δ + 1)

∫ η

0
(η − τ)δh(τ)dτ +

a + btn−1

Γ(δ + 1)

∫ γ

0
(γ − τ)δh(τ)dτ.

Then the continuity of tσ1(1 − t)σ2h(t) on [0, 1] leads H(t) to be continuous in [0, 1].
Proof Since tσ1(1 − t)σ2h(t) is a continuous mapping in [0, 1] , there is a positive constant N1 that
satisfies |tσ1(1 − t)σ2h(t)| ≤ N1.

According to the definition of H(t), we have

H(0) =
a

Γ(δ)

∫ 1

0
(1 − τ)δ−1h(τ)dτ +

c
Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ

+
e

Γ(δ + 1)

∫ η

0
(η − τ)δh(τ)dτ +

a
Γ(δ + 1)

∫ γ

0
(γ − τ)δh(τ)dτ.
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For any t′ ∈ [0, 1],H(t) is continuous and t′ will be proven.
(I) For t′ = 0 and t ∈ [0, 1], the following equality is attained.

| H(t) − H(0) | =|
1

Γ(δ)

∫ t

0
(t − τ)δ−1h(τ)dτ +

btn−1

Γ(δ)

∫ 1

0
(1 − τ)δ−1h(τ)dτ +

dtn−1

Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ

+
f tn−1

Γ(δ + 1)

∫ η

0
(η − τ)δh(τ)dτ +

btn−1

Γ(δ + 1)

∫ γ

0
(γ − τ)δh(τ)dτ |

≤
N1

Γ(δ)

∫ t

0
(t − τ)δ−1τ−σ1(1 − τ)−σ2dτ +

|b|N1tn−1

Γ(δ)

∫ 1

0
(1 − τ)δ−1τ−σ1(1 − τ)−σ2dτ

+
|d|N1tn−1

Γ(δ + 1)

∫ 1

0
(1 − τ)δτ−σ1(1 − τ)−σ2dτ +

| f |N1tn−1

Γ(δ + 1)

∫ η

0
(η − τ)δτ−σ1(1 − τ)−σ2dτ

+
|b|N1tn−1

Γ(δ + 1)

∫ γ

0
(γ − τ)δτ−σ1(1 − τ)−σ2dτ

≤
N1

Γ(δ)
Kδ−1(t) + N1[

|b|Kδ−1(1)
Γ(δ)

+
|d|Kδ(1)
Γ(δ + 1)

+
| f |Kδ(η)
Γ(δ + 1)

+
|b|Kδ(γ)
Γ(δ + 1)

]tn−1.

Thus, by the results (1) and (2) in Lemma 3.1, we have | H(t) − H(0) |→ 0 as t → t′ = 0 that is

limt→0+ H(t) = H(0).

(II) For each t′ ∈ (0, 1] and t ∈ [0, 1], t′ , t, one can obtain

| H(t) − H(t′) | =|
1

Γ(δ)
[
∫ t

0
(t − τ)δ−1h(τ)dτ −

∫ t′

0
(t′ − τ)δ−1h(τ)dτ] +

b(tn−1 − t′n−1)
Γ(δ)

∫ 1

0
(1 − τ)δ−1h(τ)dτ

+
d(tn−1 − t′n−1)

Γ(δ + 1)

∫ 1

0
(1 − τ)δh(τ)dτ +

f (tn−1 − t′n−1)
Γ(δ)

∫ η

0
(η − τ)δh(τ)dτ

+
b(tn−1 − t′n−1)

Γ(δ + 1)

∫ γ

0
(γ − τ)δh(τ)dτ |

≤
1

Γ(δ)
|

∫ t′

0
(t′ − τ)δ−1h(τ)dτ −

∫ t

0
(t − τ)δ−1h(τ)dτ |

+
|b|N1|tn−1 − t′n−1|

Γ(δ)

∫ 1

0
(1 − τ)δ−1τ−σ1(1 − τ)−σ2dτ

+
|d|N1|tn−1 − t′n−1|

Γ(δ + 1)

∫ 1

0
(1 − τ)δτ−σ1(1 − τ)−σ2dτ

+
| f |N1|tn−1 − t′n−1|

Γ(δ + 1)

