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Abstract: Neural signatures of working memory have been frequently identified in the spiking activity 
of different brain areas. However, some studies reported no memory-related change in the spiking 
activity of the middle temporal (MT) area in the visual cortex. However, recently it was shown that 
the content of working memory is reflected as an increase in the dimensionality of the average spiking 
activity of the MT neurons. This study aimed to find the features that can reveal memory-related 
changes with the help of machine-learning algorithms. In this regard, different linear and nonlinear 
features were obtained from the neuronal spiking activity during the presence and absence of working 
memory. To select the optimum features, the Genetic algorithm, Particle Swarm Optimization, and Ant 
Colony Optimization methods were employed. The classification was performed using the Support 
Vector Machine (SVM) and the K-Nearest Neighbor (KNN) classifiers. Our results suggest that the 
deployment of spatial working memory can be perfectly detected from spiking patterns of MT neurons 
with an accuracy of 99.65 േ 0.12 using the KNN and 99.50 േ 0.26 using the SVM classifiers. 
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1. Introduction  

Machine-learning algorithms are well-known approaches with a wide range of applications in 
biomedical signal processing, such as classification [1], regression [2], and optimization [3]. In medical 
applications, diagnosis, recognition, or prediction are the most important tasks that can be handled 
using classification techniques [4]. In literature, a wide range of applications can be found based on 
the classification techniques such as emotion recognition [5], text classification [6], activity 
recognition [7], and epileptic seizure classification [8]. In most classification techniques, the 
classification performance strongly depends on the input features of the classification algorithms. 
Hence, feature extraction, the process of summarizing the data into some indexes, and feature selection, 
the process of finding the optimum combination of the extracted features, play important roles in 
classification approaches [9].  

Among the diverse features that can be extracted from any data, fractal-based features are known 
as powerful nonlinear tools for measuring data complexity [10]. For example, it was shown that an 
individual’s eye movements are closely related to fractal patterns [11]. Also, it was revealed that the 
fractality of the electroencephalography (EEG) signals is significantly reduced in schizophrenia [12]. 
Furthermore, it found that the memory content could increase the fractality of the EEG signals [13]. 
Another class of powerful features is the features derived from transformed data. For instance, the 
features based on the time-frequency transforms strongly help to predict atrial fibrillation [14], 
diagnosis of heart failure [15], and detection of mitral valve prolapse [16]. Such transforms are 
sometimes not directly used for feature extraction; however, they can be beneficial in the data 
preparation processes prior to feature extraction [17]. 

The study of the brain’s cognitive functions, such as working memory and over and covert visual 
attention, are interesting areas of research. Thus, many studies have been conducted to investigate how 
these top-down functions influence neural spiking activity in different areas of the brain [18–20]. 
Nonetheless, different studies claimed that no memory-related modulation could be found in the neural 
spiking activity of the middle temporal (MT) cortex [21–23]. On the other hand, a recent study showed 
that working memory increased the fractionality of the firing rate signals [24]. Many studies have 
shown the neural correlate of working memory as an increase in the firing rate of neurons in the 
prefrontal [19,25,26], parietal [27], and visual [25] cortices; however, no such memory-related change 
in the average spiking activity of neurons has been reported in extrastriate cortex including V4 [19] 
and the middle temporal (MT) cortex [19,25] even after applying machine learning techniques [25]. In 
this paper, we will focus on the maintenance of spatial information, which has been shown to be sent 
directly from frontal eye field to the extrastriate cortex through feedback connections in form of 
persistent spiking activity [19]. Although spatial working memory does not increase the average firing 
rate of extrastriate neurons, it significantly enhances the sensitivity of individual neurons to incoming 
visual stimuli [26], alters the correlated activity of the population of neurons [18], increases the power 
of the local field potential (LFP) in the frequency band of alpha-beta, enhances the spike-phase 
coherency of MT responses in the same frequency range [28] and increases the fractionality of MT 
spiking activity [24]. 

