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Abstract: The purpose of this article is to research the existence of solutions for fractional periodic
boundary value problems with p (t)-Laplacian operator. In this regard, the article needs to establish a
continuation theorem corresponding to the above problem. By applying the continuation theorem, a
new existence result for the problem is obtained, which enriches existing literature. In addition, we
provide an example to verify the main result.
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1. Introduction

Fractional differential equations have attracted the attention of scholars in many fields at home and
abroad because of their wide application background (see [1–8]). For example, in [9], in order to study
the decrease in the height of granular material in the silo over time, the authors proposed the following
fractional mathematical model:

CDα
T−D

α
a+h
∗ (t) + βh∗ (t) = 0, α ∈ (0, 1) , t ∈ [0,T ] ,

where CDα
T− and Dα

a+ are right Caputo type and left Riemann-Liouville fractional derivatives of order
α, respectively. In recent years, fractional periodic boundary value problems (FPBVP for short) have
attracted many people’s attention (see [10–17]). There are also some researches on FPBVP with p-
Laplacian operators. For more details, see [18-21]. For example, Hu et al. [22] discussed the FPBVP
as follows: CDα

0+x (t) = f
(
t, x (t) , x′ (t)

)
, 1 < α ≤ 2, t ∈ [0, 1],

x (0) = x (1) , x′ (0) = x′ (1) .
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The authors mainly used the degree theory to consider the above FPBVP.
The differential equation of variable index p (t)-Laplacian has become a new research direction in

recent years, which is generated in elasticity [23], image restoration [24] and electrorheological fluids
[25], and has important application background. The so-called p (t)-Laplacian operator is written as

ϕp(t) (x) = |x|p(t)−2x, x , 0, t ∈ [0,T ], p (t) ∈ C([0,T ],R), p (t) > 1, ϕp(t) (0) = 0.

It is a generalization of the p-Laplacian operator. Many scholars have studied this kind of problem
and obtained some valuable results, see [26–31]. For example, Shen and Liu [32] considered the
solvability of fractional p(t)-Laplacian problems:Dβ

0+ϕp(t)
(
Dα

0+x (t)
)
+ f (t, x (t)) = 0, t ∈ (0, 1) ,

x (0) = 0, Dα−1
0+ x (1) = γIα−1

0+ x (η) , Dα
0+x (0) = 0,

where 1 < α ≤ 2, 0 < β ≤ 1, γ > 1, 0 < η < 1. Through reading the literature [31,32], we find that the
condition Dα

0+x (0) = 0 is critical for studying the solvability of the fractional p (t)-Laplacian problem.
Using this condition, one can transform the fractional p (t)-Laplacian operator equation into the linear
differential operator equation with appropriate transformations, and then use the continuation theorem
of Mawhin to deal with this type of problem. However, the periodic boundary conditions lack this key
condition, Dα

0+x (0) = 0, so the continuation theorem cannot be directly applied. Therefore, there is not
much research in this area. Based on this, this paper studies the following FPBVP with p (t)-Laplacian
operator: 

CDβ
0+ϕp(t)

(
Dα

0+x (t)
)
= f

(
t, x (t) ,Dα

0+x (t)
)
, t ∈ (0,T ],

lim
t→0+

t1−αx (t) = lim
t→T

t1−αx (t) , lim
t→0+

ϕp(t)
(
Dα

0+x (t)
)
= lim

t→T
ϕp(t)

(
Dα

0+x (t)
)
,

(1.1)

where 0 < α, β ≤ 1, 1 < α + β ≤ 2, Dα
0+ is a Riemann-Liouville fractional derivative, CDβ

0+ is a Caputo
fractional derivative, and f ∈ C([0,T ] × R2,R), p (t) ∈ C1([0,T ],R), p (t) > 1, mint∈[0,T ] p(t) = Pm,
maxt∈[0,T ] p(t) = PM. Note that, the nonlinear p (t)-Laplacian operator will be reduced to a famous
p-Laplacian operator when p(t) = p. Therefore, this paper will further enrich and extend the existing
results. In addition, because the periodic boundary conditions lack this key condition, Dα

0+x (0) = 0, the
above-mentioned nonlinear operator equation can not be transformed into a linear operator equation in
this paper, so the continuation theorem can not be applied directly. In the following sections, we first
establish a new continuation theorem corresponding to the above FPBVP Eq (1.1). By applying the
continuation theorem, a new existence result for the problem is obtained. Obviously, this method is
different from the method used in [31,32]. As far as we know, the fractional p (t)-Laplacian differential
equations with periodic boundary conditions have not been considered so far.

2. Preliminaries

For basic concepts and lemmas of fractional derivatives and integrals, please see [33,34]. Here, we
give some important lemmas and definitions.

