
MBE, 20(2): 4006–4017. 

DOI: 10.3934/mbe.2023187 

Received: 26 September 2022 

Revised: 13 November 2022 

Accepted: 06 December 2022 

Published: 16 December 2022 

http://www.aimspress.com/journal/MBE 

 

Research article 

A SEIARQ model combine with Logistic to predict COVID-19 within 

small-world networks  

Qinghua Liu, Siyu Yuan and Xinsheng Wang* 

School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 

264200, China 

* Correspondence: Email: xswang@hit.edu.cn.  

Abstract: Since the COVID-19 epidemic, mathematical and simulation models have been extensively 

utilized to forecast the virus’s progress. In order to more accurately describe the actual circumstance 

surrounding the asymptomatic transmission of COVID-19 in urban areas, this research proposes a 

model called Susceptible-Exposure-Infected-Asymptomatic-Recovered-Quarantine in a small-world 

network. In addition, we coupled the epidemic model with the Logistic growth model to simplify the 

process of setting model parameters. The model was assessed through experiments and comparisons. 

Simulation results were analyzed to explore the main factors affecting the spread of the epidemic, and 

statistical analysis that was applied to assess the model’s accuracy. The results are consistent well with 

epidemic data from Shanghai, China in 2022. The model can not only replicate the real virus 

transmission data, but also anticipate the development trend of the epidemic based on available data, 

so that health policy-makers can better understand the spread of the epidemic.  

Keywords: SEAIRQ epidemic model; small-world networks; Logistic growth model; COVID-19; 

prediction  

 

1. Introduction  

The COVID-19 epidemic is still significantly affecting our lives today. Worldwide, there are still 

sporadic, and as viruses evolve, more novel coronavirus strains are emerging, and their infectiousness 

is growing. Even if the majority of people are currently vaccinated, the infection cannot be completely 

prevented. We need to be prepared to coexist with viruses for a long period.  
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In actuality, this is not the first time in human history that an epidemic has spread widely. 

Disastrous epidemics such as SARS and H1N1 had also seriously harmed humanity. To predict how 

infectious diseases spread in human society, many models have been proposed to model epidemic 

transmission patterns, such as Susceptible-Infective (SI) [1], Susceptible-Infective-Recovered (SIR) [2], 

Susceptible-Infective-Susceptible (SIS) [3], and Susceptible-Exposed-Infective-Recovered (SEIR) [4].  

Researchers have also suggested other derivative models in addition to these fundamental simple 

models, which are distinguished by an incubation period. Robert A Brown proposed the SIARQ model, 

a simple model for controlling COVID-19 infection in urban campuses and studied the spread of 

campus epidemics with asymptomatic patients as the main source of infection [5]. Liu et al presented 

an adaptive SEIARD model with internal source and isolation intervention to simulate the effects of 

changing behavior of the SARS-COV-2 in the US [6]. These studies were mainly based on modeling 

the different states of patients in the course of the disease, the majority of them used an epidemiological 

model and did not consider the social network in real life. 

In 1998, Watts and Strogatz proposed a small-world network (SW) [7], a network between 

random and regular networks. This kind of network randomizes the node connections with probability 

p, and the resulting system can not only have a high degree of aggregation like a regular network, but 

also have a small characteristic path length like a random network. SW has been shown to exist in 

many interactive networks, including social networks [8]. And, there have been many cases of 

modeling infectious diseases using a small-world network. For example, Liu and Xiao used differential 

equations and Routh-Hurwiz theory to prove two different models based on SW networks, SEIRS and 

SEIQRS [9]. A SEIR-SW model based on graph theory was proposed by Younsi et al. [10]. Saramäki 

and Kaski proposed a dynamic small-world network-based SIR model to analyze the spread of 

random infectious diseases [11]. Compared with traditional compartment models, these models take 

into account the influence of social networks, making the spread of infectious diseases more in line 

with the actual situation. But, the models have too many parameters, which makes parameter 

adjustment extremely complicated. And, many key parameters mainly refer to previous research results 

or manual adjustments. 

In this study, we simulate and evaluate the large-scale Omicron virus outbreak in Shanghai using 

an infectious disease model (SEIARQ) based on small-world networks. Additionally, we combined the 

Logistic growth model with the SEIARQ model to simulate and optimize it. This increased the model’s 

accuracy while minimizing the need for labor-intensive parameter adjustments, making the model 

simpler to use. 