As mentioned above, a recent study revealed that when the spiking activity of neurons is mapped 



3218 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 3216–3236. 

to the fractal dimension feature space, the content of working memory can be captured [24]. In this 
study, we examined whether a set of linear and/or nonlinear features could reveal the deployment of 
spatial working memory from the spiking activity of neurons in the area MT. In this regard, we used 
two different learners, three feature selection algorithms, and two cross-validation methods to show 
the robustness of our results. The remaining parts of the paper are arranged as follows: Section 2 
describes the studied data, extracted features, selection methods, classification algorithms, and 
classification assessment criteria. Section 3 presents the results, and Section 4 discusses the results and 
concludes the paper. 

2. Materials and methods 

2.1. Data description 

All experimental procedures were performed under the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals, the Society for Neuroscience Guidelines and Policies. The 
protocols for all experimental, surgical, and behavioral procedures were approved by the Montana 
State University Institutional Animal Care and Use Committee. 

In this study, the spiking activity of 131 neurons (stored at 32 kHz), recorded in 11 sessions using 
electrode arrays, was used. These signals were recorded from the area MT (Figure 1a) of the two male 
macaque monkeys’ brains (five and seven years old). The monkeys, already acquainted with carrying 
out the memory-guided saccade (MGS) task, were positioned on a customized chair in front of a 
monitor (24 inches with 144 Hz refresh rate) at a distance of 28.5 cm from their eyes. Initially, during 
a surgery in which the monkeys were anesthetized, the recording chambers were mounted on the 
monkeys’ skulls in the MT area. The recordings of single electrodes were used to confirm that the 
chambers are mounted in a desired (MT) area of the monkeys’ brains, During the task, the monkeys’ 
heads were restrained, and they received juice as a reward through a syringe pump. This reward 
delivery, as well as the visual stimulus presentation procedures, were controlled using the 
MonkeyLogic toolbox in MATLAB software. Moreover, a photodiode was used to record the actual 
time of the visual stimulus incidence. Then the recorded data were digitalized with a sampling 
frequency of 32 kHz and stored. 

The MGS task commenced with the appearance of a fixation point (FP) in the center of the 
monitor. In this period, called the fixation period, the monkeys are required to fixate at the FP for 1000 
ms. After that, while the monkeys were fixating on the FP, a visual stimulus appeared in one of the 
positions, whether IN (same visual hemifield as the neuron’s receptive field; displayed with red dots) 
or OUT (opposite hemifield relative to the RF of the recorded neuron; displayed with a green dot) 
conditions shown in Figure 1b. The stimulus remained for 1000 ms and then disappeared (visual 
period). As soon as the visual cue disappeared, the memory period started and lasted for 1000 ms. 
During the memory period, the monkeys had to keep gazing at the FP and memorize the location of 
the disappeared cue. Finally, the monkeys were obliged to make a saccade to the remembered location 
after the disappearance of the FP to receive a reward. The MGS phases are simply portrayed in Figure 
1c, along with the recorded spiking activity for a sample MT neuron during the MGS task (more details 
can be found in see [18,19]). 
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Figure 1. a) The area MT of the brain wherein the firing rate signals were recorded. b) 
Potential positions for the visual stimulus during the visual period of the MGS task. The 
red dots indicate the locations in the same hemifield (IN conditions), and the green dot 
indicates the location in the opposite hemifield (OUT condition) as the receptive field of 
the recorded neuron. The dashed line shows an imaginary receptive field of a sample 
neuron. c) The schematic representation of the MGS task, including the fixation 
(appearance of the FP), visual (appearance of visual stimulus), memory (disappearance of 
the visual stimulus), and saccade (after the disappearance of the FP) periods, as well as the 
corresponding response of a sample neuron. The average neural response during IN and 
OUT conditions are shown in green and pink, respectively. 

2.2. Data preparation 

Data preparation plays a vital role in obtaining the best results for machine-learning approaches. 
Here, in the first step, the average spiking activity of individual neurons across trials was obtained. In 
the next step, the average firing rate signals of each neuron in IN conditions and OUT were considered 
for extracting the features. In order to eliminate the spiking activity related to the disappearance of the 
visual stimulus in the memory period, the first 400 ms of this period were trimmed for the feature 
extraction step. In the final step, the smoothed signals were considered for the following processes. 
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2.3. Feature extraction 

Extracting distinguishable features is an essential step in detecting the presence of the working 
memory. This section introduces the six most used fractal features and some statistical measures. Also, 
four frequently used transforms in signal processing are described. 

