
http://www.aimspress.com/journal/mbe

MBE, 20(2): 3282–3300.
DOI: 10.3934/mbe.2023154
Received: 24 August 2022
Revised: 16 November 2022
Accepted: 27 November 2022
Published: 05 December 2022

Research article

Projecting social contact matrices to populations stratified by binary
attributes with known homophily

Claus Kadelka∗

Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, IA 50011, USA

* Correspondence: Email: ckadelka@iastate.edu; Tel: +1-515-294-7579.

Abstract: Contact networks are heterogeneous. People with similar characteristics are more likely to
interact, a phenomenon called assortative mixing or homophily. Empirical age-stratified social contact
matrices have been derived by extensive survey work. We lack however similar empirical studies that
provide social contact matrices for a population stratified by attributes beyond age, such as gender,
sexual orientation, or ethnicity. Accounting for heterogeneities with respect to these attributes can
have a profound effect on model dynamics. Here, we introduce a new method, which uses linear al-
gebra and non-linear optimization, to expand a given contact matrix to populations stratified by binary
attributes with a known level of homophily. Using a standard epidemiological model, we highlight
the effect homophily can have on model dynamics, and conclude by briefly describing more compli-
cated extensions. The available Python source code enables any modeler to account for the presence
of homophily with respect to binary attributes in contact patterns, ultimately yielding more accurate
predictive models.
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1. Introduction

Most social networks, e.g. physical interaction networks relevant to the spread of infectious dis-
eases, exhibit assortative mixing, which describes the presence of more-than-expected interactions
between network nodes with similar characteristics [1]. Assortative mixing is also known simply as
assortativity, or as homophily in the case of social networks. Co-authorship networks in physics, biol-
ogy and mathematics, film author collaboration networks, as well as Fortune 1000 company director
networks are just some examples of social networks, which exhibit assortative mixing [1].

The seminal POLYMOD study supplied empirical evidence for the presence of strong age-
assortative mixing in eight European countries [2]. Its main results are country-specific contact
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matrices, which describe the average number of daily contacts an individual of a certain age has
with individuals of different ages, where the entire population is stratified into 5-year age bins (e.g.,
0−4, 5−9, . . . , 80+). More recently, these contact matrices have been projected for 144 other countries
including the United States, using surveys and demographic data [3].

Accurate infectious disease models must account for heterogeneous contact patterns in a population.
During the COVID-19 pandemic, inclusion of realistic age-mixing patterns into infectious disease
models has become increasingly popular, evident in the explosion of citations of [2, 3]. While the
available, empirically-grounded contact matrices account for homophily with respect to age, there are
many other attributes (e.g., race/ethnicity, vaccine status, occupation, religion, education level or socio-
economic status [4]) that are typically not included in epidemiological models. This is likely because
there exist no empirical contact matrices that describe the assortative mixing with respect to attributes
beyond age, partly because empirical studies that go beyond age present a great logistical challenge.
For many of the aforementioned attributes however, we possess rough estimates of their homophily in
a population. For example, it is well-established that there exists a strong level of ethnic homophily in
the U.S. population [4, 5].

In this manuscript, we describe a novel procedure that uses linear algebra and non-linear optimiza-
tion techniques to infer contact matrices for populations stratified by age and additional attributes, for
which estimates of their homophily exist. In this initial work, we require these attributes to be binary
but extending to attributes with finitely-many values or categories should be straight-forward. In brief,
we introduce a set of linear conditions a meaningful contact matrix should satisfy and show that there
are typically infinitely many contact matrices that do so. To find the “optimal” contact matrix, we
therefore define an objective function and pick the contact matrix that minimizes this function. User
preference can inform the choice of objective function. Throughout the entire manuscript, we fol-
low two simple examples and show that accounting for homophily can have a strong effect on model
dynamics, i.e., how a pathogen spreads throughout a population.

2. Contact matrices

Each individual in a population can be categorized using a multitude of attributes (e.g., age, eth-
nicity, education level). We can distinguish attributes by their range: some take on continuous values
(e.g., age), while others are categorical (e.g., education level), discrete-valued or even binary (e.g.,
vaccinated against COVID-19 or not). As a whole, we can stratify a population based on a selection
of attributes. In what follows, we assume all attributes take on only finitely many different values.
This does not limit the usability of the developed methods, as binning can turn any continuous-valued
attribute such as age into one with finitely-many choices, without losing substantial information if the
number of bins is large. We begin with some basic definitions.

Definition 2.1. Let X1 ∈ A1, . . . , Xd ∈ Ad be d attributes with 2 ≤ |Ai| < ∞. The (combined) attribute
space A contains all possible d-tuples of attribute combinations. That is,

A = A1 × · · · × Ad.

Given a population of size Ntotal, a (joint) distribution (or stratification) of that population based on the
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d attributes is a d-dimensional array N ∈ [0,∞)A with∑
i=(i1,...,id)∈A

Ni = Ntotal.

Typically, Ntotal is a positive integer that describes the absolute number of individuals in the population.
In some applications, it may however make more sense to set Ntotal = 1 and consider Ni as the propor-
tion of the total population. For the methods developed in this manuscript, how we interpret Ntotal does
not matter.

Example 2.2. The age distribution, N = (N1, . . . ,Nm), of a population split into m age groups is a non-
negative (1-dimensional) vector of length m, which describes the number (or proportion) of individuals
in each age group.

For the U.S. population and the four age groups defined as A = {0 − 14, 15 − 64, 65 − 74, 75 +

years of age}, the age distribution (absolute numbers in million) is N = (60.57, 213.61, 31.48, 22.57),
based on 2019 U.S. Census data [6].