The remainder of the paper is organized as follows. Section 2 presents the SEIARQ model 

considering the small-world network effect. Section 3 introduces the Logistic growth model and 

explains how to combine SEIARQ with the Logistic growth model. Section 4 shows the simulations 

and discussions. Finally, Section 5 presents the conclusions.  

2. SEIARQ model in a small-world network 

2.1. Basic introduction 

At present, the Omicron virus shows high infectivity and low toxicity. Most of the infected people 

have no symptoms, but they are still contagious [12]. It can also be seen from Figure 1 that number of 

asymptomatic patients is significantly larger than confirmed patients. At the same time, with the 
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intervention of the government, patients detected by nucleic acid testing will be sent to treatment or 

isolation, and close contacts will also be required to self-isolate, cutting off the transmission route of 

the virus to a certain extent. In addition, owing to the higher-frequency nucleic acid testing and 

immediate isolation measure in China, the number of people being quarantined also need to be 

considered. Therefore, we divide the population in the small-world network into six parts, assuming 

that the impact of the number of deaths on the network is negligible, and that the infected persons 

become immune and will not be reinfected after recovering. In order to model social contacts among 

human populations, we can construct a small-world network by representing individuals as nodes and 

social relationships as edges [10]. In this paper, we used the average degree distribution k to represent 

the connection of the network, which means that each node in the network has an average of k 

neighbors. If the node is infected, it will infect k neighbors with a certain probability. The schematic 

of the model is shown in Figure 2. 

 

Figure 1. Daily new cases in Shanghai, China from March 27 to April 30. 

 

Figure 2. Schematic of the SEIARQ model. 

According to the mean-field theory, the mean field equations of the epidemic spread in the small-
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world network are: 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽1<𝑘1>𝑆(𝑡)𝐼(𝑡)

𝑁
−

𝛽2<𝑘2>𝑆(𝑡)𝐴(𝑡)

𝑁
 (1) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽1<𝑘1>𝑆(𝑡)𝐼(𝑡)

𝑁
+

𝛽2<𝑘2>𝑆(𝑡)𝐴(𝑡)

𝑁
− (𝑝1 + 𝑝2)𝐸(𝑡) (2) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑝1𝐸(𝑡) − 𝛿1𝐼(𝑡) − (1 − 𝛿1)𝛾1𝐼(𝑡) (3) 

𝑑𝐴(𝑡)

𝑑𝑡
= 𝑝2𝐸(𝑡) − 𝛿2𝐴(𝑡) − (1 − 𝛿2)𝛾2𝐴(𝑡) (4) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛿1𝐼(𝑡) + 𝛿2𝐴(𝑡) − 𝛾𝑄(𝑡) (5) 

𝑑𝑅(𝑡)

𝑑𝑡
= (1 − 𝛿1)𝛾1𝐼(𝑡) + (1 − 𝛿2)𝛾2𝐴(𝑡) + 𝛾𝑄(𝑡) (6) 

The meaning of each parameter of the model is as Table 1: 

Table 1. The meaning of Parameters. 

Parameters  Meaning 

N 

S(t) 

E(t) 

I(t) 

A(t) 

R(t) 

Q(t) 

size of small world network  

number of susceptible people  

number of exposed people 

number of infected people 

number of asymptomatic people 

number of recovered people 

number of quarantine people 

𝛽1 propagation coefficient of the infected people 

𝛽2 propagation coefficient of the asymptomatic people 

𝑘1,𝑘2 average degree distribution of small world network 

𝑝1 proportion of exposed people converted to infected people 

𝑝2 proportion of exposed people converted to asymptomatic people 

𝛿1 isolation rate of infected people 

𝛿2 isolation rate of asymptomatic people 

𝛾1, 𝛾2, 𝛾 recovered rate 

2.2. Analysis of the SEIARQ model 

In the infectious disease dynamics model, the basic reproduction number R0 is a very important 

parameter, which represents the number of people infected by a patient in an average disease cycle in 

a disease-free equilibrium (DFE) state. R0 is a marker that determines whether a virus is prevalent. The 

calculation of R0 has guiding significance for disease prevention and control strategies. R0 is also a 

threshold number of the model, if R0 < 1, the DFE is local asymptotically stable, and the disease cannot 
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invade the population, but if R0 >1, then the DFE is unstable and invasion is always possible [13]. 

According to the next-generation matrix method, R0 is obtained by calculating the spectral radius 

of the reproduction matrix [14,15]. 