Definition 1. ([33]). The Riemann-Liouville fractional derivative of order α > 0 for a function x :
(0,+∞)→ R: is given by

Dα
0+x(t) =

1
Γ(n − α)

dn

dtn

∫ t

0
(t − s)n−α−1x(s)ds,
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where n = [α] + 1, provided that the right-hand side integral is defined on (0,+∞).

Definition 2. ([33]). The Caputo fractional derivative of order β > 0 for the function x : (0,+∞)→ R:
is defined as

CDβ
0+x(t) =

1
Γ(n − β)

∫ t

0
(t − s)n−β−1x(n)(s)ds,

where n = [β] + 1, provided that the right-hand side integral is defined on (0,+∞).

Lemma 1. ([30]). The function ϕp(t) (x) is an homeomorphism from R to R and strictly monotone
increasing with respect to x for any fixed t. Its inverse operator ϕ−1

p(t) (·) is defined byϕ−1
p(t) (x) = |x|

2−p(t)
p(t)−1 x, x ∈ R\ {0} , t ∈ [0,T ],

ϕ−1
p(t) (0) = 0, x = 0,

which is continuous and sends bounded sets into bounded sets.

Lemma 2. ([30]). Function ϕp(t)(x) has the following properties:

(i) For any x1, x2 ∈ R, x1 , x2, for all t ∈ [0,T ], one has〈
ϕp(t)(x1) − ϕp(t)(x2), x1 − x2

〉
> 0;

(ii) There exists a function φ : [0,+∞)→ [0,+∞), φ (s)→ +∞ as s→ +∞, such that〈
ϕp(t) (x) , x

〉
≥ φ (|x|) |x| , for all x ∈ R.

Let X and Y be two real Banach spaces, and let L : domL ⊂ X → Y and P : X → X, Q : Y → Y
be projectors such that ImP = KerL, KerQ = ImL, X = KerL ⊕ KerP, Y = ImL ⊕ ImQ. Then
L |domL∩KerP: domL∩KerP→ ImL is invertible. In this paper, we set Y = C([0,T ],R) endowed with
the norm ∥y∥∞ = maxt∈[0,T ] |y (t)| , and set

X =
{
x
∣∣∣∣∣t1−αx,Dα

0+x ∈ Y, lim
t→0+

ϕp(t)
(
Dα

0+x (t)
)

and lim
t→T

ϕp(t)
(
Dα

0+x (t)
)

exist
}
,

XT =

{
x ∈ X

∣∣∣∣∣ limt→0+
t1−αx (t) = lim

t→T
t1−αx (t) , lim

t→0+
ϕp(t)

(
Dα

0+x (t)
)
= lim

t→T
ϕp(t)

(
Dα

0+x (t)
) }

endowed with the norm ∥x∥X = max
{∥∥∥t1−αx

∥∥∥
∞
,
∥∥∥Dα

0+x
∥∥∥
∞

}
.Obviously, X and XT are two Banach spaces.

The operator L : domL ⊂ X → Y is defined as follows:

Lx = CDβ
0+ϕp(t)

(
Dα

0+x
)
, (2.1)

where domL =
{
x ∈ XT

∣∣∣∣CDβ
0+ϕp(t)

(
Dα

0+x
)
∈ Y

}
. Let N f : X → Y be the Nemytskii operator defined by

N f x (t) = f
(
t, x (t) ,Dα

0+x (t)
)
. (2.2)

It is clear that FPBVP Eq (1.1) can be converted to the following operator equation

Lx = N f x, x ∈ domL.
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3. Forced fractional p(t)-Laplacian equation with periodic boundary conditions

In order to establish the continuation theorem for FPBVP Eq (1.1), this section begins with FPBVP
as below: 

CDβ
0+ϕp(t)

(
Dα

0+x
)
= h (t) , t ∈ (0,T ],

lim
t→0+

t1−αx (t) = lim
t→T

t1−αx (t) , lim
t→0+

ϕp(t)
(
Dα

0+x
)
= lim

t→T
ϕp(t)

(
Dα

0+x
)
,

(3.1)

where h ∈ Y satisfies

h̄ :=
β

T β

∫ T

0
(T − s)β−1h (s) ds = 0,

and let x be a solution of FPBVP Eq (3.1). Based on the definition of Caputo fractional integral, we
get

ϕp(t)
(
Dα

0+x
)
= a + Iβ0+h (t) = a +

1
Γ (β)

∫ t

0
(t − s)β−1h (s) ds, ∀a ∈ R. (3.2)

Furthermore, by lim
t→0+

t1−αx (t) = lim
t→T

t1−αx (t), we can obtain

∫ T

0
(T − s)α−1ϕ−1

p(s)

(
a + Iβ0+h (s)

)
ds = 0.