To describe the rates of contacts between individuals with different attribute values, we introduce
the concept of a contact matrix.

Definition 2.3. Given a population stratified across the combined attribute space A = A1 × · · · × Ad, a
contact function (also called contact matrix for reasons that become clear in the following remark) is a
function

C : A × A→ [0,∞)

that describes the average number of daily contacts an individual with attributes (i1, . . . , id) ∈ A has
with individuals with attributes ( j1, . . . , jd) ∈ A.

Remark 2.4. Given a combined d-dimensional attribute space A = A1 × · · · × Ad, we can create an
equivalent 1-dimensional attribute space whose attribute values are exactly the m :=

∏
|Ai| different

combinations of attribute values in A. This motivates the use of the term “contact matrix” for the
function C defined in Defintion 2.3, as it can be written as an m × m-matrix.
Remark 2.5. One can think of a distribution N of a population and a contact matrix C as two summary
statistics of an undirected graph (i.e., a social interaction network) where the nodes (i.e., individuals)
are labeled by the attribute values. Since the entry Ci j in the contact matrix describes the average
number of interactions (i.e., edges) connecting an individual with attribute i ∈ A with individuals with
attribute j ∈ A, the total number of interactions between individuals with attributes i and j is given by
NiCi j whenever i , j (and NiCii/2 otherwise). Due to the undirected nature of physical, real-world
interactions, it is however also given by N jC ji. A meaningful contact matrix representing physical
interactions, relevant e.g. to describe the spread of an infectious disease, must therefore possess the
following “symmetry” property.

Definition 2.6. (Reciprocity) Given a combined attribute space A and a corresponding distribution
N of a population, a contact matrix C ∈ [0,∞)A×A is called reciprocal if for all i = (i1, . . . , id), j =

( j1, . . . , jd) ∈ A,
NiCi j = N jC ji. (2.1)

This property is often also referred to as symmetry; we avoid this term due to its ambiguity in matrix
theory.
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Table 1. Age-based contact matrix for the United States, specifying the average number
of daily contacts an individual of a given age group (row) has with individuals of different
age groups (columns). Total population count (N) in millions. (a) Inferred contact matrix
from [3], which is not reciprocal. (b) Reciprocal contact matrix following transformation of
the inferred contact matrix by Theorem 2.8.

a b

Example 2.7. An age-based contact matrix has been inferred for the United States [3] for age groups
0 − 4, 5 − 9, . . . , 75 − 79, 80+. Using U.S. census data [6], this contact matrix can be condensed to the
four age groups from Example 2.2 (Table 1a). The contact matrix is not reciprocal. To see this, we can
compare e.g. the total number of reported daily contacts between 15 − 64 and 65 − 74 year olds. On
the one hand, this number is

N2C23 = 213.6 × 106 · 0.21 = 44.9 × 106.

On the other hand, it is also given by

N3C32 = 31.5 × 106 · 3.75 = 118.1 × 106,

which is not the same.
Empirical contact matrices stratified solely by age, such as those reported in the seminal POLYMOD

study [2], are typically not reciprocal. This is because elderly people are generally more likely to
report a short interaction as a contact. Extending the 1-dimensional transformation described in [7], an
empirical contact matrix can however be easily transformed into a reciprocal one as follows.

Theorem 2.8. Given a combined attribute space A, a corresponding distribution N of a population,
and a contact matrix C ∈ [0,∞)A×A, the transformed contact matrix C̃ defined by

C̃i j =
NiCi j + N jC ji

2Ni
(2.2)

is reciprocal.

Proof. By design of the transformation, the total number of interactions between individuals with
attributes i = (i1, . . . , id) ∈ A and j = ( j1, . . . , jd) ∈ A is given by

NiC̃i j =
NiCi j + N jC ji

2
= N jC̃ ji.

�

Corollary 2.9. The total number of contacts in a population with reciprocal contact matrix C and
distribution N over combined attribute space A is given by

1
2

∑
i∈A

∑
j∈A

NiCi j.
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Example 2.10. Using Theorem 2.8, we can transform the non-reciprocal U.S. contact matrix (Table 1a)
into a reciprocal contact matrix (Table 1b).

3. Homophily

We are now in a position to (i) define the homophily of a contact matrix with respect to a binary
attribute and (ii) describe the problems arising when trying to project e.g. age-specific contact matrices
to populations stratified by additional binary attributes with homophily. We look first at how homophily
with respect to a binary attribute can be defined for an undirected labeled graph (e.g., a physical in-
teraction network) and use the correspondence described in Remark 2.5 to define the homophily with
respect to a binary attribute for a reciprocal contact matrix.

Definition 3.1. Given an undirected graph with nodes labeled by a binary attribute, we define the
prevalence p ∈ [0, 1] of the binary attribute as the proportion of nodes labeled true. We then distinguish
between two types of edges: those connecting nodes with same and with opposite attribute values. As
in [8], let φ ∈ [0, 1] denote the proportion of edges connecting nodes with same attribute values.

In the case of complete segregation, we have φ = 1 and the graph possesses two separate compo-
nents. In the other extreme case of complete disassortativity, we have φ = 0 and the graph is bipartite.
Finally, in the absence of assortative mixing (i.e., no homophily), we have φ = E(φ) where

E(φ) = p2 + (1 − p)2 (3.1)

as in [8]. Extending [8], we define the homophily h with respect to the binary attribute by comparing φ
to its expected value,

h(φ, p) =

φ−E(φ)
1−E(φ) ∈ [0, 1] if φ ≥ E(φ),
φ−E(φ)
E(φ) ∈ [−1, 0) if φ < E(φ).