First, the variables are divided into two categories: infection class-{E(t),I(t),A(t),Q(t)}, non-

infection class {S(t), R(t)}. Then, let Fi be the rate of newly infected individuals in group i, Vi=Vi
 --

Vi
+ be the transfer rate, Vi

 - be the rate of individuals removed from group i, and Vi
+ be moved 

into group i by any means other than infection ratio of individuals. It can be obtained from formula 

Eqs (1)–(6) that 

𝐹𝐸𝐼𝐴𝑄 =

[
 
 
 
𝛽1<𝑘1>𝑆(𝑡)𝐼(𝑡)

𝑁
+

𝛽2<𝑘2>𝑆(𝑡)𝐴(𝑡)

𝑁

0
0
0 ]

 
 
 

 (7) 

𝑉𝐸𝐼𝐴𝑄 =

[
 
 
 

(𝑝1 + 𝑝2)𝐸(𝑡)

𝛿1𝐼(𝑡) + (1 − 𝛿1)𝛾𝐼(𝑡) − 𝑝1𝐸(𝑡)

𝛿2𝐴(𝑡) + (1 − 𝛿2)𝛾𝐴(𝑡) − 𝑝2𝐸(𝑡)

𝛾𝑄(𝑡) − 𝛿1𝐼(𝑡) − 𝛿2𝐴(𝑡) ]
 
 
 

 (8) 

 

Let F=[
𝜕𝐹𝑖

𝜕𝑥𝑖
(𝑥0)],V=[

𝜕𝑉𝑖

𝜕𝑥𝑖
(𝑥0)], x0 is the disease-free equilibrium point. Thus, we get  

F=(𝐸, 𝐼, 𝐴, 𝑄) = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝐹𝐸𝐼𝐴𝑄) =

[
 
 
 
 

0 0 0 0
𝛽1<𝑘1>𝑆(𝑡)

𝑁
0 0 0

𝛽2<𝑘2>𝑆(𝑡)

𝑁
0 0 0

0 0 0 0]
 
 
 
 
𝑇

 (9) 

V(𝐸, 𝐼, 𝐴, 𝑄) = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑉𝐸𝐼𝐴𝑄) = [

𝑝1 + 𝑝2 0 0 0

−𝑝1 𝛿1 + (1 − 𝛿1)𝛾 0 0

−𝑝2 0 𝛿2 + (1 − 𝛿2)𝛾 0
0 −𝛿1 −𝛿2 𝛾

] (10) 

FV -1=

[
 
 
 
 
 

𝑝1𝛽1<𝑘1>𝑆(𝑡)

𝑁(𝑝1+𝑝2)(𝛿1+(1−𝛿1)𝛾)
+

𝑝2𝛽2<𝑘2>𝑆(𝑡)

𝑁(𝑝1+𝑝2)(𝛿2+(1−𝛿2)𝛾)
0 0 0

𝛽1<𝑘1>𝑆(𝑡)

𝑁(𝛿1+(1−𝛿1)𝛾)
0 0 0

𝛽2<𝑘2>𝑆(𝑡)

𝑁(𝛿2+(1−𝛿2)𝛾)
0 0 0

0 0 0 0]
 
 
 
 
 
𝑇

 (11) 

Let the right-hand side of the differential equation system be 0, and I = 0, A = 0, it is easy to get the 

disease-free equilibrium point E0 = (N (0),0,0,0,0,0), and find it at the disease-free equilibrium point 

 𝑅0 = 𝜌(𝐹𝑉−1) =
𝑝1𝛽1<𝑘1>

(𝑝1+𝑝2)(𝛿1+(1−𝛿1)𝛾)
+

𝑝2𝛽2<𝑘2>

(𝑝1+𝑝2)(𝛿2+(1−𝛿2)𝛾)
 (12)  

From Eq (12), it can be found that the spread threshold of the epidemic depends on some key 

parameters. R0 is positively correlated with the average degree distribution of the small-world network 
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and the infection rate, and negatively correlated with the isolation rate, which is the same as our 

perception. 

3. Combine with Logistic growth model 

3.1. Logistic growth model 

The logistic equation is a well-known population growth model proposed by mathematical 

biologist Pierre Francois Verhulst, which is widely used in population growth and forecasting [16]. 