2.3.1. Features based on fractal dimension 

Fractal dimension (FD) is an index of complexity that refers to an object’s non-integer dimension 
geometrically [29]. FD can be obtained using different algorithms; however, in general, it can be 
obtained based on the number of blocks forming a pattern or covering the data graph. Here, six famous 
algorithms for calculating the FD are described. 

Higuchi fractal dimension (HFD): HFD is an accurate box-counting method that is the main 
algorithm for calculating the FD of a graph [30]. Any time series 𝑥௧: 𝑥ሺ1ሻ, 𝑥ሺ2ሻ, … , 𝑥ሺ𝑁ሻ with a finite 
number of samples (𝑁) can be expressed as the 𝑘 sets of 𝑥௠

௞  where 

𝑥௠ሺ𝑘ሻ ൌ ሼ𝑥ሺ𝑚ሻ, 𝑥ሺ𝑚 ൅ 𝑘ሻ, 𝑥ሺ𝑚 ൅ 2𝑘ሻ, … , 𝑥ሺ𝑚 ൅ 𝑘𝑅ሻሽ. (1)

Here, 𝑚 ൌ 1,2, … , 𝑘  is the initial time, 𝑘 ൌ 1,2, … , 𝑘௠  is the delay, and 𝑅 ൌ ቂேି௠

௞
ቃ . Note that 

ሾ… ሿ denotes the integer part of the internal number. Accordingly, the curve length of each subset can 
be defined as 

𝐿௠
୩ ൌ

𝑁 െ 1
𝑅𝑘ଶ ෍ห𝑥௠ା௜௞ െ 𝑥௠ାሺ௜ିଵሻ௞ห

ோ

௜ୀଵ

, (2)

Letting 〈𝐿௞〉௠ defines the average value of 𝑚 curve lengths, it can be written that 

〈𝐿௞〉௠ ∝ 𝑘ି஽, (3)

where 𝐷 is FD obtained using the Higuchi algorithm. In this paper, 𝑘௠ ൌ 30 was determined based 
on trial and error. 

Katz fractal dimension (KFD): KFD is a distance-based technique for obtaining the FD value 
that uses the averaged Euclidean distance of two consecutive points in a time series [31]. If 𝐿 defines 
the sum of Euclidean distance between every two successive samples (𝐿 ൌ ∑ 𝑑𝑖𝑠𝑡ா௨௖௟௜ௗ௘௔௡ሺ𝑛௜, 𝑛௜ାଵሻேିଵ

௜ୀଵ ) 
and 𝐿௠ denotes the maximum value of the Euclidean distance between the first and 𝑗th sample (𝐿௠ ൌ

𝑚𝑎𝑥 ቀ𝑑𝑖𝑠𝑡ா௨௖௟௜ௗ௘௔௡൫𝑛ଵ, 𝑛௝൯ቁ  𝑓𝑜𝑟 𝑗 ൌ 2, … , 𝑁), the FD can be obtained as  

𝐷 ൌ
logሺ𝑁ሻ

log ቀ𝑁𝑑
𝐿 ቁ

. (4)

In the above equation, 𝑁 is the number of samples in a given time series, and 𝐷 is the FD value 
with the Katz technique. 

Generalized Hurst exponent (GHE): GHE is known as a fractal index indicating the long-rage 
dependence of time series that uses the 𝑞th-order moment of the distribution [32]. Assuming 𝑥ሺ𝑡ሻ as 
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the studied time series with 𝑁 samples, the the 𝑞th-order moment of the distribution can be defined as 

𝐾௤
ఛ ൌ

〈|𝑥ሺ𝑡ሻ െ 𝑥ሺ𝑡 െ 𝜏ሻ|௤〉௧

〈|𝑥ሺ𝑡ሻ|௤〉
, (5)

where 𝜏 is the delay and 〈… 〉௧ indicates the average value of the internal value over the total duration. 
Then, the fractal dimension of the time series can be obtained through 

𝐾௤
ఛ ∝ ൬

𝜏
𝑇௦

൰
௤ு

, (6)

where 𝑇௦ is the sampling time, and 𝐻 refers to the GHE of the time series. In this study, the first-
order moment was considered. 