(3.2)

Example 3.2. If p = 2/3 of individuals in a population are vaccinated against COVID-19, the expected
number of interactions involving individuals with the same vaccination status is E(φ) = 5/9. Thus if
φ = 5/9, there exists no homophily regarding vaccination status. If φ = 7/9, the population exhibits
50% homophily. In the extreme case of φ = 1, there exists 100% homophily (i.e., complete segrega-
tion), while the other extreme case of complete disassortativity with φ = 0 corresponds to a homophily
of −100% (or 100% heterophily).

Definition 3.3. Given a combined attribute space A = A1 × · · · × Ad, a corresponding distribution N of
a population and a contact matrix C ∈ [0,∞)A×A, we define the reduced attribute space without the kth
attribute as

A−k = A1 × · · · × Ak−1 × Ak+1 × · · · × Ad.

The reduced distribution without the kth attribute is a (d − 1)-dimensional array N−k ∈ [0,∞)A−k
such

that for all i = (i1, . . . , ik−1, ik+1, . . . , id) ∈ A−k,

N−k
i =

∑
v∈Ak

Ni1,...,ik−1,v,ik+1,...,id .

Similarly, the reduced contact matrix without the kth attribute is a function C−k : A−k × A−k → [0,∞)
such that for all i, j ∈ A−k,

C−k
i j =

∑
v∈Ak

Ci,( j1,..., jk−1,v, jk+1,..., jd).
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If the kth attribute is binary, assume w.l.o.g. Ak = {0, 1} and we define the attribute’s preva-
lence in the population as the (d − 1)-dimensional array P ∈ [0, 1]A−k

such that for all i =

(i1, . . . , ik−1, ik+1, . . . , id) ∈ A−k,

Pi =
Ni1,...,ik−1,1,ik+1,...,id

N−k
i

.

If d = 1, this definition corresponds exactly to the common language definition of “prevalence”, used
e.g. in Definition 3.1.

Definition 3.4. Let C ∈ [0,∞)A×A be a reciprocal contact matrix with A and N as before, and let the
kth attribute be binary. Then, the homophily of the contact matrix with respect to the binary attribute
can be defined by comparing the proportion of interactions between individuals with same attribute
values, which is given by

φ(C,N) =

(∑
i∈A

∑
j∈A

jk=ik

NiCi j

)/(∑
i∈A

∑
j∈A

NiCi j

)
, (3.3)

to its expected number, E(φ), which can be computed from the prevalence P of the binary attribute, as
follows.

W.l.o.g. assume that k = d and Ad = {0, 1}, i.e., the last attribute is binary, so that we can write (i, v)
to denote (i1, . . . , id−1, v) for any i ∈ A−d and v ∈ Ad. In the absence of homophily, the binary attribute
does not affect mixing patterns. For a given C, therefore, we can define a reciprocal contact matrix
without homophily, denoted C0, by distributing according to the prevalence P the aggregated contacts
in the reduced contact matrix. That is, for i, j ∈ A−d and v ∈ Ad, we have

C0
(i,v),( j,1) = P jC−k

i j ,

C0
(i,v),( j,0) = (1 − P j)C−k

i j .
(3.4)

By design, we now have
E(φ) = φ(C0,N),

and homophily is defined as in Equation 3.2,

h(C,N) =

φ(C,N)−E(φ)
1−E(φ) ∈ [0, 1] if φ(C,N) ≥ E(φ),

φ(C,N)−E(φ)
E(φ) ∈ [−1, 0) if φ(C,N) ≤ E(φ).

(3.5)

Remark 3.5. Similar to the definition of the non-homophilic contact matrix C0, we can define a contact
matrix Ch that has homophily h ∈ (0, 1] with respect to the dth binary attribute, by moving a proportion
h of all contacts between opposite-valued individuals to equal-valued individuals. With Equation 3.4,
that is for i, j ∈ A−d and v ∈ Ad = {0, 1},

Ch
(i,v),( j,v) = C0

(i,v),( j,v) + hC0
(i,v),( j,1−v) = (P j,v + hP j,1−v)C−d

i j ,

Ch
(i,v),( j,1−v) = (1 − h)C0

(i,v),( j,1−v) = (1 − h)P j,1−vC−d
i j ,

(3.6)

where

P j,v =

P j if v = 1,
1 − P j if v = 0.

(3.7)
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While Ch has homophily h by definition, it is only reciprocal in special cases. To see this, consider e.g.
(i, 1), ( j, 1) ∈ A. Reciprocity implies

N(i,1)Ch
(i,1),( j,1) = N( j,1)Ch

( j,1),(i,1) ⇐⇒

PiN−d
i (P j + h(1 − P j))C−d

i j = P jN−d
j (Pi + h(1 − Pi))C−d

ji ,

which due to the reciprocity of C is equivalent to

Pi(P j + h(1 − P j)) = P j(Pi + h(1 − Pi))⇐⇒
(Pi − P j)h = 0.

Ch is therefore only reciprocal if h = 0 or if the prevalence is constant.

Example 3.6. Consider a population of size 400, which is stratified into (i) two age groups (e.g., young
and old) with age distribution (100, 300), and (ii) by an additional binary attribute with prevalence
(0.5, 0.8) across the age groups. Further assume an age-specific contact matrix (i.e., the reduced contact
matrix without the second attribute, Definition 3.3) as in Table 2a. We can easily check that this contact
matrix is reciprocal. Next, using the prevalence of the binary attribute, as described in Definition 3.4,
we obtain a contact matrix C0 (Table 2b), which stratifies the population by both attributes and exhibits
no homophily with respect to the binary attribute. This contact matrix is still reciprocal. As described
in Remark 3.5, we can also define a contact matrix Ch with any given level of homophily for the binary
attribute. In the extreme case of complete segregation (h = 1), this would result in the contact matrix
shown in Table 2c.