For any fixed l ∈ Y , the function is defined here

Gl (a) =
α

Tα

∫ T

0
(T − s)α−1ϕ−1

p(s) (a + l (s)) ds. (3.3)

Lemma 3. The function Gl has two characteristics, as follows:

(1) For ∀l ∈ Y, the equation
Gl (a) = 0 (3.4)

has one unique solution ã (l).

(2) The function ã : Y → R is continuous and maps a bounded set to a bounded set.

Proof. (1) It follows from Lemma 2 that

⟨Gl (a1) −Gl (a2) , a1 − a2⟩ > 0, for a1 , a2.

It is clear that if Eq (3.4) has one solution, then it is unique. Next, it will be proved that when |a| is
large enough, ⟨Gl (a) , a⟩ > 0. Then, one has

⟨Gl (a) , a⟩ =
α

Tα

∫ T

0
(T − s)α−1

〈
ϕ−1

p(s) (a + l (s)) , a
〉

ds

=
α

Tα

∫ T

0
(T − s)α−1

〈
ϕ−1

p(s) (a + l (s)) , a + l (s)
〉

ds

−
α

Tα

∫ T

0
(T − s)α−1

〈
ϕ−1

p(s) (a + l (s)) , l (s)
〉

ds,
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thus

⟨Gl (a) , a⟩ ≥
α

Tα

∫ T

0
(T − s)α−1

〈
ϕ−1

p(s) (a + l (s)) , a + l (s)
〉

ds

−
α

Tα
∥l∥∞

∫ T

0
(T − s)α−1

∣∣∣ϕ−1
p(s) (a + l (s))

∣∣∣ ds.
(3.5)

It follows from Lemma 2 for any y ∈ R that〈
ϕ−1

p(t) (y) , y
〉
≥ φ

(∣∣∣ϕ−1
p(t) (y)

∣∣∣) ∣∣∣ϕ−1
p(t) (y)

∣∣∣ . (3.6)

By Eqs (3.5) and (3.6), one has

⟨Gl (a) , a⟩ ≥
α

Tα

∫ T

0
(T − s)α−1

[
φ
(∣∣∣ϕ−1

p(s) (a + l (s))
∣∣∣) − ∥l∥∞] ∣∣∣ϕ−1

p(s) (a + l (s))
∣∣∣ ds. (3.7)

Because |a| → ∞ means that ϕ−1
p(s) (a + l (s)) → ∞, uniformly for t ∈ [0,T ], so by Eq (3.7), we get

that there is r > 0 such that

⟨Gl (a) , a⟩ > 0 for all a ∈ R with |a| = r.

Next, according to an elementary topological degree argument, for each l ∈ Y , there is a solution
to the equation Gl (a) = 0 and the preceding analysis implies this solution is unique. Therefore, the
following defines a function ã : Y → R, which satisfies

α

Tα

∫ T

0
(T − s)α−1ϕ−1

p(s) (ã (l) + l (s)) ds = 0, for any l ∈ Y. (3.8)

(2) Here, let Λ be a bounded subset of Y and l ∈ Λ. By Eq (3.8), one has

α

Tα

∫ T

0
(T − s)α−1

〈
ϕ−1

p(s) (ã (l) + l (s)) , ã (l)
〉

ds = 0,

thus
α

Tα

∫ T

0
(T − s)α−1

〈
ϕ−1

p(s) (ã (l) + l (s)) , ã (l) + l (s)
〉

ds

=
α

Tα

∫ T

0
(T − s)α−1

〈
ϕ−1

p(s) (ã (l) + l (s)) , l (s)
〉

ds.
(3.9)

Let’s say that {ã (l) , l ∈ Λ} is not bounded. For any constant A > 0, there exists l ∈ Λ such that ∥l∥∞
is large enough, so that the following inequality relationship holds

A ≤ φ
(∣∣∣ϕ−1

p(t) (ã (l) + l (t))
∣∣∣) , t ∈ [0,T ].

By Eqs (3.6) and (3.9), we obtain

A
∫ T

0
(T − s)α−1

∣∣∣ϕ−1
p(s) (ã (l) + l (s))

∣∣∣ ds ≤∥l∥∞

∫ T

0
(T − s)α−1

∣∣∣ϕ−1
p(s) (ã (l) + l (s))

∣∣∣ ds.