Margaos and Sun fractal dimension (MSFD): MSFD is a morphological method for calculating 
FD since it tries to cover the data graph employing the morphological operators, i.e., erosion and 
dilation [33]. The support-limited erosions and dilations with the support set 𝑠 (𝑠 ൌ 1,2, … , 𝑁) and 
using the structuring element of 𝑏 can be formulated as 

𝑒𝑟𝑜𝑠𝑖𝑜𝑛: ൜
𝑥௡ ⊕௦ 𝑏௞ ൌ 𝑚𝑎𝑥ሼ𝑥௡ିଵ, 𝑥௡, 𝑥௡ାଵሽ 𝑓𝑜𝑟 𝑘 ൌ 1
𝑥௡ ⊕௦ 𝑏௞ ൌ 𝑚𝑎𝑥ሼ𝑥௡ିଵ ⊕௦ 𝑏௞, 𝑥௡ାଵ ⊕௦ 𝑏௞ሽ 𝑓𝑜𝑟 𝑘 ൒ 2

, 

𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛: ቊ
𝑥௡ ⊖௦ 𝑏௞ ൌ 𝑚𝑖𝑛ሼ𝑥௡ିଵ, 𝑥௡, 𝑥௡ାଵሽ 𝑓𝑜𝑟 𝑘 ൌ 1
𝑥௡ ⊖௦ 𝑏௞ ൌ 𝑚𝑖𝑛ሼ𝑥௡ିଵ ⊖௦ 𝑏௞, 𝑥௡ାଵ ⊖௦ 𝑏௞ሽ 𝑓𝑜𝑟 𝑘 ൒ 2

, 
(7)

where 𝑘 ൌ 1,2, … , 𝑘௠. Consequently, the morphological cover that surrounds the data graph can be 
obtained as 

𝐶௞ ൌ ෍ሾሺ𝑥௡ ⊕௦ 𝑏௞ሻ െ ሺ𝑥௡ ⊖௦ 𝑏௞ሻሿ
ே

௡ୀଵ

. (8)

Here 𝑘௠ is set according to the rule mentioned in [34]. Finally, the morphological FD of the 

time series can be acquired as the angular coefficient of linear regression of 𝑙𝑛 ൭
஼ೖ

ቀ
మೖ
ಿ

ቁ
మ൱ vs. 𝑙𝑛 ቆ

ଵ
మೖ
ಿ

ቇ. 

Leibovich and Toth fractal dimension (LTD): LTD is the fast implementation of the box-
counting algorithm [35]. The box-counting algorithm is based on the number of blocks to which the 
data graph can be split. So, the FD can be found as  

𝐷 ൌ lim
ఢ→଴

log൫𝑛௕௟௢௖௞௦ሺ𝑑ሻ൯

log ቀ1
𝑑ቁ

, (9)

where 𝑑 is the size of the blocks and 𝐷 is the FD base on the original box-counting method. The 
LTD algorithm implements the box-counting method by withdrawing too small and too large blocks; 
therefore, it is faster than the original algorithm [36]. 

Fractal Volatility (FV): FV computes the FD of a time series using the box-counting method 
with the rand-walk process [37]. In other words, it splits the data into blocks of size 𝑑 by performing 
the random-walk process. 
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2.3.2. Features based on transforms 

Discrete Wavelet Transform (DWT): DWT describes any data by a set of weighted orthonormal 
wavelets called mother wavelets [38] according to the following relation 

𝑋௠,௡ ൌ ෍ 𝑥௡
1

√2௠
𝜓ሺ2ି௠𝑡 െ 𝑛ሻ

ே

௡ୀଵ

, (10)

where 𝑁 is the total number of samples, 𝑋௠,௡ is the transformed data, 𝜓 is the orthonormal wavelet. 
Moreover, 𝑚 and 𝑛 are two control parameters regarding the translation and dilation operation of 
the discrete wavelet and the data. DWT includes temporal information as well as frequency 
information in different scales. In this paper, the db4 was selected as the orthonormal wavelet for 
further analysis. 

