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and existence results. An example is presented at the end of this paper to illustrate our obtained results.

Keywords: singular non-linear fractional differential equations; nonlocal double integral boundary
conditions; uniqueness and existence of solutions; fixed-point theorems

1. Introduction

Due to its extensive applications in several fields like science and engineering, fractional calculus
(FC) has acquired remarkable generality and significance, especially within the last few decades. FC is
widely used to describe such practical problems as viscoelastic bodies, continuous media with memory,
transformation of temperature, etc. Compared with the traditional integer-order models, the fractional
order models can accurately reflect the properties and laws of related phenomena. Recently, there
has been a lot of literature on FC. Some of them focus on the basic theory of FC, and the others
focus their research on the solvability of initial problems or boundary problems in term of special
functions, readers can refer to references [1-7] for details. Researchers have made great advancement
in the study of qualitative and quantitative properties of solutions for fractional differential equations
(FDE?s), including existence, uniqueness, boundedness, continuous dependence on initial data and so
on [8—15]. The methods used for analysis include fixed point theorems, the comparison principle, chaos
control, nonlinear alternatives of the Leray-Schauder type, upper and lower solutions and numerical
calculation. For various studies performed on FC, we refer the reader to more literature [16-23] and
the references therein.
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In recent years, the issues related to singular FDEs (SFDEs) have been verified. The positive
solutions regarding a category of SFDEs were verified in [21] by

Dg.u(r) = f(t,u(1),2 <a <3,0<r<1,
u(0) = u’'(0) =u"”(0) =0,

where f : (0, 1] X [0, +00) and lim,_,¢+ f(, x(¢)) = co. They employed the fixed-point theorem and the
Leray-Schauder type with nonlinear form in a cone to obtain two results for this problem.

Other works related to this kind of problem have been presented in [24-31].

FDEs have been investigated in various studies when integral boundary conditions (BCs) are
under consideration. This type of problems arose from many research areas such as heat conduction,
chemical engineering, underground water flow, population dynamics, and so forth. For further
information about FDEs with integral BCs, we refer the reader to the [32-39] and the references
therein. For instance, Ahmad and Agarwal [39] investigated both the existence and uniqueness of
solutions (EUS) for fractional boundary value problems (FBVPs) with some novel versions regarding
slit-strips conditions. One of the problems that they considered is as follows:

CDg+x(t) = f(t,x(t)),n—1<qg<n,te(0,1)

x(0) = ¥'(0) = x"(0) = --- = x"*(0) = 0,

x(Q) = afonx(s)ds + bf; x(s)ds,0 <n<<é<1,
where “D? stands for a special derivative with order q called the fractional derivative of Caputo type
and a continuous mapping expressed by f(¢, x(¢)) in ([0, 1] X R) is considered. They obtained the EUS
conditions for the mentioned problems by applying fixed principles.

Researchers are also interested in singular nonlinear FDEs with integral BCs [40—44]. Yan [44]
investigated just such a problem. Specifically, the upcoming problem was studied:

Dy.x(t) = f(t,x(2)),0 <t < 1,

subject to conditions: x(0) = 0 = x’(0) and x(1) = fy ! x(7)dt,0 <y < 1. Botht =0and ¢ =1 lead to
the singular non-linear mapping f(¢, x()).

Inspired by the mentioned studies, the current study discusses the following singular nonlinear FDE
containing nonlocal double integral BCs:

DP x(t) = f(t, x(1)),0 <t < 1,
x(0) = [’ x(1)dx,

x'(0) = x”(0) = --- = xX"2(0) = 0,
(1) = [ x(v)ydr

(1.1)