Note that in both extended contact matrices, C0 and Ch, the total number of contacts an individual
of a certain age has with individuals from each age group, and therefore also the total number of
contacts (row sum), agrees with the basic age-age contact matrix, which is desirable. Ch is however
not reciprocal (50 ·12 , 240 ·4) because h , 0 and the prevalence of the binary attribute is not constant
across age groups (Remark 3.5). Since reciprocity is a necessary condition for any physical contact
matrix, relevant e.g. to study the spread of an infectious disease, this example motivates the need for a
more elaborate approach.

Table 2. Contact matrices described in Example 3.6. (a) Reciprocal contact matrix for a
population stratified only by age. (b-c) Contact matrices for the same population stratified
by age and an additional binary attribute. Both contact matrices possess the same number
of contacts between any pair of age groups as in (a). The contact matrix in (b) exhibits no
homophily and is reciprocal, while the contact matrix in (c) exhibits 100% homophily but
is not reciprocal (cells in red highlight where reciprocity fails). All contact matrices possess
the same total number of contacts (row sum).

a b c
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4. Extensions of contact matrices

In this section, we will develop methods to stratify a given contact matrix by an additional binary
attribute with known prevalence and homophily. We start by describing a set of necessary conditions
a meaningful extended contact matrix must satisfy. Any extended contact matrix that fails to satisfy
some of these conditions is not suitable to accurately describe physical contacts and can, for example,
not be used to study the spread of an infectious disease.

Definition 4.1. Given a combined attribute space A = A1 × · · · × Ad, a corresponding distribution N
of a population, a reciprocal contact matrix C ∈ [0,∞)A×A, and a binary attribute Xd+1 with known
homophily h and prevalence P in the population, define N? as the natural extension of the distribution
(a function of N and P) over the extended attribute space A? = A × Ad+1, |Ad+1| = 2 (to simplify
notation, we frequently assume w.l.o.g. Ad+1 = {0, 1}). An extended contact matrix C? ∈ [0,∞)A?×A?

is meaningful if it satisfies all of the following linear properties:

(a) Reciprocity: For all i, j ∈ A?,
N?

i C?
i j = N?

j C?
ji

(b) Same total contacts as in C: The total number of contacts of an individual should never depend on
the value of the added binary attribute Xd+1. That is, for all i ∈ A,∑

j∈A?
C?

(i,0), j =
∑
j∈A?

C?
(i,1), j =

∑
j∈A

Ci, j.

(c) Same contact patterns as in C: For all i, j ∈ A,

∑
v∈Ad+1

N?
(i,v)

Ni

∑
w∈Ad+1

C?
(i,v),( j,w) = Ci, j

(d) Homophily: For the proportion φ of contacts between individuals with same binary attribute values
(Equation 3.3) we have

φ =

E(φ)(1 − h) + h if h ≥ 0,
E(φ)(1 + h) if h < 0,

where φ and E(φ) are computed as in Definition 3.4.

If h = 1, we require φ = 1. That is, for any i, j ∈ A,

C?
(i,0),( j,1) = C?

(i,1),( j,0) = 0.

Likewise, if h = −1, we require φ = 0. That is, for any i, j ∈ A,

C?
(i,0),( j,0) = C?

(i,1),( j,1) = 0.

(e) If N?
i = 0 for some i ∈ A?, we can further assume C?

i j = C?
ji = 0 for all j ∈ A?.
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Remark 4.2. With m := |A∗|, all conditions of Definition 4.1 can be written as a linear system of q
equations

Xc = y, (4.1)

where X is a q × m2 matrix, c is a vector of the m2 entries in the extended contact matrix C? and y is a
vector of the same dimension containing the “right-hand”-side of the linear equations.

Example 4.3. Given an age-specific contact matrix C with age groups young (y) and old (o) as in
Table 2a and a binary attribute with prevalence (0.5, 0.8) across the age groups and homophily h ∈
[0, 1), an extended contact matrix C? should satisfy:

(a) Reciprocity:

50 C?
(y,1),(y,0) − 50 C?

(y,0),(y,1) = 0

50 C?
(y,1),(o,1) − 240 C?

(o,1),(y,1) = 0

50 C?
(y,1),(o,0) − 60 C?

(o,0),(y,1) = 0

50 C?
(y,0),(o,1) − 240 C?

(o,1),(y,0) = 0

50 C?
(y,0),(o,0) − 60 C?

(o,0),(y,0) = 0

240 C?
(o,1),(o,0) − 60 C?

(o,0),(o,1) = 0

(b) Same total contacts as in C:

C?
(y,1),(y,1) + C?

(y,1),(y,0) + C?
(y,1),(o,1) + C?

(y,1),(o,0) = 21

C?
(y,0),(y,1) + C?

(y,0),(y,0) + C?
(y,0),(o,1) + C?

(y,0),(o,0) = 21

C?
(o,1),(y,1) + C?

(o,1),(y,0) + C?
(o,1),(o,1) + C?

(o,1),(o,0) = 19

C?
(o,0),(y,1) + C?

(o,0),(y,0) + C?
(o,0),(o,1) + C?