∫ η

0
(η − τ)δτ−σ1(1 − τ)−σ2dτ

+
|b|N1|tn−1 − t′n−1|

Γ(δ + 1)

∫ γ

0
(γ − τ)δτ−σ1(1 − τ)−σ2dτ

≤
1

Γ(δ)
|

∫ t

0
[(t′ − τ)δ−1 − (t − τ)δ−1]h(τ)dτ +

∫ t′

t
(t′ − τ)δ−1h(τ)dτ |

+ N1[
|b|Kδ−1(1)

Γ(δ)
+
|d|Kδ(1) + | f |Kδ(η) + |b|Kδ(γ)

Γ(δ + 1)
]|tn−1 − t′n−1|
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≤
N1

Γ(δ)
|

∫ t

0
[(t′ − τ)δ−1 − (t − τ)δ−1]τ−σ1(1 − τ)−σ2dτ +

∫ t′

t
(t′ − τ)δ−1τ−σ1(1 − τ)−σ2dτ |

+ N1[
|b|Kδ−1(1)

Γ(δ)
+
|d|Kδ(1) + | f |Kδ(η) + |b|Kδ(γ)

Γ(δ + 1)
]|tn−1 − t′n−1|

=
N1

Γ(δ)
|

∫ t′

0
(t′ − τ)δ−1τ−σ1(1 − τ)−σ2dτ −

∫ t

0
(t − τ)δ−1τ−σ1(1 − τ)−σ2dτ |

+ N1[
|b|Kδ−1(1)

Γ(δ)
+
|d|Kδ(1) + | f |Kδ(η) + |b|Kδ(γ)

Γ(δ + 1)
]|tn−1 − t′n−1|

=
N1

Γ(δ)
| Kδ−1(t′) − Kδ−1(t) | +N1[

|b|Kδ−1(1)
Γ(δ)

+
|d|Kδ(1) + | f |Kδ(η) + |b|Kδ(γ)

Γ(δ + 1)
]|tn−1 − t′n−1|.

By the results (2) and (3) in Lemma 3.1, one can obtain

| H(t) − H(t′) | ≤
N1

Γ(δ)
l

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2
|t′ − t|

+ N1[
|b|Kδ−1(1)

Γ(δ)
+
|d|Kδ(1) + | f |Kδ(η) + |b|Kδ(γ)

Γ(δ + 1)
]|tn−1 − t′n−1| → 0

when t → t′, and this means that
limt→t′ H(t) = H(t′).

Since t′ is any point in [0, 1], we prove the assertion of Lemma 3.2.
Theorem 3.1 Assume that 1 ≤ n − 1 < δ ≤ n, σ1 > 0 and σ2 > 0 are constants; (H1) and the

subsequent assumption are satisfied by f (t, x(t)):
(H3) m(t) ∈ C([0, 1],R) is a mapping such that

tσ1(1 − t)σ2 | f (t, x(t)) − f (t, y(t)) |≤| m(t) || x(t) − y(t) | .

Assume that the condition (H2) and the subsequent inequality are fulfilled

‖ m ‖ {
1+ | a | + | b |

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2
+

1
Γ(δ + 1)

1
s√1 + sδ

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

·[| c | + | d | +(| e | + | f |) s
√
η1+sδ s1

√
η1−s1σ1

s2
√

1 − (1 − η)1−s2σ2

+(| a | + | b |) s
√
γ1+sδ s1

√
γ1−s1σ1

s2
√

1 − (1 − γ)1−s2σ2]} < 1 (3.3)

Now, a unique solution regarding the ([0, 1],R) space is possessed for the problem (1.1).

Proof For every x, y ∈ X = (C[0, 1],R), the second assertion of Lemma 3.1 and the generalized
Hölder’s inequality can be deduced by (H3)

| (φx)(t) − (φy)(t) |≤
1

Γ(δ)

∫ t

0
(t − τ)δ−1 | f (τ, x(τ)) − f (τ, y(τ)) | dτ

+
| a | + | b |

Γ(δ)

∫ 1

0
(1−τ)δ−1 | f (τ, x(τ))− f (τ, y(τ)) | dτ+

| c | + | d |
Γ(δ + 1)

∫ 1

0
(1−τ)δ | f (τ, x(τ))− f (τ, y(τ)) | dτ

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4437–4454.