where “Dg+ is Caputo’s differentiation of order ¢; 6, 7 and 7y are real numbers satisfying 1 <n—1 <6 <
n<+4+ooand0 <n <7y < 1,andn = [d] + 1 is an integer number, the nonlinear term f(z, x(¢)) € ((0, 1)X
R, R) becomes singular when both # = 0 and r = 1, namely, lim,_,o+ f(#,-) = oo and lim,_,;- f(,-) = oo.
For the physical meaning of the integral BCs in (1.1), x(¢) can be interpreted as the distribution of heat
on a linear body, and the integral condition x(0) = fon x(7)dr states that the heat absorbed or emitted by
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the body at r = 0 is equal to the variable of its heat over [0, 7]. The other integral condition has a similar
explanatory and physical meaning. The current study aims to demonstrate the EUS to the problem
(1.1). The generalized Holder’s inequality and fixed-point theories are applied in this paper, while the
use of the generalized Holder’s inequality is the highlight of this article. This category of problems
discussed in this article and the methods used make a contribution to the existing literature.

This paper consists of a total of five parts. In the first part, the related situation of FDEs is intro-
duced. The second part mainly introduces some basic knowledge of FC, such as definitions and related
lemmas, which will be employed in the following content. The third part is the core of the manuscript,
including the key conclusions and their proofs. The fourth part includes an example, which aims to use
the results of this paper to solve the relevant problems. The last part is the summary of this paper.

2. Preliminaries

The characteristics of FC, the lemmas to be used, and pertinent principles are presented in the
current subsection.

Definition 2.1([3]) Consider that Q = [a, b](—o0 < a < b < +00) is a limited range in R. The fractional
integrals denoted by 1% f and I} f of order @ € C(*R(«) > 0) called the Riemann-Liouville type can be
represented by

o _ AQ, _
(I3 )x) = @), Gopra dt(x > a; R(a) > 0)
and .
% f)(x) = JO e < b: R(a) > 0),

) J, t-x)'
respectively. In the above relations, I'(-) stands for the gamma function.

Definition 2.2([3]) Consider y(x) € AC"[a, b]. Now, the derivatives (°D¢,y)(x) and (“°D;_y)(x), called
the Caputo’s, can subsist nearly on the whole interval [a, b].
(D Ifa ¢ Ny , (“Di.y)(x) and (“°D;_y)(x) are defined as follows:

(n)
(‘D)) = mf@lﬁﬂ

and
GO M0
F(n-a) J, (= x0!

(‘Dy-y)(x) =

respectively, where D describes the derivative operator and n = [R(a)] + 1, @ € C, R(a) > 0.
2) If @ € Ny, then

(“DLy)(x) =y (), ((Dy)(x) = (=1)"y™(x),n € Np.
Lemma 2.1([3]) The FDE’s public solutions denoted by (‘D%,y)(x) = 0 is derived as

-1

Z (t)Fa) i

k=0
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Especially, for a = 0, this result can be presented as

y(x) =co + C1x+c2x2 +"'+Cn_1x”‘1,

(@) . .
where ¢; = yl.—!(o)(z =0,1,---n— 1) denotes certain constants.

Lemma 2.2 Suppose x(¢) fulfills the subsequent BVP:

‘DY, x(t) = h(r),0 <1 < 1,

x(0) = fon x(7)dr,

X(0) = x"(0) = - -+ = X" (0) = 0
()= [ ' x(1)dr.

2.1)

Now, BVP (2.1) possesses the following unique solution for a certain function A(¢) € C[0, 1]

1 ! b1 +dr!
)= — f (t =7 h(r)dr + T — f (1 - h(T)dr + = (1 - 7)°h(r)dt
) Jo [@+1)
e+ fr! 5 f s
+ h(t)d + h(t)d 2.2
lﬂ((Hl)f(n 7)°h(t)dt 1"(5 (y = 7)°h(r)dr (2.2)
where "Dg+ stands for the Caputo’s differentiation of order d; 9,7,y and n are defined as in problem
(1D, anda=-L,b=-"02 c= L d="000 o= M0 f = —Dand Ay = [(n— 1) +9"](1 -
m+vyn'.
Proof According to Lemma 2.1, one can gain
x(t) = TGl f(r— T (T)dT + co + it + et + -+ Cuy ! (2.3)

for some ¢y, c1, ¢ - - - ¢,—1 € R. From the condition x(0) = fon x(t)dt, we get

co = f ’ x(t)dr (2.4)
0

By differentiating x(¢) based on the expression in (2.3), the following relations are obtained

