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Abstract: The maturity of human-computer interaction technology has made it possible to use surface 
electromyographic signals (sEMG) to control exoskeleton robots and intelligent prostheses. However, 
the available upper limb rehabilitation robots controlled by sEMG have the shortcoming of inflexible 
joints. This paper proposes a method based on a temporal convolutional network (TCN) to predict 
upper limb joint angles by sEMG. The raw TCN depth was expanded to extract the temporal features 
and save the original information. The timing sequence characteristics of the muscle blocks that 
dominate the upper limb movement are not apparent, leading to low accuracy of the joint angle 
estimation. Therefore, this study squeeze-and-excitation networks (SE-Net) to improve the network 
model of the TCN. Finally, seven movements of the human upper limb were selected for ten human 
subjects, recording elbow angle (EA), shoulder vertical angle (SVA), and shoulder horizontal angle 
(SHA) values during their movements. The designed experiment compared the proposed SE-TCN 
model with the backpropagation (BP) and long short-term memory (LSTM) networks. The proposed 
SE-TCN systematically outperformed the BP network and LSTM model by the mean RMSE values: 
by 25.0 and 36.8% for EA, by 38.6 and 43.6% for SHA, and by 45.6 and 49.5% for SVA, respectively. 
Consequently, its R2 values exceeded those of BP and LSTM by 13.6 and 39.20% for EA, 19.01 and 
31.72% for SHA, and 29.22 and 31.89% for SVA, respectively. This indicates that the proposed SE-
TCN model has good accuracy and can be used to estimate the angles of upper limb rehabilitation 
robots in the future. 
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1. Introduction 

Population ageing has become a global social issue. Aged people are more susceptible to 
Parkinson’s disease and accidents, which result in various types of physical disabilities. Clinical studies 
have shown that reasonable rehabilitation training can help patients restore some limb functions. It 
also helps patients regain some of their living and working abilities. At present, robotics has been 
widely used in various industries. Robots have also successively started to be used in social services, 
medical care, rehabilitation, and other fields. 

Surface electromyography (sEMG) has been considered a reliable source of biosignals for human-
computer interaction control [1]. sEMG is not easily affected by the external environment, such as 
light and ambient sound changes. During human movement, sEMG is generated by the muscle groups 
associated with the movement. sEMG can reflect the specific movement intention of the body to some 
extent [2], and it can better establish a human-machine collaborative control system for rehabilitation 
robots. Compared to inertial sensors, sEMG-based control systems have more potential to enable 
human-machine collaboration. 

In remote control, robots can be used as replacements for safe and diverse tasks. However, the 
performance of current robotic systems is far below the expected level compared to human control and 
interaction capabilities during task execution [3]. Therefore, human motion or control capabilities are 
transferred to the robot through a neural interface to enhance the robot’s functionality and interaction 
capabilities [4]. SEMG decoding of the continuous joint angle provides a more natural and effective 
solution for the realization of human-computer interaction [5]. For example, sEMG signals can be used 
to control a robotic arm [6] remotely. A human activity-aware shared control solution for medical 
human-robot interaction is a hot research topic. Human-machine interactions based on sEMG can 
generate remote object operations that are more suitable for human perception. For example, shared 
human-robot control incorporates the advantages of both humans and robots and is an effective way 
to facilitate efficient surgical procedures [7]. sEMG-based perspective prediction for human activity-
aware shared control solutions for medical human-computer interaction. 

Rehabilitation robots in the medical field are a successful example of human-robot interaction. 
Since rehabilitation robots can provide practical rehabilitation training, they can meet the shortage of 
rehabilitation resources while satisfying patients’ rehabilitation training [8]. In addition, rehabilitation 
robots can improve the actual movement of human-robot interactions and provide behavioral 
predictions. Although the trigger control of traditional rehabilitation robots can meet training needs, 
the safety and comfort of control cannot be guaranteed to a certain extent [9]. Continuous control of 
the rehabilitation robot based on sEMG is a more feasible control strategy. The key is to obtain the 
shoulder and elbow angular motion by sEMG. 

Early on, only a small number of discrete motions could predict joint angles, which could have 
been more intuitive for implementing control schemes close to the natural hand. Continuous control 
of the upper limb rehabilitation robot using sEMG signals can simulate the continuous movement of 
human upper limbs and guide the rehabilitation training of patients. Therefore, continuous joint angle 
estimation by sEMG has become a hot topic of current research. The raw sEMG signal contains a large 
amount of information indicating the intention of upper limb movement. However, the random and 
nonsmooth nature of the raw signal cannot be directly applied to action recognition, so feature 
extraction of the sEMG signal is required [10]. The quality of feature extraction determines the output. 
Therefore, good feature engineering helps predict the upper limb’s continuous angle [11]. Researchers 
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usually choose time-domain, frequency-domain, and time-frequency domain features for sEMG 
feature extraction [12]. Time-domain features are commonly used, such as the mean absolute value 
(MAV), root mean square (RMS), and zero crossings (ZC). MAV is the average of the absolute values 
of the amplitude of the sEMG signal, RMS reflects the energy level of the sEMG during muscle activity, 
and ZC is the number of times the sEMG value crosses the transverse coordinate [13]. 