Therefore, A ≤ ∥l∥∞, which is a contradiction. Hence ã sends bounded sets in Y into bounded sets
in R.
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Last, it will prove that ã is continuous. Let {ln} be a convergent sequence in Y , then ln → l (n→ ∞).
Because {ã (ln)} is a bounded sequence, any of its subsequences contain a convergent subsequence,
which may be expressed as

{
ã
(
ln j

)}
. Make ã

(
ln j

)
→ â ( j→ ∞) is established. By making j→ ∞ in

α

Tα

∫ T

0
(T − s)α−1ϕ−1

p(s)

(
ã
(
ln j

)
+ ln j (s)

)
ds = 0,

then
α

Tα

∫ T

0
(T − s)α−1ϕ−1

p(s) (â + l (s)) ds = 0.

So ã (l) = â, which indicates the continuity of ã.
Define a : Y → R by

a (h) = ã
(
Iβ0+h

)
.

Then, by applying Lemma 3, you can conclude that a is a completely continuous mapping. By Eq
(3.2), one has

x (t) =
[
lim
t→0+

t1−αx (t)
]

tα−1 + Iα0+ϕ
−1
p(t)

(
a (h) + Iβ0+h

)
(t) . (3.10)

Lemma 4. If the definition of L is shown in Eq (2.1), then the following conclusions hold

KerL =
{
x ∈ X

∣∣∣x (t) = ctα−1, c ∈ R
}
, (3.11)

ImL =
{

y ∈ Y

∣∣∣∣∣∣
∫ T

0
(T − s)β−1y (s) ds = 0

}
. (3.12)

The following projection operators P : X → X and Q : Y → Y:

Px (t) =
[
lim
t→0+

t1−αx (t)
]

tα−1, Qy (t) =
β

T β

∫ T

0
(T − s)β−1y (s) ds. (3.13)

It’s easy to show that ImP = KerL, KerQ = ImL, X = KerL ⊕ KerP, Y = ImL ⊕ ImQ, then
L |domL∩KerP: domL ∩ KerP → ImL is invertible. So, if x ∈ XT is one solution of Eq (3.1), then x
satisfies the abstract equation

x = Px + Qh +Kh, (3.14)

where the operator K : Y → XT is expressed as follows

Kh (t) = Iα0+ϕ
−1
p(t)

[
a ((I − Q) h) + Iβ0+ (I − Q) h

]
(t) . (3.15)

Then again, by definition of the mapping a, we have

Iα0+ϕ
−1
p(t)

[
a ((I − Q) h) + Iβ0+ (I − Q) h

]
(T ) = 0,

it is clear that if x satisfies Eq (3.14), then x is one solution of FPBVP Eq (3.1). Notice that a(0) =
ã(0) = 0, by Eqs (3.15) and (3.8), we have K(0) = 0.

Lemma 5. Operator K is completely continuous.
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Proof. As defined by K , one has

Dα
0+Kh (t) = ϕ−1

p(t)

[
a ((I − Q) h) + Iβ0+ (I − Q) h

]
(t) .

Obviously, we find that operators t1−αK and Dα
0+K are also a combination of continuous operators.

Hence, t1−αK , Dα
0+K are continuous in Y . In other words, the operator K is continuous. According to

Lemma 3, there is M > 0 such that∣∣∣∣[a ((I − Q) h) + Iβ0+ (I − Q) h
]

(t)
∣∣∣∣ ≤ M, ∀h ∈ Ω̄, t ∈ (0,T ].

Thus, we have
∥∥∥Dα

0+Kh
∥∥∥
∞
≤ M

1
Pm−1 and

∥∥∥t1−αKh
∥∥∥
∞
=

∣∣∣∣∣∣ 1
Γ (α)

∫ t

0
t1−α(t − s)α−1ϕ−1

p(s)

[
a ((I − Q) h) + Iβ0+ (I − Q) h

]
ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ t1−α

Γ (α)

∫ t

0
(t − s)α−1ϕ−1

p(s) (M) ds

∣∣∣∣∣∣
≤

T M
1

Pm−1

Γ (α + 1)
.

Suppose the set Ω ⊂ Y is open and bounded, then t1−αK(Ω̄) and Dα
0+K(Ω̄) are bounded. Combined

with Arzelà-Ascoli theorem, let’s just verify that K(Ω̄) ⊂ XT is equicontinuous. For 0 < t1 < t2 <

T, h ∈ Ω̄, one has ∣∣∣t1−α
2 Kh (t2) − t1−α

1 Kh (t1)
∣∣∣

=
1
Γ (α)

∣∣∣∣∣∣
∫ t2

0
t1−α
2 (t2 − s)α−1ϕ−1

p(s)

[
a ((I − Q) h) + Iβ0+ (I − Q) h

]
ds

−

∫ t1

0
t1−α
1 (t1 − s)α−1ϕ−1

p(s)

[
a ((I − Q) h) + Iβ0+ (I − Q) h

]
ds

∣∣∣∣∣∣
≤

M
1

Pm−1

Γ (α)

∣∣∣∣∣∣
∫ t2

0
t1−α
2 (t2 − s)α−1ds −

∫ t1

0
t1−α
1 (t1 − s)α−1ds

∣∣∣∣∣∣
=

M
1

Pm−1

Γ (α + 1)
(t2 − t1) .