The model is represented by the following differential equation: 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) (13) 

The solution to the equation is  

𝑁(𝑡) =
𝐾

1+(
𝐾

𝑁0
−1)𝑒−𝑟𝑡

 (14) 

Among them, K is the environmental capacity, representing the maximum cumulative number of 

infected people in the infectious disease model; N0 is the initial value of the population, representing 

the initial number of infected people in the infectious disease model; r is the infection rate in the 

infectious disease model; t is time, N(t) is the population number that changes over time, representing 

the cumulative number of infected people changing over time in the infectious disease model. 

3.2. The application of Logistic growth model 

In the case of known parameters K, N0, r, the logistic growth model can be used to predict infectious 

diseases, for example, Morsi and Alzahrani [17] used logistic growth model for the complex spread of 

COVID-19 and forecasted future values in Australia and Brazil within a time interval of six days, but 

since the model is monotonically increasing, it can only predict the cumulative number of infected 

people, but not the existing confirmed number of people. The SEIARQ model can predict the number 

of confirmed daily diagnoses, and can also obtain the turning point of infectious diseases, but due to 

plenty of model parameters, the task of adjustment will be particularly difficult. Although the forms of 

the two models are quite different, when describing the same type of infectious disease, because the 

characteristics of the infectious disease and the environment are the same, the parameters of the two 

models can be interchanged, which is also verified in subsequent simulation tests. Therefore, consider 

combining the Logistic with SEIARQ. 

The specific idea is as follows: 

1) Using actual data of infected and asymptomatic to fit Logistic equation, and getting parameters 

of Logistic equation. 

2) Assume N0 in the Logistic growth model to be the initial number of infections (A0 or I0) in the 

SEIARQ model and r as the infection rate β in the SEIARQ model. Multiply the environmental 

capacity K by ε (ε>1) to estimate the size of the small world network and the initial number of 

susceptible populations in the SEIARQ model S0. p is determined by the environmental capacity 

obtained from the infected and asymptomatic fits. Assume that there is no person exposed, recovered 

or isolated at the beginning of transmission, so E0, R0 and Q0 are 0. 

3) Initialize the remaining parameters of the model and use the model to make predictions and 
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compare to the true value. 

4. Simulation and results 

4.1. Numerical simulation and error estimation 

We conducted experiments to examine the proposed SEIARQ model. The statistics used in this 

paper is the daily epidemic data from Shanghai, China since February 2022 [18]. To fit the Logistic 

growth model, it is necessary to divide the entire dataset into training set and test set. In this paper, the 

training set represents the known epidemic data used for logistic model parameter fitting, and the test 

set represents the known epidemic data used to compare with the SEIARQ model. Here we limited the 

training set from February 27th, 2022 to April 21st, 2022 and used the following 7 days to predict. In 

the experiments, we employed the grid search approach and the nonlinear least squares method to fit 

the Logistic growth model's parameters. The parameter values obtained by fitting the logistic growth 

model and the estimated values of the remaining parameters are shown in the following Table 2: 

Table 2. Parameters value for SEIARQ model. 

Parameters Value Source 

𝑆0, 𝐼0, 𝐴0,𝐸0, 𝑅0, 𝑄0 716800,0,33,0,0,0 Fit 

𝛽1,𝛽2 0.23,0.22 Fit 

𝑘1, 𝑘2 10,10 Estimate 

𝑝1, 𝑝2 0.0145,0.1283 Fit 

𝛿1, 𝛿2 0.7,0.62 Estimate 

𝛾1 , 𝛾2, 𝛾 0.1,0.1,0.1 Ref [19] 

All experiments are run on Microsoft Windows 10, the computer hardware environment is Intel(R) 

Core (TM) i5-9300H CPU 2.40 GHz with 12GB RAM, the Interpreter is Python 3.10. 

The numerical simulation results of the model are shown in Figure 3. The 7-day forecast results are 

compared with the actual results as shown in Table 3. Please note that the data compared in Table 3 are 

the total number of cases, including confirmed and asymptomatic. 

Table 3. Comparison of 7-day prediction results with actual results. 

Date Real value Predict value Relative error 

4-22 23370 19475 16.67% 

4-23 21058 17908 14.96% 

4-24 19455 16390 15.75% 

4-25 16980 14939 12.02% 

4-26 13562 13569 0.05% 

4-27 10622 12289 15.69% 

4-28 15032 11100 26.16% 
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Figure 3. Numerical simulation results of the model. (a) The meaning of each segment of 

the curves is shown in Table 1. (b) i(t) shows the number of the new diagnoses every day, 

and a(t) indicates the number of new asymptomatic people every day. (c) total shows the 

sum of number of new diagnoses and the number of asymptomatic people every day. 