Researchers have used various regression models to establish a mapping relationship between 
sEMG and joint angles. Wang et al. [14] proposed using wavelet packet energy entropy in a particular 
subspace as a feature of the sEMG signal and using the Elman neural network optimized by a genetic 
algorithm to predict the shoulder and elbow joint angles. Jing et al. [15] used a BP artificial neural 
network to establish a mapping model between sEMG signals and elbow joint angles to predict elbow 
joint angles. Tang et al. [16] used the particle swarm optimization (PSO) algorithm to optimize the 
LSTM, and they used the optimized network to create a mapping between the sEMG signal and the 
joint angles. 

To improve the prediction of continuous motion angles of upper limb joints and the robustness of 
the model, we propose a neural network of SE-TCN. We improve the TCN network model to increase 
the accuracy of joint angle prediction. The experimental results indicate that the method proposed in 
this paper has high accuracy and robustness. The main contributions of this paper are as follows: 

1) We recorded sEMG of seven human upper limb movements as a dataset for the model. 
2) In this paper, the depth of TCN is extended to extract sEMG feature information while preserving 

the original data. 
3) The temporal features of the muscle blocks dominating upper limb movements are not obvious, 

resulting in low joint angle accuracy. In this paper, the SE-Net incorporated in the model can increase 
the weight of important feature information and improve the accuracy of joint angle prediction. 

4) To demonstrate the prediction performance of the SE-TCN model proposed in this paper in 
human-computer interaction. This paper plots the predicted joint angle curves and the corresponding 
actual joint angle curves to visualize the model performance. Each model’s learning and generalization 
abilities were also analyzed using RMSE, R2, and correlation coefficients. 

The rest of this paper is organized as follows. Section 2 describes the acquisition, presentation, 
and preprocessing process of sEMG signals in the dataset and introduces the basic principles of 
the SE-TCN. The experimental results obtained via the proposed and two reference models and 
their comparative analysis are presented in Section 3. The conclusions and future work are 
discussed in Section 4. 

2. Materials and methods 

2.1. Data acquisition 

A total of ten healthy subjects (five males and five females) were invited to participate in this data 
acquisition experiment to collect continuous motion angles and sEMG signals of the upper limb joints. 
The statistics on the subject’s height, weight, and body mass index (BMI) are given in Table 1. 

A 16-channel wireless electromyography (EMG) device from NORAXON, USA, was used to 
acquire sEMG signals and joint angles, with a sampling frequency of 1500 Hz. Wireless EMG sensors 
were placed on the anterior deltoid, middle deltoid, posterior deltoid, biceps, lateral triceps, and medial 
triceps. The position location of the electrodes is shown in Figure 1. The sensor designations and sites 
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are listed in Table 2. 

Table 1. Subject information. 

Number of subjects 
Male to female 

ratio 
Average height (cm) Average weight (kg) 

Average 

BMI (kg/m2) 

10 1:1 170.6  9.49 62.19  3.12 21.37  3.28

 

Figure 1. EMG sensor placement. 

Table 2. Sensor names. 

Number Maker Name Location

1. CH1 ANT.DELTOID 

2. CH2 MID DELTOID. 

3. CH3 POST.DELTOID 

4. CH4 BICEPS BR. 

5. CH5 LAT. TRICEPS 

6. CH6 MED. TRICEPS 

The angle acquisition device used NORAXON’s angle sensors. As shown in Figure 2, the angle 
sensors were placed on the shoulder and elbow joints of the subjects. 
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Figure 2. Angle sensor placement. 

Detailed information on the EMG and angle sensors used is given in Table 3. 

Table 3. Sensor information. 

Device Information

 

Wireless EMG Acquisition Sensors 

 

NORAXON double electrode patch (distance 

between electrodes is 18 mm) 

 

Two Inline 1D/2D Electrical Goniometer 

 

X-Y Goniometer Sensor 

For good contact between the sensor and the arm muscles, the skin surface of the recording area 
was wiped clean with alcohol before placing the sensor. When the subject’s skin was dehydrated, the 
area was tapped with medical tape to remove the skin cells. This helped to improve the quality of the 
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obtained sEMG signal. In this paper, seven movements were designed, as shown in Figure 3, to 
simulate the angle of the elbow and shoulder joints of the actual movement. These movements were 
(i) elbow joint flexion/extension, (ii) shoulder joint flexion/extension, (iii) shoulder joint horizontal 
adduction/abduction, (iv) shoulder joint vertical adduction/abduction, (v) shoulder joint horizontal 
adduction/abduction and elbow flexion/extension, (vi) shoulder joint flexion/extension and elbow 
flexion/extension, and (vii) shoulder joint vertical adduction/abduction and elbow flexion/extension. 