!
x'(t) = 61D \fo(t — T 2h(T)dT + €1 + 2¢at + 3c3t -+ (n— Dy 1772,
x(t) = r((s % f (t —1)°3h(t)dt +2c, + 3 - 2¢c3t - + (n— D = 2)cp "2,
1 !
X" 2(1) = ) fo -1 (D dr+(n-2)n—=3)--2-leun+(n—1Dn—=2)---2- le,_yt.
From the BCs x’(0) = x”(0) = - -- = xX"2(0) = 0, x(1) = f7 ' X(T)dr in (2.1), we have

C1:"':Cn_2=0 (25)
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and |
Cpoy = fy x(‘r)d‘r—% f (1 = ) h(r)dr - fo x(t)dt (2.6)

Combining (2.3)—(2.6) gives
x(t) = — 5 f (t—7 r(a) f (1-0)°h(n)dr+(1-1""1) f x(t)dr+1"! fy x(t)dr (2.7)

Both sides’ integration of (2.7) regarding the lower and upper bounds of 0 and 7, respectively is
denoted by

fo ! x(n)dt = F(5 D f (n— T)6h(T)dT— T0) f (1-7)°" lh(T)d‘H-(?]——n ) f x(T)dT+117 fy x(t)dr.

By transposing and rearranging, we can get the following from the above formula

1 " 1
(n+n"—nn) ‘fon x(t)dt—n" fy x(T)dt = r((;:_ D ‘fon(n —7)°h(t)dr — FZ(S) fo (1-7)°'h(r)dr (2.8)

Both sides’ integration of (2.7) by using the lower and upper bounds y and 1, respectively is repre-
sented by

! _ 1 1 B 1 7 7!
l x(t)dt = 6+ D) L (1 —1)°h(t)dt — G+ D) fo (y—-1) I‘(é) f (1- h(t)dr

n __ -1 7 1 =" 1
+n Ty —nmy f x(t)ydt + 14 f x(t)dr.
n 0 n ¥

By transposing and rearranging, we can get the following from the above formula

f "y - ()
0

7 1 n
(n+vy —ny—l)‘fo x(t)dt —(n+y —1)f7 x(T)dT:F(6+1)

7y _ RN
F(6) f (1- h(t)dt F(6 D f (1 -7)°h(r)dr (2.9)

Equations (2.8) and (2.9) constitute a system with fo x(t)dt and fy x(t)dt as the unknown
elements, and the coefficients of this system are represented by

n

n+n'—nn -1 _ _ o .
n+)/"—ny—1 _(n+,)/n_1) ‘_ l’l[(l’l 1)+’Y](1 77) nyn < 0.

So, using the Cramer’s rule, we can get

4 1
fo x(r)dt = AJ’% f (1 - TP h(r)dr +

0
Wf (1 - T) h(T)dT

n 1 . y
- oo - —T [Ty
AIF((S) f(; (1 =1 h(r)dr A1F(6+ D L (1 =1)°h(t)dr (2.10)
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and
1 n y n n 1
n+n'—nn s (1—77)(1—7)+(1—7)77f -1
ndt = =" =7 ey — 1 -1 h(r)d
fy x(1) ATGTD) J, @ ke AT0) (=0 hmde
n+n"—nn n+vy"—ny—-1

1
f (1 — 0)°h(t)dt + f n(n - )°h(t)dr (2.11)
0 0

+
ATG + 1)

where Ay = [(n— 1) +y"](1 =) +yy" > 0.

The result can be derived after substituting Eqs (2.10) and (2.11) into Eq (2.7). This finishes the
proof.

Banach’s fixed point theorem and its subsequent theorem help to attain the main outcomes of the
current article.