4447

+
| e | + | f |
Γ(δ + 1)

∫ η

0
(η − τ)δ | f (τ, x(τ)) − f (τ, y(τ)) | dτ

+
| a | + | b |
Γ(δ + 1)

∫ γ

0
(γ − τ)δ | f (τ, x(τ)) − f (τ, y(τ)) | dτ

≤
1

Γ(δ)

∫ t

0
(t − τ)δ−1τ−σ1(1 − τ)−σ2 | m(τ) || x(τ) − y(τ) | dτ

+
| a | + | b |

Γ(δ)

∫ 1

0
(1 − τ)δ−1τ−σ1(1 − τ)−σ2 | m(τ) || x(τ) − y(τ) | dτ

+
| c | + | d |
Γ(δ + 1)

∫ 1

0
(1 − τ)δτ−σ1(1 − τ)−σ2 | m(τ) || x(τ) − y(τ) | dτ

+
| e | + | f |
Γ(δ + 1)

∫ η

0
(η − τ)δτ−σ1(1 − τ)−σ2 | m(τ) || x(τ) − y(τ) | dτ

+
| a | + | b |
Γ(δ + 1)

∫ γ

0
(γ − τ)δτ−σ1(1 − τ)−σ2 | m(τ) || x(τ) − y(τ) | dτ

≤ ‖m(τ)‖‖x(τ) − y(τ)‖{
1

Γ(δ)
Kδ−1(t) +

| a | + | b |
Γ(δ)

Kδ−1(1) +
| c | + | d |
Γ(δ + 1)

Kδ(1)

+
| e | + | f |
Γ(δ + 1)

[
∫ η

0
(η − τ)sδdτ]1/s[

∫ η

0
τ−s1σ1dτ]1/s1[

∫ η

0
(1 − τ)−s2σ2dτ]1/s2

+
| a | + | b |
Γ(δ + 1)

[
∫ γ

0
(γ − τ)sδdτ]1/s[

∫ γ

0
τ−s1σ1dτ]1/s1[

∫ γ

0
(1 − τ)−s2σ2dτ]1/s2}

≤ ‖m(τ)‖‖x(τ) − y(τ)‖{
1

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

+
| a | + | b |

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

+
| c | + | d |
Γ(δ + 1)

1
s√1 + s(δ)

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

+
| e | + | f |
Γ(δ + 1)

1
s√1 + sδ

s
√
η1+sδ 1

s1
√

1 − s1σ1

s1
√
η1−s1σ1

1
s2
√

1 − s2σ2

s2
√

1 − (1 − η)1−s2σ2

+
| a | + | b |
Γ(δ + 1)

1
s√1 + sδ

s
√
γ1+sδ 1

s1
√

1 − s1σ1

s1
√
γ1−s1σ1

1
s2
√

1 − s2σ2

s2
√

1 − (1 − γ)1−s2σ2}

≤‖ m ‖ {
1+ | a | + | b |

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

+
1

Γ(δ + 1)
1

s√1 + sδ

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

· [| c | + | d | +(| e | + | f |) s
√
η1+sδ s1

√
η1−s1σ1

s2
√

1 − (1 − η)1−s2σ2

+ (| a | + | b |) s
√
γ1+sδ s1

√
γ1−s1σ1

s2
√

1 − (1 − γ)1−s2σ2]} · ‖x(τ) − y(τ)‖.

The condition (3.3) ensures that the operator φ is a contractive mapping. Accordingly, Banach’s
fixed-point theorem indicates that φ possesses a unique fixed-point that is equal to the problem (1.1)
unique solution.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4437–4454.



4448

Theorem 3.2 Suppose that 1 ≤ n − 1 < δ ≤ n, σ1 > 0 and σ2 > 0 are constants; both (H1) and (H3)
are satisfied by f (t, x(t)). Assume that (H2) and the subsequent inequality are true

‖ m ‖ {
| a | + | b |

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2
+

1
Γ(δ + 1)

1
s√1 + sδ

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

·[| c | + | d | +(| e | + | f |) s
√
η1+sδ s1

√
η1−s1σ1

s2
√

1 − (1 − η)1−s2σ2

+(| a | + | b |) s
√
γ1+sδ s1

√
γ1−s1σ1

s2
√

1 − (1 − γ)1−s2σ2]} < 1 (3.4)

Now, the interval ([0, 1],R) contains at least one solution for the problem (1.1).