To simulate actual upper limb movements, subjects performed the following actions: elbow joint 
flexion/extension (in the XZ plane, Figure 3(b)), shoulder joint flexion/extension (in the XZ plane, 
Figure 3(c)), shoulder joint horizontal adduction/abduction (in the YZ plane, Figure 3(d)), shoulder 
joint vertical adduction/abduction (in the XY plane, Figure 3(e)), and three shoulder 
adduction/abduction and elbow flexion/extension simultaneous movements (in YZ plane—Figure 3(f), 
XZ plane—Figure 3(g) and XY plane—Figure 3(g)). For example, Figure 3(b) shows that the shoulder 
joint remained unchanged when measuring the elbow joint angle. Meanwhile, when measuring the 
shoulder joint, the elbow joint remained unchanged, as shown in Figure 3(c)–(e). When measuring the 
elbow joint and shoulder joint angle at the same time, the crankshaft was shifted before the shoulder 
joint (Figure 3(f)–(h)). Simultaneous measurement of EA, SVA, and SHA angles was also performed. 

 

Figure 3. Simulate the movement of the upper body. 

Before the sEMG signal and angle signal acquisition, these basic movements had to be 
familiarized. sEMG signals and upper limb joint angles were acquired simultaneously to maintain 
correspondence. Subjects were asked to perform these movements at the same speed within three 
minutes, repeating each movement five times. At the beginning of the action, the acquisition device 
records the sEMG signal and the angle sensor signal with a sampling frequency of 1500 Hz. It saves 
the data after completing all the actions. For example, it took 3 min for subject 1 to complete all the 
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activities and store 270,000 data samples. We constructed the dataset by saving data from each subject 
and then used 70% of the collected experimental data as the training set, 20% as the validation set, 
and 10% as the test set. The study complied with the Declaration of Helsinki regulations, and the Ethics 
Committee approved the protocol. All subjects gave written informed consent and permitted their 
photographing and data to be included in publications for scientific and educational purposes. 

2.2. Data preprocessing 

Acquiring sEMG signals may be disturbed by environmental noise, so the received sEMG 
signals had to be denoised. Since the effective information of the sEMG signals is mainly distributed 
between 20 and 200 Hz, this paper used the third-order Butterworth bandpass filter to retain 
frequencies between 20 and 200 Hz. The attenuation rate of the filter was 18 dB per octave. At the 
same time, this paper uses a notch filter to remove 50 Hz power frequency interference. To prove the 
filter’s effectiveness, the signal spectrograms before and after sEMG filtering were obtained and 
plotted in Figure 4. As can be seen from the dotted line in Figure 4, the filter is able to effectively remove 
low frequency signals from 0 to 20  and 50 Hz of industrial frequency interference signals. 

 

Figure 4. Preprocessing results. 

2.3. Feature extraction 

In this paper, the method of selecting a sliding time window for data segmentation was chosen, 
and the signal features were calculated and analyzed by obtaining several sEMG subdata segments. A 
sliding window of 100 ms was selected, and the signal was characterized by feature extraction with a 
sliding step of one sample. Currently, time domain, frequency domain, and time-frequency domain 
features have been widely used to analyze and process sEMG signals [17,18]. Three time-domain features 
of variance (VAR), mean absolute value (MAV), root mean square (RMS), and median frequency (MF) 
were used in this study. These features of the sEMG signal can be described as follows: 

VAR: 

𝑉𝐴𝑅 ൌ 1
𝑛

∑ ሺ𝑥𝑖 െ 𝑥തሻ2𝑛
𝑖ൌ1                                                                         (1) 
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MAV: 

𝑀𝐴𝑉 ൌ
ଵ

௡
∑ |𝑥௜|௡

௜ୀଵ                                                                              (2) 

RMS: 

𝑅𝑀𝑆 ൌ ටଵ

௡
∑ 𝑥௜

ଶ௡
௜ୀଵ                                                                           (3) 

MF: 

𝑀𝐹 ൌ
ଵ

ଶ
∑ 𝑃ሺ𝑓௜ሻ௡

௜ୀଵ                                                                             (4) 

2.4. SE-TCN 

In recent years, temporal convolutional network (TCN) networks have achieved remarkable 
results in dealing with temporal feature regression and multiclass classification. TCN networks have 
the following characteristics [19]. 

Parallelism: Since convolutional neural networks use the same convolutional kernel for each 
layer, a long sequence of inputs can be processed in parallel with TCNs, unlike RNNs [20] and 
LSTMs [21], which are processed sequentially. 

Flexible receptive field: The introduction of hole convolution can expand the field of perception 
without increasing pooling, so the TCN network has a flexible field of perception. 

Variable input length: 0-padding is added to the temporal convolutional network to enable the 
network to input data of different lengths. 