Lemma 2.3([45]) (The fixed point theorem by Krasnoselskii) Suppose that M is defined as a
non-empty subset of a Banach space X with properties of closedness, boundedness and convexity.
Moreover, consider that A and B stand for the operators meeting the subsequent requirements (a)
Ax + By € M, for x,y € M; (b) both compactness and continuity of A exist; (c) a contraction mapping
is represented by B. Now, z € M exists such that z = Az + Bz.

ATG + 1)

This part ends with showing some fundamental understanding of the L” space and introducing an
inequality and its corresponding extended format called the Holder’s inequality [46].

Consider that an open (or measurable) set is denoted by V C R" and a measurable mapping of real
numbers defined on V is denoted by g(x). |g(x)|” turns out to be measurable on V for 1 < p < oo and
fv |g(x)|Pdx is meaningful. Now, we introduce a function space L”(V) as follows:

LP(V) = {g(x)|g(x) is measurable on V, fv lg(x)|Pdx < o0},

For g € L?(V), the upcoming norm is defined

Il g llp= (f lg(x)1Pdx)"/?.
\4

1 < p; and p, < oo are called conjugate exponentials of each other if pil + piz = 1.

Lemma 2.4([46]) (Holder’s inequality) Consider that V C R" is an open set, p; and p, are conjugate
exponentials, g(x) € L' (V), h(x) € LP*(V) and g(x)h(x) is integrable on V, while the following equality
holds

f | g((x) [ dx <[ g Il |l & llp, -
Vv

The mentioned result is extended as
f | g1(x) -+ gn(x) 1 dx <|l g1 llp, == |l gn s
v

where g;(x) € LP((V) and ), i = 1. The above expression is just called the generalized Holder’s
inequality.
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3. Main results

Suppose that E = C([0, 1], R) encompasses continuous function space on interval [0, 1]. Now, a
Banach space is denoted by X = (E,|| - ||), where || - || is the maximum norm || x ||=maxcjo.1; | x(?) |
with x(7) € E.

Define an operator ¢ : X — X as

a+ b1

-1
@) f (1 =1 f(r, x(7))dt

1 A
@00 = 5 fo (t = 0 fr, x(e)dr + L0

c +df!
F(6+ ) f (1 = 7)° f(r, x(7))dt
n—1 b n-1
?2_5]: 1) f (7= T)éf(T X(T))dT+ T+ f (v - T)(sf(T x(1))dt (3.1

There exists equality between the solutions of the problem (1.1) and the fixed points regarding the
operator ¢. This paper presents the following assumptions that are put on f(z, x(¢)) that appears in (1.1)
in the sequel.

(H1) Both # = 0 and ¢ = 1 lead to a singular f(z, x(¢)) which satisfies

1im,_>0+ f(t, ) = 00, lim,_>1— f(t, ) = 00

Besides, there are two constants oy > 0 and o, > 0, where ”'(1 — )72 f(t, x(¢)) is a continuous
function in [0, 1].
By the assumption of (H1), it can be deduced that a number N, exists and meets

71 (1 = 7 f (2, (1) < No (3.2)

where t € [0, 1] and x(¢) € E. Throughout the rest of this article, we always employ s, s; and s, to
represent any set of real numbers that meet the following conditions

H2Y@) s> 1,81 > 1,5 > 1; (i) % + ﬁ +S—12 =1;(i)0< 5101 < 1,0 < 8500, < 1.

Accordingly, avoiding excessive conjugate exponent notations is possible while using the general-
ized Holder’s inequality in different contexts.
Lemma 3.1 Assume that 1 <n -1 <6 < n, and s, sy, 52,01 and o, are positive constants satisfying
(H2). Define an operator K;(f) for some real number / > 1 as

!
Ki(t) = f (-1t - 1) "dr,1 € [0,1].
0
Then, the following results are valid:

(1) lim,0- Ki(1) = 0

1 1 1
(2) Ki(1) < = . . for any ¢ € [0, 1];
V1 + sl V1 =510 Y1+ 50,
[ 1 1
(3) For any 1, 1, € [0, 1], | Ki(#1) — Ki(f2) < |t —t].