Proof Take a constant L satisfying

N0{
1+ | a | + | b |

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2
+

1
Γ(δ + 1)

1
s√1 + sδ

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

·[| c | + | d | +(| e | + | f |) s
√
η1+sδ s1

√
η1−s1σ1

s2
√

1 − (1 − η)1−s2σ2

+(| a | + | b |) s
√
γ1+sδ s1

√
γ1−s1σ1

s2
√

1 − (1 − γ)1−s2σ2]} ≤ L.

The number N0 is defined in (3.2).
The set BL = {x ∈ X = C([0, 1], |‖ x ‖≤ L} is a ball in X. Define two operators φ1 and φ2 on BL as

(φ1x)(t) =
1

Γ(δ)

∫ t

0
(t − τ)δ−1 f (τ, x(τ))dτ,

(φ2x)(t) =
a + btn−1

Γ(δ)

∫ 1

0
(1 − τ)δ−1 f (τ, x(τ))dτ +

c + dtn−1

Γ(δ + 1)

∫ 1

0
(1 − τ)δ f (τ, x(τ))dτ

+
e + f tn−1

Γ(δ + 1)

∫ η

0
(η − τ)δ f (τ, x(τ))dτ +

a + btn−1

Γ(δ + 1)

∫ γ

0
(γ − τ)δ f (τ, x(τ))dτ.

For any x, y ∈ BL, the following relation can be obtained by taking a process similar to Theorem 3.1:

‖ φ1x + φ2 ‖ ≤
N0

Γ(δ)

∫ t

0
(t − τ)δ−1τ−σ1(1 − τ)−σ2dτ +

(| a | + | b |)N0

Γ(δ)

∫ 1

0
(1 − τ)δ−1τ−σ1(1 − τ)−σ2dτ

+
(| c | + | d |)N0

Γ(δ + 1)

∫ 1

0
(1 − τ)δτ−σ1(1 − τ)−σ2dτ

+
(| e | + | f |)N0

Γ(δ + 1)

∫ η

0
(η − τ)δτ−σ1(1 − τ)−σ2dτ

+
(| a | + | b |)N0

Γ(δ + 1)

∫ γ

0
(γ − τ)δτ−σ1(1 − τ)−σ2dτ

≤ N0{
1+ | a | + | b |

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

+
1

Γ(δ + 1)
1

s√1 + sδ

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

· [| c | + | d | +(| e | + | f |) s
√
η1+sδ s1

√
η1−s1σ1

s2
√

1 − (1 − η)1−s2σ2

+ (| a | + | b |) s
√
γ1+sδ s1

√
γ1−s1σ1

s2
√

1 − (1 − γ)1−s2σ2]} ≤ L.
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This means that φ1x + φ2y ∈ BL.

The operator φ2 is a contractive mapping deduced from (H1)–(H3) and (3.4) with a process similar
to Theorem 3.1.

The operator φ1 is continuous in BL by (H1) and Lemma 3.2. φ1 is uniformly bounded on BL since
the following inequality is true

‖ φ1x ‖≤
N0

Γ(δ)
Kδ−1(t) ≤

N0

Γ(δ)
l

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

l
s2
√

1 − s2σ2
,

where x ∈ BL.

For every t1, t2 ∈ [0, 1] and t1 < t2, one can obtain

| (φ1x)(t2) − (φ2x)(t1) | =
1

Γ(δ)
|

∫ t2

0
(t2 − τ)δ−1 f (τ, x(τ))dτ −

∫ t1

0
(t1 − τ)δ−1 f (τ, x(τ))dτ |

≤
N0

Γ(δ)
{

∫ t1

0
[(t2 − τ)δ−1 − (t1 − τ)δ−1]τ−σ1(1 − τ)−σ2dτ

+

∫ t2

t1
(t2 − τ)δ−1τ−σ1(1 − τ)−σ2dτ}

≤
N0

Γ(δ)
[Kδ−1(t2) − Kδ−1(t1)].