More stable gradients: They do not explode or disappear due to sharing parameters in different 
time periods. 

Less memory: The same layer of convolutional kernels in a temporal convolutional network is 
shared to take up less memory [22]. 

TCN consists of causal convolution, inflation convolution, and residual links. The difference 
between causal convolution and traditional convolutional neural networks is that it cannot see future 
data and is a one-way structure, not a two-way one. The value at the moment of causal convolution 
depends only on the value at the moment of the previous layer and the value before it, so it is known 
that causal convolution strictly adheres to the time constraint. 

The structure diagram of causal convolution is shown in Figure 5. The input sequence of the 
causal convolution layer is 𝑋 ൌ ሺ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥்ሻ , and the filter is 𝐹 ൌ ሺ𝑓ଵ, 𝑓ଶ, , ⋯ 𝑓௞ሻ . The causal 
convolution at 𝑥௧ can be defined as Eq (5): 

ሺ𝐹 ∗ 𝑋ሻሺ𝑥௧ሻ ൌ ∑ 𝑓௞𝑥௧ି௄ା௞
௄
௞ୀଵ                                                              (5) 
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Figure 5. Causal convolution structure diagram. 

Causal convolution also suffers from the deficiency that the size of the convolution kernel limits the 
modeling length of time. For longer correlations to be captured, many layers must be stacked linearly. 
Researchers have proposed inflated convolution to solve this problem, as shown in Figure 6 [23]. 

 

Figure 6. Inflationary convolution structure diagram. 

Inflationary convolution allows for interval input sampling during convolution, and the sampling 
rate is controlled by 𝑑   in Figure 6. When 𝑑 ൌ 1 , extended convolution is the regular causal 
convolution operation. Generally, the value of 𝑑 is 1, 2, 4, etc. The value of 𝑑 increases as the number 
of layers of the network structure increases. In the network training process, deepening the number of 
layers of the network structure, increasing the filter size, and increasing the expansion factor 𝑑 can 
effectively increase the perceptual field of the convolutional network. In a network with a large 
receptive field, the neurons can involve a more extensive range of sequence data in the convolution 
operation of that layer, which helps to extract more global information. Conversely, a network with a 
smaller receptive field can obtain more detailed information in the sequence. Assuming that the 
expansion coefficient at 𝑥௧ is 𝑑, the expansion convolution can be defined as follows: 

ሺ𝐹 ∗ 𝑑𝑋ሻሺ𝑥௧ሻ ൌ ∑ 𝑓௞𝑥௧ିሺ௄ି௞ሻௗ
௄
௞ୀଵ                                                         (6) 

As the network layers deepen, the input data need to be operated several times with the constantly 
updated weight parameters, and the network structure will become more complex. To alleviate network 
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degradation and other problems, the improved TCN structure incorporates residual connections, whose 
structural diagram is shown in Figure 7 [19]. 

 

Figure 7. TCN with a residual link. 

The input to the TCN network is the extracted sEMG features, but there is a problem of 
importance loss for different feature channels during convolutional pooling. Squeeze and excitation 
networks (SE-Net) emerged to solve the problem of feature importance loss that occurs in the 
traditional convolution process [24]. SE-Net defaults that each feature channel is equally important, 
while the importance of different channels varies in the actual problem. 

SE-Net contains two parts, squeeze and excitation, and its structure is shown in Figure 8. Here 𝑤 
and ℎ are the feature map width and height, respectively; 𝑐 is the number of channels; and the input 
feature map size is h ×w × c. Supposing the input is a feature channel of h × w × c, first perform a 
global average pooling on it, after the compression operation, the feature map is compressed into a 1 
× 1 × c feature map, and then two fully connected layers are used to perform a nonlinear transformation 
of the squeeze result. Finally, there is the Scale section, where the results obtained using excitation are 
multiplied by the input features of the corresponding channel [25]. 

 

Figure 8. SE-Net module structure diagram. 

Since the problem of feature channel importance loss is solved using SE-Net, the latter is placed 
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before the TCN network. The sEMG signal features input to the TCN are first adjusted by SE-Net to 
adjust the weights, and then the upper limb joint angles are predicted by the TCN. The network adjusts 
the weights of SE-Net according to the loss function so that the individual sEMG signal features of the 
input model can adjust the weights they occupy. This allows the dominant muscle to occupy a higher 
weight when predicting the shoulder or elbow joint angle, depending on the dominant muscle. 

In addition, the depth of the TCN is extended, and the convolution module and residual module 
continue to be added to the original TCN network. Connecting the original input information with the 
convolved features. The number of outputs of the last fully connected layer is the same as the number 
of predicted joint angles. To maintain the integrity of the initial input information, the convolutional 
expansion factor 𝑑 = 1 in the residual module, and the structure of the tandem TCN is shown in 
Figure 9. The features extracted by each muscle are input into the SE-TCN module, and the algorithm 
flowchart is shown in Figure 10. 