VI+s(I—=1) N1 =510 N1 + 50,
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Proof (1) Recall Lemma 3.2 in [44].
(2) According to the generalized Holder’s inequality, one obtains

K1) = f -0t -1)"dr

< [f (l— )sldT]l/S[f —alde]l/u[f(l ) AzO’sz]l/Az

s Vpl-sio—— 1 — (1 - p)l-s02
V1+S {/l—slo'l %/1—520'2
1 1

\/1 + sl VT=s100 N1 =500

(3) Deriving the function K;() and using the generalized Holder’s inequality, one can obtain

K1) =1 f -0 -1 "dr

/
f(t T)s(l l)dT 1/s[f —S1<TldT]1/S1 [f (1 _T)—Szvsz]l/Sz
0

1 s 1 .
—\/t1+s(l - {/tl—slo'l— $ 1=(1—-¢ 1=-s00
VI+s(I-1) N1 = 510 X1 — 5,0, {/ ( )
l 1 1

< .
Vl-l—s(l—l) *l/l—slo'l é%/1—5‘20'2

By the mean value theorem, we have

[ 1 1
| Ki(t) — Ki(t) IS K (€) |ty — 1 |< |t =1 ],
(1) — Ki() E -1 D Vo Vi )

where ¢ is a number between #, and 2,.
Lemma 3.2 Assume that 1 < n—1 < ¢ < n and a function A(z) : (0,1) — R is continuous and
satisfying lim,_,o+ A(f) = co and lim,_,;- h(f) = co. A new function H(?) is defined as

dl‘n_l
I'e+1)

a+ br!

Y
o) (1 ) h(t)dt

(
(t)_m) f (t — )’ " h(t)dr + —— fo 1—r)5—1h(r)dr+

e+ft"1

B
F(6+ D f (y — 1)°h(1)dT.

f (n—- T)(S/’l(T)dT+ F(6

Then the continuity of 7' (1 — #)?2Ah(¢) on [0, 1] leads H(¥) to be continuous in [0, 1].
Proof Since t”'(1 — t)?2h(¢) is a continuous mapping in [0, 1] , there is a positive constant N; that
satisfies |t71(1 — H)72h(?)| < Nj;.
According to the definition of H(¢), we have

I 1
_a o1 c NG
) __I‘(é) f (1 =) h(t)dr + 6+ D f (1 —=1)°h()dr

f (n — 7)°h(T)dT + f (y — 7)°h(r)dr.

F(cS +1) r((s
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For any ¢’ € [0, 1], H(?) is continuous and ¢ will be proven.
(I) For ¢ = 0 and 7 € [0, 1], the following equality is attained.

n—1 1

_Lt_é—l el dr 1_5
| H(t) — H(O) | IF((S) (t—71) h(T)dT+F(6) (1-1) h(T)dT+F(5+1)L(1 T)°h(t)dt

tn 1 S - 1 6
n—1
= Fé) f U 7)5—17.—0-1(1 — T)_(th + |bli_v‘(16t) f (1- 7)5—1T—0'1(1 _ T)—(rzd,[.

, ldiv ! 5o o g MINET! o o
F(6+1)f(1_T)T (1-1)""2dr + TG+ f( — )t (1 — 1) %dr

bIN "~}
| | 1 f (’y—T)éT_O—l(l _T)—O'zd.[.

"Te+1)
FLKa 10 + [Ib”(“(l) L MK K@) PIKs()
) I'(0) To+1) TG+1) T@E+1)

!
Thus, by the results (1) and (2) in Lemma 3.1, we have | H(t) - H(0) |» O ast — ¢ = 0 that is
lim,_,o+ H(t) = H(0).