(o,0),(o,0) = 19

(c) Same contact patterns as in C:

0.5 C?
(y,1),(y,1) + 0.5 C?

(y,1),(y,0) + 0.5 C?
(y,0),(y,1) + 0.5 C?

(y,0),(y,0) = 9

0.5 C?
(y,1),(o,1) + 0.5 C?

(y,1),(o,0) + 0.5 C?
(y,0),(o,1) + 0.5 C?

(y,0),(o,0) = 12

0.8 C?
(o,1),(y,1) + 0.8 C?

(o,1),(y,0) + 0.2 C?
(o,0),(y,1) + 0.2 C?

(o,0),(y,0) = 4

0.8 C?
(o,1),(o,1) + 0.8 C?

(o,1),(o,0) + 0.2 C?
(o,0),(o,1) + 0.2 C?

(o,0),(o,0) = 15

(d) Homophily:

50 C?
(y,1),(y,0) + 50 C?

(y,1),(o,0) + 50 C?
(y,0),(o,1) + 240 C?

(o,1),(o,0) = (1 − h)1545,

where the number of interactions between nodes with opposite attribute values 1545 = 1 − E(φ) =

1 − φ(C0,N) is derived from the extended contact matrix C0 without homophily shown in Table 2b.
Thus to find an extended contact matrix that satisfies all desirable properties from Definition 4.1, we
solve an under-determined non-homogeneous system of 15 linear equations in 16 variables, Xc = y,
where dim Nul X = 4. If h = 1, we have C?

(i,v),( j,1−v) = 0 for all i, j ∈ {y, o} and v ∈ {0, 1}. Here, the
properties (a)-(d) yield a system of 11 equations in 8 variables, where dim Nul X = 1.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3282–3300.
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Lemma 4.4. Given C,N, A, P as in Definition 4.1, let C0 be defined as in Equation 3.4. That is, for
i, j ∈ A, v ∈ Ad+1,

C0
(i,v),( j,1) = P jCi j,

C0
(i,v),( j,0) = (1 − P j)Ci j.

(4.2)

Then, C0 written as a vector c0 ∈ [0,∞)m2
is a non-negative solution of Equation 4.1 for homophily

h = 0.

Proof. We start by showing C0 is reciprocal. Let i, j ∈ A and v ∈ Ad+1 � {0, 1}. Remember P j =

N?
( j,1)/N j and 1 − P j = N?

( j,0)/N j. From the reciprocity of C, it follows that

N?
(i,v)C

0
(i,v),( j,1) = N?

(i,v)P jCi j

= N?
(i,v)N

?
( j,1)

Ci j

N j

= N?
(i,v)N

?
( j,1)

C ji

Ni

= N?
( j,1)C ji

N?
(i,v)

Ni

= N?
( j,1)C ji

Pi if v = 1
(1 − Pi) if v = 0

= N?
( j,1)C

0
( j,1),(i,v).

Equivalently, we can show N?
(i,v)C

0
(i,v),( j,0) = N?

(i,v)C
0
( j,0),(i,v), which proves the reciprocity of C0. Properties

(b) and (c) from Definition 4.1 follow very similarly. Finally, by design (see Definition 3.4) C0 exhibits
no homophily (i.e., φ = E(φ)), which means c0 in vector form solves Equation 4.1 for homophily h = 0.
Non-negativity of c0 follows directly from C ≥ 0 and P j ∈ [0, 1]. �

It is not clear if there exists a non-negative solution of Equation 4.1 for every choice of homophily
h ∈ [−1, 1]. It is however easy to see that the range of homophily values for which such a solution
exists must be an interval.

Theorem 4.5. Given C,N, A, P as in Definition 4.1, there exists hmin, hmax with −1 ≤ hmin ≤ 0 ≤ hmax ≤

1 such that Equation 4.1 has a non-negative solution if and only if h ∈ [hmin, hmax].

Proof. Let c0 ≥ 0 be the solution of Equation 4.1 for homophily 0 from Lemma 4.4. Further, assume
ch is a non-negative solution to Equation 4.1 for homophily h ∈ (0, 1]. Let α ∈ [0, 1]. We show that the
convex combination cα = αch + (1− α)c0 is a non-negative solution of Equation 4.1 for homophily αh.
Let C0,Ch, and Cα denote the contact matrices corresponding to c0, ch, and cα, respectively.

(a) Reciprocity of Cα follows directly from the reciprocity of C0 and Ch: For all i, j ∈ A?,

N?
i Cα

i j = αN?
i Ch

i j + (1 − α)N?
i C0

i j = αN?
j Ch

ji + (1 − α)N?
j C0

ji = N?
j Cα

ji.

(b)-(c) Using the convex definition of Cα, it is similarly straight-forward to show that Cα contains the same
total contacts and same contact patterns as the original contact matrix C (and as C0 and Ch).
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(d) Let E := E(φ). We know φ(C0,N) = E and φ(Ch,N) = h(1 − E) + E. Due to the linear definition
of φ (Equation 3.3), we have

φ(Cα,N) = αφ(Ch,N) + (1 − α)φ(C0,N)
= αh(1 − E) + αE + (1 − α)E
= αh(1 − E) + E,

and therefore, with Equation 3.5, the homophily of Cα is

h(Cα,N) =
αh(1 − E) + E − E

1 − E
= αh.