Because on [0,T ], t is uniformly continuous, so t1−αK(Ω̄) ⊂ Y is equicontinuous. And by the same
token,

[
a (I − Q) + Iβ0+ (I − Q)

]
(Ω̄) ⊂ Y is equicontinuous. This, combined on [−M,M], ϕ−1

p(s) (·) is
continuous, you get Dα

0+K(Ω̄) ⊂ Y is also equicontinuous. Hence, K : Y → XT is compact.

4. A new extension theorem for periodic boundary value problems of fractional p(t)-Laplacian
equation

On the basis of the results in Section 3, this section establishes a new theorem for fractional p(t)-
Laplacian equation, which is a generalization of the problems related to linear differential operators.
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Theorem 1. If f ∈ C([0,T ] × R2,R). Define L, N f , Q respectively by Eqs (2.1), (2.2) and (3.13), and
assume that the set Ω is an open bounded subset of XT that satisfies domL ∩ Ω̄ , ∅ and also satisfies
the following three conditions.

(C1) For each λ ∈ (0, 1), the equation
Lx = λN f x (4.1)

has no solution on (domL \ KerL) ∩ ∂Ω.

(C2) The equation
QN f x = 0

has no solution on KerL ∩ ∂Ω.

(C3) The Brouwer degree
deg(QN f |KerL,Ω ∩ KerL, 0) , 0.

Then the abstract equation Lx = N f x has at least a solution in domL ∩ Ω̄.

Proof. First, we give the following homotopic equation of Lx = N f x

Lx = λN f x + (1 − λ)QN f x, x ∈ domL, (4.2)

i.e.,
CDβ

0+ϕp(t)
(
Dα

0+x (t)
)
= λ f

(
t, x (t) ,Dα

0+x (t)
)
+ (1 − λ)

β

T β

∫ T

0
(T − s)β−1 f

(
s, x (s) ,Dα

0+x (s)
)

ds,

lim
t→0+

t1−αx (t) = lim
t→T

t1−αx (t) , lim
t→0+

ϕp(t)
(
Dα

0+x (t)
)
= lim

t→T
ϕp(t)

(
Dα

0+x (t)
)
.

Obviously, for λ ∈ (0, 1], if x is one solution of Eq (4.1) or (4.2), the following necessary condition
can be obtained

QN f x(t) =
β

T β

∫ T

0
(T − s)β−1 f

(
s, x (s) ,Dα

0+x (s)
)

ds = 0.

Therefore, Eqs (4.1) and (4.2) have the same solution. In addition, Eq (4.2) is equivalent to the
following form:

x = G f (x, λ), (4.3)

where G f : XT × [0, 1]→ XT is denoted by

G f (x, λ) = Px + QN f x + [K ◦ (λN f + (1 − λ)QN f )]x.

It follows from Lemma 5 and the continuity of f that the operator G f is completely continuous.
If λ = 1, then Eq (4.3) has no solution on ∂Ω, if not, Theorem 1 is verified. For (x, λ) ∈ ∂Ω × (0, 1],

the condition (C1) implies Eq (4.3) has no solution. For λ = 0, Eq (4.2) is equivalent to the problem as
below 

CDβ
0+ϕp(t)

(
Dα

0+x (t)
)
=

β

T β

∫ T

0
(T − s)β−1 f

(
s, x (s) ,Dα

0+x (s)
)

ds,

lim
t→0+

t1−αx (t) = lim
t→T

t1−αx (t) , lim
t→0+

ϕp(t)
(
Dα

0+x (t)
)
= lim

t→T
ϕp(t)

(
Dα

0+x (t)
)
.
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So, if x is one solution to this problem, one has

β

T β

∫ T

0
(T − s)β−1 f

(
s, x (s) ,Dα

0+x (s)
)

ds = 0.

From Eq (3.11), we have x (t) = ctα−1 ∈ KerL, ∀c ∈ R. Thus,

(
QN f |KerL

)
x(t) =

β

T β

∫ T

0
(T − s)β−1 f

(
s, csα−1, 0

)
ds = 0.

This, combined with (C2) implies that x = ctα−1 < ∂Ω. Hence, Eq (4.3) has no solution, for
(x, λ) ∈ ∂Ω × [0, 1]. According to the homotopy property of degree, one has

deg
(
I −G f (·, 1) ,Ω, 0

)
= deg

(
I −G f (·, 0) ,Ω, 0

)
. (4.4)

Clearly, equation x = G f (x, 1) is equivalent to Lx = N f x. From Eq (4.4) we can obtain that it will
have a solution if deg

(
I −G f (·, 0) ,Ω, 0

)
, 0. As defined by G f ,

G f (x, 0) = Px + QN f x +K(0) = Px + QN f x,

then
x − G f (x, 0) = x − Px − QN f x.