Discrete Fourier Transform (DFT): DFT is the most fundamental transformation that describes 
the data based on some weighted sinusoidal functions. DFT can be defined 

𝑋௞ ൌ ෍ 𝑥௡eି௝
ଶగ
ே ௞௡

ே

௡ୀଵ

, (11)

where 𝑘 ൌ 1,2, … , 𝑁 and 𝑋௞ is the transformes data for a specific frequency. 
Discrete Short-Time Fourier Transform (DSTFT): DSTFT is the time-frequency version of 

the DFT transform that contains only the frequency information. Thus, DSTFT can be helpful when 
DFT becomes insufficient for analysis, such as nonstationary signals [39]. DSTFT is defined as 

𝑋௞ ൌ ෍ 𝑥௡𝜔ሺ𝑛 െ 𝑚ሻeି௝
ଶగ
ே ௞௡

ே

௡ୀଵ

, 
(12)

where 𝜔ሺ𝐿ሻ is the temporal window of size 𝐿. 
Discrete Stockwell Transform (DST): DST is the extension of the DWT while having a close 

relationship with DSTFT. Also, it provides a frequency-dependent resolution since the sinusoidal 
functions are fixed in time, and a scalable Gaussian window operates the dilation and translation [40]. 
DST can be described as 

𝑆 ൬𝑖𝑇௦,
𝑛

𝑁𝑇௦
൰ ൌ ෍ 𝐻 ൬

𝑚 ൅ 𝑛
𝑁𝑇௦

൰ 𝑒ି
ଶగమ௠మ

௡మ 𝑒
௝ଶగ௠௜

ே

ேିଵ

௠ୀ଴

 
(13)

where 𝑇௦ is the inverse sampling frequency, 𝑖𝑇௦ defines the window 𝜏, ௡

ே ೞ்
 is the frequency domain, 

and 𝐻ሺ𝑛ሻ is the DFT of the input data. 

2.3.3. Moments of distribution 

Moments of distribution are basically statistical measures, the primary features that can be simply 
obtained from any data. The first-, second-, third-, and forth-order moments are called mean, variance, 
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skewness, and kurtosis, which are described as follows 

𝑀ଵ ൌ ෍
𝑥௡

𝑁

ே

௡ୀଵ

, (14)

𝑀ଶ ൌ ෍
ሺ𝑥௡ െ 𝑀ଵሻଶ

𝑁

ே

௡ୀଵ

, (15)

𝑀ଷ ൌ ෍
ሺ𝑥௡ െ 𝜇ଵሻଷ

𝑁. 𝑀ଶ

ଷ
ଶ

ே

௡ୀଵ

, (16)

𝑀ସ ൌ ෍
ሺ𝑥௡ െ 𝜇ଵሻସ

𝑁. 𝑀ଶ
ଶ

ே

௡ୀଵ

. (17)

It should be noted that 𝑁 is the number of data samples.  
Median is another statistical measure that can be helpful whenever the mean of that data is not a 

good measure of the distribution. The median can be defined as follows 

𝑚𝑒𝑑 ൌ

⎩
⎨

⎧𝑥 ቀ
𝑛
2

ቁ              𝑛 ∈ 2𝑘

1
2

ቆ𝑥 ൬
𝑛 െ 1

2
൰ ൅ 𝑥 ൬

𝑛 ൅ 1
2

൰ቇ 𝑛 ∈ 2𝑘 െ 1
, 

(18)

where 𝑘 ൌ 1,2, … , 𝑁. Maximum and minimum values of the samples within a specific period are the 
other two famous statistical measures used in this paper. 

2.4. Feature selection 

In signal processing, feature selection is an optimization method leading to the optimum features 
for classification. Therefore, feature selection was used as a preprocessing step for machine-learning 
problems and is of particular importance when the data or extracted features are of high dimension [41]. 
In this subsection, three popular algorithms, namely, Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), and Ant Colony Optimization (ACO) algorithms, are briefly described. 