Non-negativity of Cα follows directly from Ch,C0 ≥ 0. Equivalently, one can show that cα is a non-
negative solution of Equation 4.1 for homophily αh given we have a solution ch ≥ 0 for h ∈ [−1, 0). �

Example 4.6. Given C and N as in Table 2a, we have hmax = 1 for most choices for the prevalence
P = (P1, P2) of the added binary attribute (Figure 1). Only when P is very unbalanced, do we have
hmax < 1. Moreover, P2 is more important than P1 in determining if there exists a non-negative solution
of Equation 4.1 for homophily h = 1. This is likely because in this example old people outnumber
young people, i.e., N2 > N1, meaning an imbalance in the attribute distribution of the old people
weighs more heavily.
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Figure 1. For different combinations of the prevalence P of the added binary attribute (axes),
the maximal homophily value (hmax) that yields a non-negative solution of Equation 4.1 is
shown. C and N are defined as in Table 2a.

Example 4.7. If we stratify the U.S. population with age groups 0 − 14, 15 − 64, 65 − 74, 75+ (and age
distribution N and reciprocal contact matrix C as in Table 1b) by an additional binary attribute with
prevalence P = (P1, P2, P3, P4), we can find a non-negative solution of Equation 4.1 for homophily
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h = 1 for almost all choices of P. We generated 105 random prevalence vectors P ∼ U(0, 1)4 and
recorded whether we were able to obtain a solution c1 ≥ 0. Binning by Pi, i = 1, . . . , 4 confirms the
observation made in the previous example that to ensure hmax = 1, we primarily require a non-extreme
prevalence for the age group with the largest population share, i.e., 15 − 64 year olds (with prevalence
P2) in this example (Figure 2).

a b c d

Figure 2. Proportion of random prevalence vectors P ∈ [0, 1]4 with fixed Pi (i = 1, . . . , 4
in sub panels), for which hmax < 1 for C and N defined for the U.S. population (see Exam-
ple 4.7).

Remark 4.8. Given C,N, A, P as in Definition 4.1, Theorem 4.5 proves the existence of a non-negative
solution ch of Equation 4.1 (i.e., a contact matrix Ch, which satisfies all properties of Definition 4.1)
for certain choices of homophily h ∈ [−1, 1]. Ch ≥ 0 is however normally not a unique solution. To
find the “best” contact matrix C? ∈ [0,∞)A?×A? , we define an objective function g : [0,∞)A?×A? → R

and solve the following optimization problem with linear equality constraints:

C? = arg min
C∈[0,∞)A?×A?

g(C)

subject to Xc = y,
(4.3)

where c ∈ [0,∞)m2
with m = |A∗| is, as before, the contact matrix C written as a column vector. Rather

than solving this problem, we can solve a related, smaller problem over the null space of X with basis
{b1, . . . ,br}, using the known solution ch to formulate linear inequality constraints:

C? = ch + arg min
x∈Rr

g

ch +

r∑
i=1

xibi


subject to ch +

r∑
i=1

xibi ≥ 0.

(4.4)

Example 4.9. For C,N, P defined as in Example 3.6 and homophily h = 1, the null space of X is one-
dimensional. Therefore, there exist infinitely many contact matrices that satisfy all desirable properties
from Definition 4.1. The two extreme cases are shown in Table 3a,b. While both contact matrices have
the same age-age contact patters as in C, they achieve this in the most unbalanced way. For instance,
to obtain an average of C11 = 9 contacts for young people with young people, both matrices assign 18
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Table 3. Selected contact matrices for C,N, P defined as in Example 3.6 and homophily
h = 1. (a,b) Extreme contact matrices described in Example 4.9 where one entry describ-
ing contact of young with young people is zero (highlighted in red). (c) Contact matrix
that maximizes the balance in age-age contact patterns, i.e., that minimizes g defined as in
Equation 4.5. (d) Least-squares solution.

a b

c d

contacts to one group of the young people (those with attribute value True or False, respectively) and
none to the other group. Any convex combination of these two contact matrices will be more balanced.

This example suggests an objective function that minimizes the differences in age-age contact pat-
terns between people with opposite attribute value. Using the Euclidean distance, we can define the
following objective function.

Definition 4.10. Let A? = A×Ad+1 with Ad+1 = {0, 1} be an extended attribute space as in Definition 4.1.
We define an objective function g : [0,∞)A?×A? → R that measures the balance in age-age contact
patterns by

g(C) =
∑
i∈A

∑
j∈A

(
C(i,1),( j,1) + C(i,1),( j,0) −C(i,0),( j,1) −C(i,0),( j,0)

)2
. (4.5)

Example 4.11. The contact matrix shown in Table 3c minimizes g defined as in Equation 4.5. An
alternative would be to define the least-squares solution (i.e., the contact matrix C that minimizes
||Xc − y|| from Equation 4.1) as optimal. This would result in the contact matrix shown in Table 3d.

When perfect segregation (h = 1) is not desired but instead we require h ∈ (0, 1), another objective
function may be more useful. Instead of only looking at the overall homophily of a contact matrix with
respect to a binary attribute, we can also define the specific homophily values for each split interaction.

Definition 4.12. Let A? = A×Ad+1 with Ad+1 = {0, 1} be an extended attribute space as in Definition 4.1.
Given a contact matrix C, we define the specific homophily of the contact patterns that an individual
with attributes (i, v) ∈ A? has with individuals with attributes j ∈ A by comparing the proportion
of contacts between opposite-valued individuals with the expected proportion of such contacts, given
prevalence P. That is,

h(i,v), j(C, P) = 1 −
C(i,v),( j,1−v)

P j,1−v(C(i,v),( j,v) + C(i,v),( j,1−v))
, (4.6)
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Table 4. (a) Contact matrix that minimizes Equation 4.7, the squared differences between
specific homophily values and desired homophily h = 0.5, for C,N, P defined as in Exam-
ple 3.6. (b) Specific homophily values (Equation 4.6) for the contact matrix shown in (a).

a b

with P j,1−v defined as in Equation 3.7.