(I) Foreach ¢ € (0,1]and t € [0, 1], ¢ # ¢, one can obtain

! 7 n—1 /n 1
| H(t) — H(t)l—l%[ f (t — ) h(t)dr - f (t'—r)é—lh(r)drhu f (1 =) h(t)dr

I'(o)
d(tn 1 P 1) s f( n—l P 1) s
+F(6—f (1-1) h(T)dT+Tf(T] 7)°h(t)dt
b(fn_l — 1)

o
e [ o= o)

51 _ 5-1
F((S) | f (' =1’ h(r)dr f (t—71)" h()dt |

'blNllt;(;)_ o f (=77 (1 =) 7dr
'lelrlgl 1)m ! f (1 =077 (1 - 1) 7dr
mﬂ%;;”fmrf“arww
'b'Ngg;l)m | f (y =11 - 1) e
< F((S) | f - )’ h(r)dr + f " — 1) 'h(r)dT |
+N1[IbII;Z;)(1) N IdlKa(1)+g|;<i(Z;+IblKa(V)]ltn_ _
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F(é) | f 7)5—1]7'_0'1(1 — T)—O'sz + f (l’ _ T)5_1T_O_1(1 3 T)_U'ZdT |
bIKs-1 (1) | 1dIKs(1) + |f1Ks() + 1BIKs(Y) 1 et
+ Ni[ F(&) + T It ot

r(a)lf (W =071 =) e f (t =0T (1 = 1) "dr |
PIKs-1(1) | 1dIKs(1) + f1Ks() + 1bIKs(7)

n—1 _ m—1

Nl T0) T+ 1) 1if o
N, |DIKs-1(1)  |dIKs(1) + | fIKs() + |DIKs(Y) et nt
r((s) | Ks—1(t') — Ks_1(8) | +N1[ @) + r6+1) 1= ="

By the results (2) and (3) in Lemma 3.1, one can obtain

| H(t)— H() | < l ! L -y
- I'(0) \/1+S(5— 1) Vl — 851071 ‘%/1 — 520>
) Nl[lblfi;sl) (1), WIK,(D) + g(fi(rg KD i e

when ¢ — ¢/, and this means that
limtqﬂ H(l) = H(t’)

Since ¢’ is any point in [0, 1], we prove the assertion of Lemma 3.2.
Theorem 3.1 Assume that 1 < n—-1 < 6 < n,0y > 0 and o, > 0 are constants; (H1) and the
subsequent assumption are satisfied by f(z, x()):

(H3) m(¢r) € C([0, 1], R) is a mapping such that

171 (1 =07 | f(t, x(0) — f&,y(0) |<| m(@) || x(@) - y(1) | .
Assume that the condition (H2) and the subsequent inequality are fulfilled

1+ |a|+|b]| 1 1 1 1 1 1 1

|| m || { + :
I'(0) VI+s@0—-1) V1 =510y Y1 =500, TO+DAT1T+56 V1 =500 ¥1 =50,

Del+ldl+Qel+1fDynt Ypt=nn - (1 - pl-en
+(la |+ b Dy Yyl=sor 1 — (1 —y)l-an]) < 1 (3.3)

Now, a unique solution regarding the ([0, 1], R) space is possessed for the problem (1.1).

Proof For every x,y € X = (C[0, 1], R), the second assertion of Lemma 3.1 and the generalized
Holder’s inequality can be deduced by (H3)

@00~ @00 1< = [ (=07 130 - fnyto) dr
alslbl [ ) el +1d] ;
AL [ 1o e =105 560 e L [0 e acon-sceton

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4437-4454.



4447

e+
Llel+ 1/

7
— 9 _
TG fo (n=7) | (1, x(7)) = f(r,3()) | dr

b Y
il KGR UPCRCIRN LT
1 !
< F | =TT =0 o) ) =50
b 1
e [ == o o) ) =0 de
d 1
S == o ) L0 =0 de
7]
e L [ = o ) ) =50
b 4
L o= ore o ) ) - 5(e) L
1 lal+b]| lcl+1d]|
< |lm(Dlll[x(7) —)’(T)||{F(5)K5 1(0) + WK(H(D + WKé(l)
|§(|5++|1];|[f (77 T);(SdT]I/S[f sl(rld,[_]l/sl f(l T) SQ(TQdT]l/Sz
|a|+|b| 5O l/sf —5107] I/Slf _ 4\ T5202 1/s2
" Ter D f( —7)dr] [ dr]’ | (1 -7)"2%dr]"™}
1 1
< I - YO 5 T e e
lal+1b] 1 1 1
['(6) \S/1+S(5—1) ‘Vl—slo'l S{/l—SQO'z
lcl+1d] 1 1 1