By the third assertion in Lemma 3.1, we have

| (φ1x)(t2) − (φ2x)(t1) |≤
N0

Γ(δ)
l

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

l
s2
√

1 − s2σ2
| t2 − t1 | .

Thus, both the equicontinuity and relative compactness of φ1 on BL are attained. The Arzelà-
Ascoli theorem ensures that the operator φ1 is compact in BL. Therefore, the existence of a solution in
([0, 1],R) is ensured by Lemma 2.3.

4. Numerical example

The current section introduces an example to verify the efficiency of the fundamental outcomes in
the current article.
Example 4.1 Assume the upcoming fractional BVP:

cD2.5
0+ x(t) = sinr x

12√t· 20√1−t
, 0 < t < 1,

x(0) =
∫ 1

3

0
x(τ)dτ,

x′(0) = 0,

x(1) =
∫ 1

0.5
x(τ)dτ.

(4.1)

In this BVP, f (t, x) = sinr x
12√t· 20√1−t

, r ≥ 1 is a real number, δ = 2.5, n = 3, η = 1
3 , γ = 1

2 . Take

σ1 = σ2 = 1
10 ; we have

t
1
10 (1 − t)

1
10 | f (t, x(t)) − f (t, y(t)) |= t

1
60 (1 − t)

1
20 | sinr x − sinry |≤ rt

1
60 (1 − t)

1
20 | x − y | .
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Thus, m(t) = rt
1

60 (1 − t)
1

20 , t ∈ [0, 1] and ‖ m ‖= max0≤t≤1 | m(t) |= r 60
√

1
4 (3

4 )3 ≈ 0.9627r.
Now, the following values can be obtained:

∆1 =
261
108

, a = −
4

261
, b = −

216
261

, c =
36
261

, d =
184
261

, e =
459
522

, f = −
54
87
,

Γ(2.5) ≈ 1.3293,Γ(1 + 2.5) ≈ 3.3233.

Take conjugate exponentials s, s1 and s2 when s = 4
3 and s1 = s2 = 8. Then, we can calculate

‖ m ‖ {
1+ | a | + | b |

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2
+

1
Γ(δ + 1)

1
s√1 + sδ

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

·[| c | + | d | +(| e | + | f |) s
√
η1+sδ s1

√
η1−s1σ1

s2
√

1 − (1 − η)1−s2σ2

+(| a | + | b |) s
√
γ1+sδ s1

√
γ1−s1σ1

s2
√

1 − (1 − γ)1−s2σ2]}

≈ 0.9627r × 0.4793 + 0.0636 × [0.8589 + 2.0455] ≈ 0.6393r.

And

‖ m ‖ {
| a | + | b |

Γ(δ)
1

s√1 + s(δ − 1)
1

s1
√

1 − s1σ1

1
s2
√

1 − s2σ2
+

1
Γ(δ + 1)

1
s√1 + sδ

1
s1
√

1 − s1σ1

1
s2
√

1 − s2σ2

·[| c | + | d | +(| e | + | f |) s
√
η1+sδ s1

√
η1−s1σ1

s2
√

1 − (1 − η)1−s2σ2

+(| a | + | b |) s
√
γ1+sδ s1

√
γ1−s1σ1

s2
√

1 − (1 − γ)1−s2σ2]}

≈ 0.9627r × 0.2102 + 0.0636 × [0.8589 + 2.0455] ≈ 0.3802r.

Thus, we can deduce the following:
(a1) When 0.6393r < 1, or 1 ≤ r < 1.5642, a unique solution in [0, 1] for the problem (4.1) is

possessed by Theorem 3.1.
(a2) When 0.3802r < 1, or 1 ≤ r < 2.63019, Theorem 3.2 guarantees that the problem (4.1) attains

solutions on the interval [0, 1].

5. Conclusions

This work dealt with the existence results for a category of singular nonlinear FDEs with nonlocal
double integral BCs. The results we obtained depended on the parameters that appeared in the integral
BCs, this is due to the use of the generalized Hölder’s inequality. So the type of problems, conclusions
and methods discussed in this paper complemented the existing literature.
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