 

Figure 9. Series TCN module structure diagram. 

 

Figure 10. SE-TCN structure diagram. 

In Figure 10, the SE-TCN model is trained using the training set in the network training stage. 
The network parameters are updated by the mean square error of the predicted angle of the model with 
respect to the actual angle. The best trained model is kept in the n iterations of the training network 
(Save model in Figure 10). In the Network testing stage, the saved model is used to predict the joint 
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angle from the test set data. 
In the selection of the parameters of the network model, we tried many times and finally selected 

the best set of parameters. The resulting SE-TCN model had a SE-Net filter size of 32, with 21 neurons 
in the second fully connected layer. The first TCN input layer had a filter size of 16, a convolutional 
kernel size of k = 3 and an expansion factor d = 2. The hidden layer had a filter size of 16, a convolutional 
kernel size k = 2, and d = 4. The second TCN input layer had a filter size of 32, a convolutional kernel 
size k = 3, an expansion factor d = 8, a filter size of the hidden layer of 64, a perceptual field k = 3, d 
= 16, a filter size of the output layer of 64, and a convolution kernel k = 1. Therefore, we used the mean 
square error ሺ𝑚𝑠𝑒ሻ to be the loss function, as shown in Eq (7): 

𝑙௠௦௘ ൌ
∑ ൣ௬೔ି௬ᇲ൧೙

೔సభ
మ

௡
                                                                            (7) 

The optimizer uses Adam, an algorithm that can replace the traditional stochastic gradient descent 
process for first-order optimization, which can iteratively update the network weights based on training 
data. It has the advantages of simple implementation, high computational efficiency, and small memory 
requirements. The learning rate of Adam was set to 0.01 in this paper. 

2.5. Other models 

2.5.1. Backpropagation (BP) network 

The BP network consists of an input, hidden, and output layer. Researchers have already 
implemented BP networks to predict upper limb joint angles [26]. This study used the input BP network 
with a 20-dimensional sEMG signal feature and angle signal, and the output was a three-dimensional 
angle signal. The number of neurons in the input layer of the BP network was 20, the number of 
neurons in the middle layer was 15, and the number of neurons in the output layer was 3. 

2.5.2. Long Short-Term Memory (LSTM) network 

LSTM is a recurrent neural network (RNN) architecture consisting of a forgetting, input, and 
output gate. Researchers have proposed LSTM-based methods for estimating continuous joint angle 
motion [16]. The input LSTM was a 20-dimensional sEMG signal feature and angle signal, and the 
output was a three-dimensional angle signal. There were three layers of LSTM in the model, and the 
number of neurons in each layer of LSTM was 50. The learning rate was 0.001, the loss function was 
MSE, and the optimizer was the Adam algorithm. 

2.6. Evaluation indicators 

This study used the root mean square error (RMSE) and the mean coefficient of determination 
ሺ𝑅ଶ) to evaluate the angular prediction performance. The correlation coefficient is the metric used for 
the analysis to describe the estimation performance accurately. Ten subjects were tested separately 
using the correlation coefficient (CC). 

A smaller value of RMSE means better model prediction results. The RMSE is calculated as follows. 
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𝑅𝑀𝑆𝐸 ൌ ට∑ ൫௬೙
ᇲ ି௬೙൯

మಿ
೙సబ

ே
                                                                        (8) 

where 𝑁 is the length of the joint angle, 𝑦௡
ᇱ  is the estimated joint angle, and 𝑦 ௡ is the actual joint angle. 

𝑅ଶ is calculated as follows: 

𝑅ଶ ൌ 1 െ
∑ ൫௬೙

ᇲ ି௬೙൯
మಿ

೙సబ

∑ ሺ௬೙ି௬೙തതതതሻమಿ
೙సబ

                                                                         (9) 

where 𝑦௡ is the actual joint angle, 𝑦௡തതത is the average of 𝑦௡, and 𝑦௡
ᇱ  is the estimated joint angle. R2 is 

between 0 and 1. The closer the result of R2 is to 1, the better the regression fit is. When the fit is 
greater than 0.8, the model is considered to have a better fit. 

The correlation coefficient measures the strength of the relationship between two sets of series 
and can be used to assess how well the predicted joint angles match the actual joint angles. 

𝑟൫𝑦′, 𝑦൯ ൌ 𝑐𝑜𝑣ሺ𝑦′,𝑦ሻ

ට𝑉𝑎𝑟ቂ𝑦′ቃ𝑉𝑎𝑟ሾ𝑦ሿ
                                                     (10) 

where 𝑟  denotes the correlation coefficient, 𝑐𝑜𝑣ሺ𝑦′, 𝑦ሻ  denotes the covariance of  𝑦′  and 𝑦 , 
and 𝑣𝑎𝑟  denotes the variance. The closer the correlation coefficient is to 1, the stronger and more 
positively correlated the correlation is. 