Thus,
deg

(
I −G f (·, 0) ,Ω, 0

)
= −deg(QN f |KerL,Ω ∩ KerL, 0).

From (C3), we have the last degree is not zero. Hence, Lx = N f x has at least a solution.

5. Application of Theorem 1

This section studies the solvability of FPBVP Eq (1.1) and a new existing result is given and proved.

Theorem 2. Let the function f ∈ C([0,T ] × R2,R). Suppose that the conditions (H1) and (H2) hold.

(H1) There are three non-negative functions a, b, c ∈ Y, which satisfy the following relationship

| f (t, u, v)| ≤ a (t) + b (t)
∣∣∣t1−αu

∣∣∣θ−1
+ c (t) |v|θ−1, ∀t ∈ [0,T ] , (u, v) ∈ R2, 1 < θ ≤ Pm.

(H2) There is A > 0, so one of the following is true

u f (t, u, v) > 0, ∀t ∈ [0,T ] , v ∈ R, |u| > A; (5.1)

u f (t, u, v) < 0, ∀t ∈ [0,T ] , v ∈ R, |u| > A. (5.2)

Then FPBVP Eq (1.1) has at least a solution, provided with

4T β

Γ (β + 1)

∥c∥∞ + ∥b∥∞( 4T
Γ (α + 1)

)θ−1 < 1. (5.3)
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Proof. The certification process is mainly divided into three steps.
Step 1. Make Ω1 =

{
x ∈ domL \ KerL

∣∣∣Lx = λN f x , λ ∈ (0, 1)
}
. For x ∈ Ω1, you get N f x ∈ ImL.

Using Eq (3.12) we see that ∫ T

0
(T − s)β−1 f

(
s, x (s) ,Dα

0+x (s)
)

ds = 0.

Moreover, according to the integral mean value theorem, we can get that there is ξ ∈ (0,T ), which
satisfies f

(
ξ, x (ξ) ,Dα

0+x (ξ)
)
= 0. Thus, by (H2), we have |x (ξ)| ≤ A. Furthermore, it follows from

x (t) = Iα0+Dα
0+x (t) + c1tα−1 that ∣∣∣c1tα−1

∣∣∣ ≤ |x (t)| +
∣∣∣Iα0+Dα

0+x (t)
∣∣∣ .

Thus,

|c1| ≤
1
ξα−1

[
|x (ξ)| +

1
Γ (α)

∫ ξ

0
(ξ − s)α−1

∣∣∣Dα
0+x (s)

∣∣∣ ds
]

≤
A
ξα−1 +

ξ

Γ (α + 1)

∥∥∥Dα
0+x

∥∥∥
∞
,

and ∣∣∣t1−αx (t)
∣∣∣ ≤ t1−α

Γ (α)

∫ t

0
(t − s)α−1

∣∣∣Dα
0+x

∣∣∣ ds + |c1|

≤
t

Γ (α + 1)

∥∥∥Dα
0+x

∥∥∥
∞
+

A
ξα−1 +

ξ

Γ (α + 1)

∥∥∥Dα
0+x

∥∥∥
∞

≤
A

Tα−1 +
2T

Γ (α + 1)

∥∥∥Dα
0+x

∥∥∥
∞
.

That is, ∥∥∥t1−αx
∥∥∥
∞
≤

A
Tα−1 +

2T
Γ (α + 1)

∥∥∥Dα
0+x

∥∥∥
∞
. (5.4)

Then, by (H1), Eq (5.4), we get∣∣∣Iβ0+N f x (t)
∣∣∣ = 1
Γ (β)

∣∣∣∣∣∣
∫ t

0
(t − s)β−1 f

(
s, x (s) ,Dα

0+x (s)
)

ds

∣∣∣∣∣∣
≤

1
Γ (β)

∫ t

0
(t − s)β−1

[
a (s) + b (s)

∣∣∣s1−αx (s)
∣∣∣θ−1
+ c (s)

∣∣∣Dα
0+x (s)

∣∣∣θ−1
]

ds

≤
1
Γ (β)

(
∥a∥∞ + ∥b∥∞

∥∥∥t1−αx
∥∥∥θ−1

∞
+ ∥c∥∞

∥∥∥Dα
0+x

∥∥∥θ−1

∞

)
·

1
β

tβ

≤
T β

Γ (β + 1)

∥a∥∞ + ∥b∥∞( A
Tα−1 +

2T
Γ (α + 1)

∥∥∥Dα
0+x

∥∥∥
∞

)θ−1

+ ∥c∥∞
∥∥∥Dα

0+x
∥∥∥θ−1

∞

 .
(5.5)

By Lx = λN f x, one has

x (t) = d2 + Iα0+ϕ
−1
p(t)

(
d1 + λIβ0+N f x

)
(t) , ∀d1, d2 ∈ R.