I'ce+1) \71+S((5) ‘Vl—slo'] %/1—.3'20'2

lel+1fl 1 ,— 01— 1
+ +s6 MY l-sioy 1 _ (1 _ )1—S20’2
IFO+1) 1+s6 7 N1 - 510 7 X1 — 5,05 %/ g
lal+«lb] 1 . — 1 1
+ y +s6 Y d-sjoy 1 _ (1 _ )1—S20’2}
TG+1) vi+so VTosion Y1 = 5,05 v 7
1+|al|+|b| 1 1 1
<[ m |l { - - -
I'(©) VI+s@0-1) V1 -s101 ¥ - 5,0,
1 1 1 1

+

F(6+ 1) \71 + 50 Vl — 51071 5‘%/1 — $207
Ael+ldl+Tel+1fDVn'+o Yni=ur 31— (1 - p)=o
+(Lal+ b Dy Yy=sor 1 — (1 —y) =201} - lx(7) - y(@)|.

The condition (3.3) ensures that the operator ¢ is a contractive mapping. Accordingly, Banach’s
fixed-point theorem indicates that ¢ possesses a unique fixed-point that is equal to the problem (1.1)
unique solution.
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Theorem 3.2 Suppose that ] <n -1 <6 < n,0; > 0and 0, > 0 are constants; both (HI) and (H3)
are satisfied by f(¢, x(¢)). Assume that (H2) and the subsequent inequality are true
la|+|b| 1 1 1 L] 1 1 1

') Vi+s@-1) VI=s100 ¥1 =500, TO+ D1 +s6 V1-s101 ¥ =500,

Il m | §

[el+ldl+(el+]f DV Yyl {1 - (1)l
+(al+1b DYy Yyl 1 - (1 - y)lnn]) < 1 (3.4)

Now, the interval ([0, 1], R) contains at least one solution for the problem (1.1).

Proof Take a constant L satisfying

1+|al|+|b]| 1 1 1 N 1 1 1 1
['(6) VIi+s@0-1) Y1 =501 Y1 =500, TO+DA1+55 V=510 Y1 =500,

Tel+1dl+(el+]f DV Ypi=er Y1 - (1 -yl
+(al+ by Yy {1 - (1 -y < L.

The number N, is defined in (3.2).
The set B, = {x € X = C([0, 1], ]| x ||< L} is a ball in X. Define two operators ¢, and ¢, on B as

No{

@00 = 5 f (t =) f(x, (),

+ bt 1 dr- 1
@20 = f (1 =) f(x, 2(e)dr + r(+5 t f (1 =) {5, x(o)dr
n—1
e S ES [a- o o+ f (v = 7 f(x, d(e)d

For any x, y € By, the following relation can be obtained by taking a process similar to Theorem 3.1:

' 1
| p1x+ ¢y || < % f (-1 (1 - 1) 2dr + %L (1 -7 7771 — 1) 2dr
(Icl+1d DNy 5o oy
+— TG+ D) f (1 -7°77"( —71) %%t
(el +1fDNo oy e
+ — T6+ 1) f( (1 -1)"%2dr
(lal+1bDNo S 11 _ -2
+ W‘[o (y—o)°v 7' -1)%dr
§N0{1+|a|+|b| 1 1 1
L) \71 + S(5 -1 S‘Vl — 851071 S‘%/l — 5207
1 1 1 1

+

TGO+ 1) V1 +s6 V1 =510 ¥1 =500,
Mel+ldl+(el+]f DV ' 1 - (1 - pl-or
+(al+|b |)\S/71+s5 “\1/,),1—‘110-1 “{/1 —(1- 7)1—”0—2]} <L
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This means that ¢, x + ¢,y € B;.