3. Results 

The results of all analyses were based on data from ten healthy subjects summarized in Table 1. 
Seven movements were designed to simulate the movements of the elbow and shoulder joints, each 
repeated five times. Seventy percent of the collected experimental data were used as the training set, 20% 
as the validation set, and 10% as the test set. In this paper, we used the angle estimation results to 
validate the accuracy and feasibility of the model versus other available models. 

3.1. Performance with and without SE-Net 

Before comparing the models, experiments were conducted to check whether SE-Net 
improves the TCN network. The prediction results of the training set before adding SE-Net are 
shown in Figure 11. The poor joint angle fit is the feature loss due to the different feature importance 
of the channels in the convolution pooling process. For example, the deltoid muscle dominates the 
shoulder joint extension, and the joint angle is poorly fitted when predicting the shoulder joint angle 
due to the nondominance of the deltoid feature among the input multidimensional features. With the 
inclusion of SE-Net, the prediction results of the training set were obtained, as shown in Figure 12. It 
can be seen from the figure that the angle prediction result is better than that of the network without 
SE-Net. The input sEMG signal features first went through the SE-TCN to predict the angle, and the 
network adjusted the weight of SE-Net according to the loss function so that the features of the 
dominant motor muscle occupied a higher weight. 

In addition, the parameters of the network model remained consistent during the testing. All left-
axis units are angles (°) for an accurate comparison of the results. It can be seen that the angles 
predicted by TCN became more accurate after adding SE-Net. 
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Figure 11. Angle prediction results of the TCN training set without SE-Net. 

 

Figure 12. Angle prediction results of the TCN training set with SE-Net. 

3.2. Comparison of angle estimation results of different models 

In this section, the performance of the proposed SE-TCN model for joint angle estimation was 
investigated and compared with the BP network and LSTM models. For model comparison, the 
proposed model and the other two models were based on the TensorFlow and Keras [27] frameworks, 
and the sEMG data after preprocessing and feature extraction were used as a comparison between each 
input validation model. To estimate the shoulder and elbow joint angles of the subjects, the processed 
sEMG signals were fed into the BP, LSTM and SE-TCN networks for training. The proposed SE-TCN 
model had significantly better fitting ability than the BP network and the LSTM model. 

As shown in Figure 13, BP and LSTM had poorer angle prediction results than SE-TCN. The 
prediction errors of the BP and LSTM models were more apparent when the joint motion amplitude 
was large. Meanwhile, the proposed SE-TCN model could predict the joint motion most precisely, and 
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the prediction curves nearly overlapped with the actual curves. 

 

Figure 13. BP, LSTM and SE-TCN networks training set results. 

After training, the test set was fed into the BP network (Figure 14(a)), the LSTM model 
(Figure 14(b)), and the SE-TCN model (Figure 14(c)) for prediction. The BP network was less 
accurate and smoother in predicting SVA angles, and the LSTM network improved slightly but was 
still lacking in fine angle prediction. The proposed SE-TCN network had more precise and smoother 
angles than the BP and LSTM networks in three consecutive motions. Because no effective feature 
weighting was performed before input to the network, the muscle features dominating the motion of a 
joint did not occupy more weight in predicting the joint angle. 

 
(a) 

Continued on next page 
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(b) 

 
(c) 

Figure 14. Prediction results of three model validation sets: (a) BP network results, (b) 
LSTM network results, and (c) SE-TCN results. 

3.3. Comparative analysis of the three models’ performances 

The RMSE results on the joint angle prediction via the BP network, LSTM, and SE-TCN models 
for ten subjects are listed in Table 4. When the sEMG signals after preprocessing and feature extraction 
were input into the network structure, the continuous estimated values of the BP network (EA: 8.479, 
SHA: 10.854, SVA: 11.530) and LSTM networks (EA: 7.168, SHA: 9.974, SVA: 10.705) were 
significantly higher than the continuous estimated values of the SE-TCN network (EA: 5.353, SHA: 
6.121, SVA: 5.818). The mean RMSE of SE-TCN compared to BP and LSTM decreased by (EA: 25.3% 
SHA: 38.6%, SVA: 45.6%) and (EA: 36.8%, SHA: 43.6%, SVA: 49.5%). The lower the RMSE result 
is, the better the fitting performance of the model. Therefore, the prediction results of the SE-TCN 
were significantly better than those of BP and LSTM. 
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Table 4. RMSE results for the average joint angle prediction of the three models. 

The continuous estimated R2 evaluation results of the BP, LSTM, and SE-TCN networks are 
summarized in Table 5. When the sEMG signals after preprocessing and feature extraction were 
incorporated into the network structure, the continuous estimated R2 values of the BP network (EA: 0.721, 
SHA: 0.708, SVA: 0.640) and the LSTM network (EA: 0.588, SHA: 0.640, SVA: 0.627) were 
significantly lower than the continuous estimated R2 values of the SE-TCN network (EA: 0.819, SHA: 
0.843, SVA: 0.827). The mean R2 of SE-TCN compared to BP and LSTM increased by (EA: 13.60%, 
SHA: 19.01%, SVA: 29.22%) and (EA: 39.20% SHA: 31.72%, SVA: 31.89%). The higher the result 
of R2 is, the better the fitting performance of the surface model. The results show that the prediction 
results of the SE-TCN were significantly better than those of BP and LSTM. 