Combined with the boundary value condition lim
t→0+

t1−αx (t) = lim
t→T

t1−αx (t), you get

1
Γ (α)

∫ T

0
(T − s)α−1ϕ−1

p(s)

(
d1 + λIβ0+N f x (s)

)
ds = 0.
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Therefore, there is η ∈ (0,T ) satisfying ϕ−1
p(t)

(
d1 + λIβ0+N f x (η)

)
= 0, which means

d1 = −λIβ0+N f x (η). So, we get

ϕp(t)
(
Dα

0+x
)
= −λIβ0+N f x (η) + λIβ0+N f x (t) .

According to
∣∣∣∣ϕp(t)

(
Dα

0+x (t)
)∣∣∣∣ = ∣∣∣Dα

0+x (t)
∣∣∣p(t)−1

and Eq (5.5), one has

∥∥∥Dα
0+x

∥∥∥p(t)−1

∞
≤

2T β

Γ (β + 1)

∥a∥∞ + ∥b∥∞( A
Tα−1 +

2T
Γ (α + 1)

∥∥∥Dα
0+x

∥∥∥
∞

)θ−1

+ ∥c∥∞
∥∥∥Dα

0+x
∥∥∥θ−1

∞

 . (5.6)

Through the inequality (|x| + |y|)p
≤ 2p (|x|p + |y|p) , p > 0, the following formula can be obtained∥∥∥Dα

0+x
∥∥∥p(t)−1

∞
≤ Λ1 + Λ2

∥∥∥Dα
0+x

∥∥∥θ−1

∞
,

where

Λ1 =
2T β

Γ (β + 1)

∥a∥∞ + ∥b∥∞( 2A
Tα−1

)θ−1 ,Λ2 =
2T β

Γ (β + 1)

∥b∥∞( 4T
Γ (α + 1)

)θ−1

+ ∥c∥∞

 .
Thus, we get ∥∥∥Dα

0+x
∥∥∥
∞
≤ 2

1
p(t)−1

(
Λ

1
p(t)−1

1 + Λ
1

p(t)−1

2

∥∥∥Dα
0+x

∥∥∥ θ−1
p(t)−1

∞

)
.

Because θ−1
p(t)−1 ∈ (0, 1] and xk ≤ x + 1, x > 0, k ∈ (0, 1], it means∥∥∥Dα

0+x
∥∥∥
∞
≤ (2Λ1)

1
p(t)−1 + (2Λ2)

1
p(t)−1

(∥∥∥Dα
0+x

∥∥∥
∞
+ 1

)
.

From Eq (5.3), we get that there exists a constant M1 > 0 such that∥∥∥Dα
0+x

∥∥∥
∞
≤ M1. (5.7)

Thus, by Eq (5.4), one gets ∥∥∥t1−αx
∥∥∥
∞
≤

A
Tα−1 +

2T M1

Γ (α + 1)
. (5.8)

Therefore, by Eqs (5.7) and (5.8), we obtain

∥x∥X = max
{∥∥∥t1−αx

∥∥∥
∞
,
∥∥∥Dα

0+x
∥∥∥
∞

}
≤ max

{
A

Tα−1 +
2T M1

Γ (α + 1)
, M1

}
:= M.

Hence, Ω1 is bounded.

Step 2. Make Ω2 =
{
x ∈ KerL|QN f x = 0

}
. For x ∈ Ω2, one has x(t) = ctα−1, c ∈ R. Then∫ T

0
(T − s)β−1 f

(
s, csα−1, 0

)
ds = 0.

Combined with condition (H2), we get |c| ≤ A
Tα−1 . Therefore,

∥x∥X ≤ max
{ A

Tα−1 , 0
}
=

A
Tα−1 .
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Hence, Ω2 is bounded.

Step 3. If Eq (5.1) holds, let

Ω3 =
{
x ∈ KerL|λIx + (1 − λ) QN f x = 0, λ ∈ [0, 1]

}
.