Ideally, the specific homophily value for each split interaction should equal the overall homophily.
As outlined in Remark 3.5 however, this is only possible if h = 0 or if the prevalence is constant. Thus,
we suggest as another objective to minimize the sum of the squared differences between the specific
homophily values and the desired homophily.

Definition 4.13. Let A? = A×Ad+1 with Ad+1 = {0, 1} be an extended attribute space as in Definition 4.1
and let h ∈ [0, 1] be the desired level of (overall) homophily with respect to the added (d + 1)th binary
attribute. We define an objective function gh : [0,∞)A?×A? → R by setting

gh(C) =
∑
i∈A

∑
j∈A

∑
v∈Ad+1

(
h(i,v), j(C, P) − h

)2
, (4.7)

with P denoting the prevalence.

Example 4.14. For C,N, P defined as in Example 3.6 and homophily h = 0.5, the contact matrix shown
in Table 4a minimizes gh, defined as in Equation 4.7. The specific homophily values, defined as in
Equation 4.6, are shown in Table 4b. Due to the differences in the prevalence P = (0.5, 0.8) of the
binary attribute, a contact matrix where all specific homophily values equal h = 0.5 is not possible, as
it fails the reciprocity condition.

Remark 4.15. By Remark 4.8, there are typically infinitely many contact matrices, which satisfy all
properties of Definition 4.1. Which of these contact matrices we consider optimal depends on the
specific choice of the objective function g. In Definitions 4.10 and 4.13, we describe two possible
objective functions. For certain applications, other objective functions may yield more realistic contact
matrices. Extreme contact matrices such as those shown in Table 3a,b (see Example 4.9) are likely
unrealistic and should be avoided as they can give rise to very different and unrealistic model dynamics.

5. Application

In this section, we will compare a simple infectious disease model that only accounts for age-based
mixing patterns with a more complicated model that accounts for an additional binary attribute with
known homophily and prevalence. We show that disease dynamics may look quite different, especially
if the homophily is high and the infection begins in one of the two groups.
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Definition 5.1. A simple SIR (susceptible, infected, recovered) infectious disease model, in which
the population is stratified into m groups (e.g., age groups or attribute-age groups) that accounts for
assortative mixing is given by

dS j

dt
= −λ j(I)S j

dI j

dt
= λ j(I)S j − rI j

dR j

dt
= rI j

for j = 1, . . . ,m. Here, r is the rate of recovery, the force of infection takes the form

λ j(I) = λ j(I1, . . . , Im) = β

m∑
k=1

C jkIk,

β is the transmission rate and C ∈ [0,∞)m×m is the reciprocal contact matrix. As usual, we further
assume that the population is closed with

m∑
j=1

S j + I j + R j = 1.

Example 5.2. To see the effect of homophily, consider C,N, P as in Example 3.6 and set β = 0.05, r =

0.1. Assume there exists no pre-existing immunity in the population, R j(t = 0) = 0. Further, assume
the disease starts in one sub-population, e.g.,

Iyoung & True(t = 0) = 0.01 Nyoung & True,

while for all other sub-populations j we have I j(0) = 0. A comparison of the disease dynamics for
different levels of homophily reveals several phenomena (Figure 3):

1. Even though initially only young people are infected, age does not matter much in the dynamics,
likely because the contact matrix (Table 2a) exhibits very low homophily with respect to age.

2. The higher the homophily, the later and the lower the peak incidence appears among the indi-
viduals with an attribute value opposite to the one where the disease started. The presence of
homophily thus introduces a delay mechanism. On the contrary, the higher the homophily, the
earlier and higher the peak incidence appears among the sub-populations with the same attribute
value as where the disease started. This is likely due to the requirement that the total number
of contacts are constant, irrespective of the homophily. In the presence of high homophily, rela-
tively more contacts happen between people with the same attribute value, leading to an increased
spread of the disease within one group.

3. With increasing homophily (except for the extreme case of complete segregation, h = 1), the time
until the incidence falls below a certain threshold increases. This is likely because it takes more
time for the disease to manifest itself among the sub-populations with attribute values opposite to
the one where the disease started.
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h = 0 h = 0.8 h = 0.98 h = 1 

Figure 3. Effect of homophily on disease dynamics. For different levels of homophily (sub
panels), the proportion of currently infected people is shown for all four sub-populations
considered in Example 5.2. Color distinguishes the value of the added binary attribute, while
line style differentiates age.

This example clearly shows the impact high levels of homophily can have on disease dynamics and
that it can be important to account for the presence of homophily.

As outlined in Remark 2.5, contact matrices can also be used to generate undirected graphs. A
homophilic contact matrix thus provides a way to obtain a more realistic interaction network, on which
the spread of a pathogen through a community can be studied. The details of this application are
however beyond the scope of this study.

6. More complicated extensions of contact matrices

Thus far, we have described how to expand a given contact matrix by a binary attribute with known
prevalence and homophily. In this section, we will describe one of several possible extensions where
in addition to the homophilic binary attribute the population is also split into several sub-populations
with differential connectivity. This is, for example, needed to accurately model different contact levels
due to occupation; e.g., people with public-facing jobs on average have a lot more contacts than people
with office hours. Notice that in the absence of a homophilic binary attribute, a given contact matrix
can be simply split into several sub-populations with differential connectivity by proportionately taking
into account the relative sub-population sizes and their relative connectivity. We will now describe the
linear conditions a meaningful contact matrix must satisfy in the more complicated case where we
stratify the population by both a homophilic binary attribute and a binary attribute with differential
connectivity.