It can be seen that due to changes in local epidemic prevention policies and other external factors, 

the model parameters are not fully applicable to all stages of the epidemic development, resulting in a 
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gap between the predicted value and the actual value, but the predicted curve of the model and the 

actual epidemic situation curves are still highly similar.  

Here we use mean absolute percentage error (MAPE) and root mean squared percentage error 

(RMSPE) to evaluate the performance of the model, and compare it with the result of the Shanghai 

epidemic prediction model in Ref [19]. When error ≥ 50%, the model is poor, 20% ≤ error < 50% 

is reasonable, 10% ≤ error < 20% is good, and error < 10% is accurate. MAPE and RMSPE is 

define as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑛

𝑖=1 × 100% (15) 

𝑅𝑀𝑆𝑃𝐸 = √
∑ (

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
)2𝑛

𝑖=1

𝑛
 × 100% (16) 

where 𝑦𝑖̂ represents the predicted value of the model on the i-th day, 𝑦𝑖 represents the true value on 

the i-th day, and 𝑦𝑖̅ represents the average value on the ith day. The results are shown in Table 4 as 

follow: 

Table 4. Model performance metrics. 

Variable 
MAPE of our 

model  

RMSPE of 

our model 

MAPE of  

Ref [19] 

RMSPE of 

Ref [19] 
Performance 

Newly 

confirmed 

cases 

 27.98%  36.50% 33.86% 37.01% Reasonable 

Newly 

asymptomatic 

infectious 

 14.47%  16.14% 12.34% 16.45% good 

Newly total 

cases 
 11.97%  13.37% / / good 

4.2. Role of isolation rate 

We further investigate the impact of the parameters that need to be tuned on the prediction 

performance of the model. Among them, the average degree distribution and recovery rate can be 

found in the literature and are relatively easy to debug. The isolation rate needs to be adjusted 

manually. Therefore, the impact of the isolation rate on the prediction effect of the model is mainly 

analyzed. It can be seen from the Figure 4 that increasing the isolation and reducing the average 

degree distribution can significantly inhibit the spread of the epidemic. When the isolation rate is 0, 

the model degenerates into the SEIAR model, and the entire prediction curve is very different from 

the actual value, so the introduction of isolation is necessary for epidemic prediction. 
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Figure 4. The isolation rate on the prediction effect of the model. (a) Comparison between 

the simulation results of the model and the actual data when isolation rate equal to zero. 

(b) number of newly diagnosed and asymptomatic people per day with different 𝛿. (c) 

number of newly diagnosed and asymptomatic people per day with different 𝑘. 

5. Conclusions 

The COVID-19 is the largest worldwide epidemic that people have encountered in the last 100 years. 

The coronavirus causes daily infections or fatalities in humans. On September 1, there were more than 

600 million confirmed cases worldwide, and there had been more than 6 million fatalities [20]. Modeling 

and analysis of the epidemic can help policymakers understand the development trend of the epidemic 

to formulate effective policies to control the epidemic.  

This paper mainly proposes the SEIARQ model under the small world network for the new virus-
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mystery clone, and combines the Logistic growth model in the numerical simulation process to 

improve the simulation efficiency and reduce the number of parameters to be adjusted to 3 categories 

(average degree distribution, isolation rate, recovered rate), which significantly reduces the complexity 

of parameter adjustment. Additionally, we performed a thorough examination of the model and 

calculated the fundamental reproduction number. The results of the calculations demonstrate that just 

a few important factors are relevant to the model’s propagation threshold. The model’s outcomes in 

the numerical simulation analysis are favorable. When the actual adjustment parameters are only 3, 

the error of the asymptomatic patients is close to 10%, the error of the confirm infectious is about 30%, 

and the error of the total number of patients is close to 10%, which is almost the same as the result of 

Ref [19]. In the contrast, Ref [19] has 10 estimated parameters. Experimental results also show that 

control the average degree distribution in the small world can be effectively to curb the development 

of the epidemic in SEIAQR model, which means weaker contact between people will slow down the 

spread of the epidemic. 

Also, the model has several restrictions. We did not take mortality and secondary illnesses into 

account. Additionally, the isolation rate may alter as a result of modifications to local laws and nucleic 

acid testing, causing inconsistencies between the model and the real curve at specific phases. Long-

term forecasts are not guaranteed to be accurate throughout our simulation, which is a drawback that 

most models cannot avoid. 
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