For x ∈ Ω3, one has x(t) = ctα−1, ∀c ∈ R and the following formula is established

λcsα−1 + (1 − λ)
β

T β

∫ T

0
(T − s)β−1 f

(
s, csα−1, 0

)
ds = 0. (5.9)

If λ = 0, by Eq (5.1), one has |c| ≤ A
Tα−1 . If λ ∈ (0, 1], you get |c| ≤ A

Tα−1 . Otherwise, if |c| > A
Tα−1 , by

Eq (5.1), we get

λ
(
csα−1

)2
+ (1 − λ)

β

T β

∫ T

0
(T − s)β−1csα−1 f

(
s, csα−1, 0

)
ds > 0,

which is contradictory to Eq (5.9). Hence, Ω3 is bounded. Besides, if Eq (5.2) is true, then let

Ω′3 =
{
x ∈ KerL| − λIx + (1 − λ) QN f x = 0, λ ∈ [0, 1]

}
.

Analogously, in the same way, we can verify that Ω′3 is also bounded.
Finally, we aim to verify that all the conditions of Theorem 1 are true. Let

Ω =

{
x ∈ XT

∣∣∣∣∣∥x∥X < max
{
M,

A
Tα−1

}
+ 1

}
.

It is clear that (Ω1 ∪Ω2 ∪Ω3) ⊂ Ω (or (Ω1 ∪Ω2 ∪Ω
′
3) ⊂ Ω). By Step 1, 2, we find that the

conditions (C1) and (C2) of Theorem 1 are satisfied. Next, let’s verify condition (C3) of Theorem 1.
Define the homotopy

H (x, λ) = ±λIx + (1 − λ) QN f x.

From Step 3, we get H (x, λ) , 0, ∀x ∈ KerL ∩ ∂Ω, then

deg
(
QN f |KerL, Ω ∩ KerL, 0

)
= deg (H (·, 0) , Ω ∩ KerL, 0)

= deg (H (·, 1) , Ω ∩ KerL, 0)

= deg (±I, Ω ∩ KerL, 0) , 0.

Thus, condition (C3) of Theorem 1 is met. Applying Theorem 1, Lx = N f x has at least a fixed point
in domL ∩Ω. Therefore, FPBVP Eq (1.1) has at least a solution in XT .

Example 1. Consider the following problem:
CD

3
4
0+ϕ(t2+2)

(
D

1
2
0+x (t)

)
=

1
20

∣∣∣∣t 1
2 x (t)

∣∣∣∣ − 2t
1
2 + te

−

(
D

1
2
0+x(t)

)2

, t ∈ (0, 1],

lim
t→0+

t
1
2 x (t) = x (1) , lim

t→0+
ϕ(t2+2)

(
D

1
2
0+x (t)

)
= lim

t→1
ϕ(t2+2)

(
D

1
2
0+x (t)

)
.

(5.10)
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Corresponding to FPBVP Eq (1.1), we have p (t) = t2 + 2, α = 1
2 , β =

3
4 , T = 1, θ = 2 and

f (t, u, v) =
1

20

∣∣∣∣t 1
2 u

∣∣∣∣ − 2t
1
2 + te−v2

.

Take a(t) = 2, b(t) = 1
20 , c(t) = 0. Obviously, ∥b∥∞ = 1

20 , ∥c∥∞ = 0. Obviously, (H1) of Theorem 2 is
satisfied. Let A = 40, then

u f (t, u, v) = u
[

1
20

t
1
2 (|u| − 40) + te−v2

]
> 0 , ∀t ∈ [0, 1], v ∈ R, u > 40,

u f (t, u, v) = u
[

1
20

t
1
2 (|u| − 40) + te−v2

]
< 0 , ∀t ∈ [0, 1], v ∈ R, u < −40,

4T β

Γ (β + 1)

∥c∥∞ + ∥b∥∞( 4T
Γ (α + 1)

)θ−1 = 4

5Γ
(

3
4 + 1

)
Γ
(

1
2 + 1

) < 1.

Thus, problem Eq (5.10) satisfies all conditions of Theorem 2. Hence, there is at least one solution
to problem Eq (5.10).

6. Conclusions

This paper deals with FPBVP with p (t)-Laplacian operator. Since the periodic boundary value
condition lacks this key condition Dα

0+x (0) = 0, the method used in [31,32] is not applicable to
FPBVP Eq (1.1). To this end, we establish a continuation theorem (see Theorem 1). By applying the
continuation theorem, a new existence result for the problem is obtained (see Theorem 2). In addition,
when p(t) = p, the p (t)-Laplacian operator is reduced to the well-known p-Laplacian operator, so our
paper will further enrich and extend the existing results. This theory can provide a solid foundation
for studying similar periodic boundary value problems of fractional differential equations. For
example, one can consider the solvability of periodic boundary value problems for fractional
differential equations with impulse effects. In addition, the proposed theory can also be used to study
the existence of solutions to the periodic boundary value problems of fractional differential equations
and their corresponding coupling systems in high-dimensional kernel spaces.
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