Table 5． R2 results for the average joint angle prediction of the three models. 

The RMSE and R2 values of the ten subjects are plotted in Figures 15 and 16, respectively. The 
SE-TCN has the lowest RMSE and the highest R2 values. The prediction results of the three networks 
show that the SE-TCN network has the best performance. 

subject BP Networks LSTM SE-TCN 

 EA SHA SVA EA SHA SVA EA SHA SVA

1 7.891 6.367 12.104 11.645 11.944 12.640 6.489 5.904 2.763

2 11.359 17.648 8.256 7.013 10.646 16.217 6.139 4.416 3.169

3 10.594 17.115 8.724 7.105 10.163 13.580 6.648 8.228 7.497

4 5.075 10.954 16.622 4.750 13.678 11.576 3.567 7.200 5.691

5 4.221 9.709 17.019 5.450 10.766 6.044 4.353 7.629 7.020

6 13.377 9.633 8.784 6.604 7.903 9.039 6.007 7.839 8.498

7 8.609 14.616 11.541 5.010 10.018 7.746 4.526 7.727 7.776

8 8.930 10.646 18.606 6.725 8.600 19.618 5.146 6.666 6.357

9 6.417 4.037 6.680 6.907 7.423 7.143 5.331 2.521 5.994

10 8.317 7.813 6.967 10.467 8.598 3.446 5.319 3.081 3.413

Average 8.479 10.854 11.530 7.168 9.974 10.705 5.353 6.121 5.818

subject BP Networks LSTM SE-TCN 

 EA SHA SVA EA SHA SVA EA SHA SVA

1 0.765 0.748 0.759 0.478 0.369 0.640 0.832 0.813 0.851

2 0.674 0.607 0.560 0.643 0.668 0.632 0.849 0.803 0.813

3 0.723 0.572 0.672 0.663 0.697 0.610 0.786 0.748 0.766

4 0.645 0.683 0.693 0.508 0.465 0.665 0.801 0.853 0.803

5 0.661 0.705 0.566 0.423 0.639 0.626 0.793 0.824 0.774

6 0.761 0.801 0.795 0.771 0.812 0.729 0.805 0.841 0.821

7 0.702 0.821 0.605 0.416 0.640 0.732 0.928 0.870 0.810

8 0.716 0.891 0.748 0.732 0.817 0.731 0.750 0.890 0.971

9 0.760 0.584 0.529 0.555 0.695 0.517 0.730 0.838 0.791

10 0.804 0.665 0.473 0.690 0.595 0.390 0.916 0.948 0.874

Average 0.721 0.708 0.640 0.588 0.640 0.627 0.819 0.843 0.827
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Figure 15. Average RMSE results for the ten subjects in the three models. 

 

Figure 16. Average R2 results for the ten subjects in the three models. 

 

Figure 17. Comparison of the training times of different networks. 

Reducing the training time can improve the system’s response speed, thereby improving the real-
time performance of the system. Therefore, a more comprehensive comparative analysis of the models 
was conducted. The same data set and the same computer were used in this study to train the LSTM 
and SE-TCN networks and record the running time of the two models according to the comparative 
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experiment. The time of each training session was recorded, as shown in Figure 17. It can be seen that 
the model training speed of SE-TCN is much faster than LSTM. 

3.4. Comparison of model salience 

These ten subjects were tested to demonstrate the reproducibility and accuracy of the method 
systematically. For each model, ten runs were made, and correlation coefficients were recorded for 
three angles. The mean values of the correlation coefficients for the subjects are listed in Table 6. The 
results of the SE-TCN network (EA: 89.4%, SHA: 90.8%, SVA: 87.2%) were better than those of the 
LSTM network (EA: 80.9%, SHA: 83.7%, SVA: 80.9%) and BP networks (EA: 79.9%, SHA: 82.7%, 
SVA: 73.3%). To further verify whether the proposed SE-TCN model outperformed the BP and LSTM 
models, a t-test was performed. The test results and correlation coefficients of the ten subjects are 
presented in Figure 18, confirming that the SE-TCN model significantly outperformed the BP and 
LSTM models. The stars (*) represent significance. 

Table 6. Correlation coefficients of the measured and estimated joint angles for ten 
subjects under study were obtained via the three models. 