The operator ¢, is a contractive mapping deduced from (H1)—-(H3) and (3.4) with a process similar
to Theorem 3.1.

The operator ¢, is continuous in B; by (H1) and Lemma 3.2. ¢, is uniformly bounded on B; since
the following inequality is true

P I O S I 1 l
T T T TONT 96 =1 V=510 ¥ = 5005

where x € B;.
For every #,,t, € [0, 1] and #; < t,, one can obtain

| (10)(12) = ($2)(11) | = % | f (ty = )7 f(z, x(7))dT ~ f (1 =07 f(7, x(0)dr |

R T

+ f (6= N1 = 1) )

1

Ny
F(d)[K5 1(12) — Ks_1(11)].

By the third assertion in Lemma 3.1, we have

l 1 l
| (@120)(12) — (2)(1y) < F((S) 0D Viso Vi [t -1 ].

Thus, both the equicontinuity and relative compactness of ¢; on B, are attained. The Arzela-
Ascoli theorem ensures that the operator ¢; is compact in B;. Therefore, the existence of a solution in
([0, 1], R) is ensured by Lemma 2.3.

4. Numerical example

The current section introduces an example to verify the efficiency of the fundamental outcomes in
the current article.
Example 4.1 Assume the upcoming fractional BVP:

CDZSx(t) sinx__ (0 <t< 1,

T N
x(0) = fo x(1)dr, @.1)
xX0)=0
1
x(1) = [ x()dr.
In this BVP, f(t,x) = lx/f”;‘xﬁ r > 1is areal number, § = 2.5, n = 3,7 = 1,7 = 3. Take

o1 =0, = 10, we have

1151 = 1)1 | £(t, x() — f(t,y(8)) |= t5(1 = )T | sin’x — sin'y |< rt5(1 =) | x—y] .
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Thus, m(1) = rto (1 = ), 1 € [0, 1] and || m ||= maxoz<; | m(@) |= r YEG) ~ 0.9627r.
Now, the following values can be obtained:

261 4 216 36 184 459 54
A = — = —_-— = — = = = = —_-——
=108 T T 261 T 2609 T 2610¢ f

I'(2.5) = 1.3293,I(1 + 2.5) = 3.3233.
Take conjugate exponentials s, s; and s, when s = %‘ and s; = s, = 8. Then, we can calculate
I+|al+|b] 1 1 1 N 1 1 1 1
[0 V1+s6-1) V=500 ¥1=s000 TO0+DV1+56 ¥V1=s101 ¥ - 520,
fel+ldl+(el+]f DVn™ Y= 1= (1= pi-er
#al+ b DNy Ay Y1 = (1= y)te])
~ 0.9627r x 0.4793 + 0.0636 x [0.8589 + 2.0455] ~ 0.6393r.

Il m |

And
la|+|b]| 1 1 1 L1 1 1 1
F(d) \71 +S(5— 1) Vl — 51071 Y”%/1 — $207 F(5+ 1) Vl + 5O Vl — 5101 Y'i/l — 5207

Del+ldl+el+1fDVnt Y’ 31— (1 —p-o
+(al+|b |)\S/7,1+s6 “\l/yl—slm ‘%/1 —(1- y)l—szoz]}
~ 0.9627r x 0.2102 + 0.0636 x [0.8589 + 2.0455] ~ 0.3802r.
Thus, we can deduce the following:
(al) When 0.6393r < 1, or 1 < r < 1.5642, a unique solution in [0, 1] for the problem (4.1) is
possessed by Theorem 3.1.

(a2) When 0.3802r < 1, 0or 1 < r < 2.63019, Theorem 3.2 guarantees that the problem (4.1) attains
solutions on the interval [0, 1].

Il m | {

5. Conclusions

This work dealt with the existence results for a category of singular nonlinear FDEs with nonlocal
double integral BCs. The results we obtained depended on the parameters that appeared in the integral
BCs, this is due to the use of the generalized Holder’s inequality. So the type of problems, conclusions
and methods discussed in this paper complemented the existing literature.
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