Definition 6.1. Let A = A1 × · · · × Ad be a combined attribute space, N a corresponding distribution
of a population, C ∈ [0,∞)A×A a reciprocal contact matrix, and Xd+1 a binary attribute in Ad+1 � {0, 1}
with known homophily h as in Definition 4.1. Let Xd+2 be a finitely-valued attribute with values Ad+2

and known differential connectivity K ∈ (0,∞)|Ad+2 |. That is, individuals with attribute value v2 ∈ Ad+2

have Kv2/Kw2 times the number of contacts compared to individuals with attribute value w2 ∈ Ad+2,
assuming all other attributes in A × Ad+1 are the same. Further, let N? be an extended distribution of
the population corresponding to the extended attribute space A? = A × Ad+1 × Ad+2.

An extended contact matrix C? ∈ [0,∞)A?×A? is meaningful if it satisfies all of the following linear
properties:
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(a) Reciprocity (as in Definition 4.1): For all i, j ∈ A?,

N?
i C?

i j = N?
j C?

ji

(b) Same total contacts as in C:

(b1) The total number of contacts of an individual should never depend on the value of the added
homophilic binary attribute Xd+1. That is, for all i ∈ A and all v2 ∈ Ad+2,∑

j∈A?
C?

(i,0,v2), j =
∑
j∈A?

C?
(i,1,v2), j.

(b2) Differential connectivity with respect to Xd+2 described by K. Fix v̄ ∈ Ad+2. Individuals with
attribute v2 ∈ Ad+2 possess Kv2/Kv̄ times more contacts than individuals with attribute v̄ ∈ Ad+2

(and otherwise same characteristics). That is, for all i, j ∈ A and all v1 ∈ Ad+1,

Kv̄C?
(i,v1,v2), j = Kv2C

?
(i,v1,v̄), j.

(b3) The average total number of contacts of individuals with attribute (i, v1) ∈ A×Ad+1 is the same
as in C. That is, for all i ∈ A, v1 ∈ Ad+1,∑

v2∈Ad+2

N?
(i,v1,v2)∑

w2∈Ad+2
N?

(i,v1,w2)

∑
j∈A?

C?
(i,v1,v2), j =

∑
j∈A

Ci, j.

(c) Same contact patterns as in C (as in Definition 4.1): For all i, j ∈ A,∑
v1∈Ad+1

∑
v2∈Ad+2

N?
(i,v1,v2)

Ni

∑
w1∈Ad+1

∑
w2∈Ad+2

C?
(i,v1,v2),( j,w1,w2) = Ci, j

(d) Homophily (as in Definition 4.1): For the proportion φ of contacts between individuals with same
binary attribute values (Equation 3.3) we have

φ =

E(φ)(1 − h) + h if h ≥ 0,
E(φ)(1 + h) if h < 0,

where φ and E(φ) are computed as in Definition 3.4.

If h = 1, we require φ = 1. That is, for any i, j ∈ A and any v2,w2 ∈ Ad+2,

C?
(i,0,v2),( j,1,w2) = C?

(i,1,v2),( j,0,w2) = 0.

Likewise, if h = −1, we require φ = 0. That is, for any i, j ∈ A and any v2,w2 ∈ Ad+2,

C?
(i,0,v2),( j,0,w2) = C?

(i,1,v2),( j,1,w2) = 0.

(e) If N?
i = 0 for some i ∈ A?, we can further assume (as in Definition 4.1) C?

i j = C?
ji = 0 for all j ∈ A?.

Remark 6.2. To find the “best” meaningful extended contact matrix, one solves the same non-linear
optimization problem as outlined in Section 4.
Remark 6.3. Definition 6.1 also includes all linear conditions needed to find a meaningful contact
matrix extended by a binary homophilic attribute, where the two attribute values have differential
connectivity. Simply set Ad+1 = Ad+2 � {0, 1} and use an extended distribution N? ∈ [0,∞)A? with
N?

(i,v1,v2) = 0 whenever v1 , v2.
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7. Conclusion

The current COVID-19 pandemic has revealed the importance of accurate epidemic forecasting
models. One key element of these models is a contact matrix that describes the rates of mixing be-
tween different sub-populations. Age constitutes the primary attribute used to stratify populations. This
is partly because age, especially for COVID-19 with its disproportionate burden on older individuals,
is an important variable but also partly because most empirical work on contact matrices focuses pri-
marily on age. This study introduces new methodology enabling modelers to expand contact matrices
using binary attributes for which the prevalence and the level of homophily in a population is known
or can be estimated. We showed that the disease dynamics can be very different when homophily is
included in a model. A more elaborate, recent model uses this new methodology and shows that ac-
counting for homophily with respect to ethnicity is important when designing optimal vaccine roll-out
strategies [9].

This manuscript leaves several questions unanswered. First, we only consider binary attributes.
This means any non-binary attributes need to be binarized, which may not always be feasible or de-
sirable. An extension to non-binary attributes should be straight-forward and ideas from [10] should
prove useful in this effort. One possible difficulty, however, is that homophily can no longer be de-
scribed by a single value, but requires

(
m
2

)
variables where m is the number of attribute values. Finally,

we presented only a simple, simulation-based application to show the effect of homophily on disease
dynamics. Related theoretical considerations, such as investigating the effect of homophily on the ef-
fective reproductive number using next-generation matrices as in [11], should provide fruitful avenues
for future research.
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