 

(a) 
Continued on next page 

subject BP Networks LSTM SE-TCN 

 EA SHA SVA EA SHA SVA EA SHA SVA

1 0.853 0.907 0.730 0.832 0.901 0.803 0.911 0.936 0.902

2 0.790 0.809 0.746 0.789 0.815 0.677 0.874 0.864 0.859

3 0.659 0.693 0.624 0.697 0.683 0.672 0.878 0.808 0.831

4 0.816 0.891 0.830 0.772 0.804 0.673 0.861 0.949 0.882

5 0.843 0.830 0.754 0.865 0.861 0.682 0.906 0.914 0.865

6 0.854 0.829 0.800 0.932 0.912 0.873 0.959 0.932 0.918

7 0.779 0.829 0.649 0.779 0.885 0.686 0.867 0.952 0.847

8 0.933 0.733 0.885 0.922 0.898 0.798 0.943 0.968 0.879

9 0.779 0.893 0.896 0.794 0.865 0.709 0.883 0.955 0.881

10 0.621 0.610 0.636 0.488 0.767 0.230 0.875 0.877 0.855

Average 0.793 0.802 0.755 0.787 0.839 0.680 0.896 0.916 0.872
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(b) 

 

(c) 

Figure 18. T-test of SE-TCN on BP and LSTM based on the statistical analysis results. ‘*’ 
indicates statistical significance (p < 0.05), ‘**’ indicates statistical significance (p < 0.01) 
‘***’ indicates statistical significance (p < 0.001). 

4. Discussion 

This study attempted to improve the prediction of upper limb joint angles using sEMG signals by 
comprehensively combining SE-Net and series TCN network components. The prediction results for 
multiple joint angles of the upper limbs show that the proposed SE-TCN features adjustable feature 
channel weights and a gradient-free burst of the TCN. It offers high accuracy and high performance in 
the task of predicting angles. 

After several evaluations, the proposed SE-TCN and available BP and LSTM networks could 
predict upper limb joint angles based on sEMG signals. Through comprehensive experiments, it was 
found that all three networks could fit the actual joint angles during training. Statistical results show 



3257 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 3237–3260. 

that the mean RMSE of SE-TCN compared to BP and LSTM decreased by (EA: 25.3% SHA: 38.6%, 
SVA: 45.6%) and (EA: 36.8%, SHA: 43.6%, SVA: 49.5%). Compared to BP and LSTM, the mean R2 of 
SE-TCN increased by (EA: 13.60%, SHA: 19.01%, SVA: 29.22%) and (EA: 39.20% SHA: 31.72%, 
SVA: 31.89%). SE-TCN has better performance than other networks. By comparison of significance, 
the SE-TCN model outperformed the BP (𝜌 ൏ 0.001) and LSTM (𝜌 ൏ 0.01) models among the ten 
subjects. Although the BP network had the disadvantage of underpredicting temporal sequences, it was 
better than LSTM in some aspects, as in subject 4.  

The BP network was unable to explore the correlation of the sequence data in processing the time 
series, resulting in a poor fit of the BP network. Besides, although LSTM did outperform the BP 
network, due to the linear mode of processing it took longer training time under normal circumstances. 
Because TCN networks can perform convolution in parallel, the training time was much shorter. In 
addition, TCN solved the disadvantage of gradient explosion of LSTM. The SE-Net used in this 
paper alleviates the problem of missing feature importance in the traditional convolution process. 
The SE-TCN model had the best overall estimation performance in terms of joint angle prediction. 

However, this study had some limitations. The sensor we used is the NORAXON companion 
angle sensor. When the subject moved, it arched along with the elevated muscles. In human-machine 
interaction applications such as robot-assisted minimally invasive surgery, finer sensors are required 
to capture angular data. 

In a follow-up study, finer sensors will be used, and the network structure will be improved to 
extract better the information hidden in the time series. A larger population of participants with a 
broader age, weight, and BMI range will be recruited, and more significant sEMG features will be 
extracted further to improve the prediction of upper limb joint angles. 

5. Conclusions 

The maturity of human-computer interaction technology has made possible the use of sEMG to 
control exoskeleton robots and intelligent prostheses. However, the angle control of the upper limb 
rehabilitation robot still has the disadvantage of inflexibility. Although BP and LSTM can predict the 
joint angles, they have the disadvantages of poor smoothness, high memory consumption, and low 
accuracy. In addition, LSTM typically requires a long training time. 

In this paper, we proposed the SE-TCN algorithm. Deepen and extend the network depth of the 
TCN to solve the problem of the long training time of LSTM. In addition, the temporal features of the 
muscle blocks dominating the upper limb movements are not apparent, resulting in low joint angle 
accuracy. SE-Net was added to adjust the feature weights of the network. Finally, we design 
experiments to compare the proposed SE-TCN network with the BP and LSTM networks. The 
results show that the SE-TCN proposed in this paper shows high accuracy and performance in 
predicting angles. 

The approach presented in this paper improved several aspects, including accuracy and training 
time. In the future, we will use this network further to expand the application of bioelectricity signals 
and human-computer interaction. 
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