2.4.1. Genetic Optimization 

GA is an evolutionary algorithm that can be applied for search and optimization problems inspired 
by species’ natural selection and evolution. In this algorithm, a population of chromosomes, which are, 
in fact, the solution to the problem, are directly selected for the next generation. Based on the selected 
species, the new generation, including a few numbers of new chromosomes, is also created using 
crossover and mutation techniques. This process is heuristically repeated until the solution converges 
to the optimal value [42]. In this article, five primary chromosomes and 100 repetitions with a 
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crossover rate of 0.6 and a mutation rate of 0.001 were selected as the initial parameters of the GA 
algorithm for selecting the optimum features. 

2.4.2. Particle Swarm Optimization 

PSO is an evolutionary computational algorithm that tries to find an optimized solution inspired 
by natural social behaviors, such as the group behavior observed in schools of fish and flocks of birds. 
According to this idea, some initial particles are localized in the search space, each having its own 
position and velocity. These particles move within the search space to find the best solution. In general, 
particles make their next moves based on their best-experienced position as well as the best-
experienced position of the whole population of particles called a swarm. So, the movement of the 
particles in the search space is not dependent on the gradient, and therefore, it can be applied for 
differentiable and non-differentiable optimization problems [43]. In this paper, we set cognitive and 
social factors 𝐶ଵ ൌ 𝐶ଶ ൌ 2  and inertia weight 𝑤 ൌ 1  with five initial particles and 100 maximum 
iterations as the assumed parameters for the PSO algorithm used for obtaining the optimum features. 

2.4.3. Ant Colony Optimization 

ACO is a probabilistic and graph-based evolutionary algorithm that was first proposed based on 
the natural behavior of ants in hunting their food. In real life, ants leave pheromones on the pass to 
guide others to resources as they explore their surroundings, and thus, they can find the shortest pass 
to the food. Inspired by this cooperative-based technique, optimization problems can be solved and 
handled. First, some initial artificial ants are positioned in the parameter space that move to a solution 
stochastically. The pheromone trails, which specify the edges of the graph in the ACO algorithm, are 
obtained for each ant, and the best solution is selected. For the following steps, the edges of the graph 
become updated and guide the artificial ants toward the solution. This process is repeated iteratively 
until the solution converges to an optimal value [44]. In this paper, five initial artificial ants, 100 
allowed iterations, 𝛼 ൌ 𝜏 ൌ 𝜂 ൌ 1 , 𝜌 ൌ 0.2 , and 𝛽 ൌ 0.1  are selected as the parameters needed for 
applying the ACO algorithm to find optimum features. 

2.5. Feature classification 

Feature classification is the process of assigning or predicting the label of new data based on the 
trained model or information gained from the observed data [45]. The Support Vector Machine (SVM) 
and the K-Nearest Neighbor (KNN) classifiers are two supervised and most-used machine-learning 
algorithms for classification, which are briefly described below. 

2.5.1. Support Vector Machine classifier 

The original SVM algorithm can be used for classifying two classes using a linear boundary; 
however, it has been extended for the classification of multi-class data. The SVM classifier builds an 
optimum hyperplane with the largest margin—with the maximum distance from the nearest data to the 
decision boundary—that can distinguish the data with the highest accuracy. If the data is not linearly 
distinguishable, using nonlinear kernels, the data will be implicitly mapped into the higher dimension 
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wherein the data is distinguishable with a linear boundary [44]. This paper uses the SVM classifier 
with a three-order polynomial kernel function to classify the neuronal spiking activity in fixation and 
memory periods. 

2.5.2. K-Nearest Neighbor classifier 

The KNN algorithm classifies each new data based on voting between the class of k-closest 
observed data to the new sample. Therefore, to classify any new data, the KNN classifier needs to find 
the k-nearest training data by computing the distances of the new sample from all other samples in the 
parameter space. Therefore, although the KNN algorithm is simple to implement, it may be time-
consuming due to its computational costs. This paper employs the KNN classifier with 𝑘 ൌ 3 and 
standardized Euclidean distance to detect the presence of working memory using the firing rate data. 

2.5.3. Classification evaluation 

To assess the classification performance, different criteria are introduced in the literature [16]. 
Accuracy, the most well-known evaluation criterion for classification, is defined based on the number 
of samples correctly labeled by the classifier versus the number of samples (see Eq (19)). Sensitivity 
and specificity are more specific assessment criteria since they respectively show the performance of 
the classifier in detecting and not detecting the target class. Therefore, sensitivity is defined as the 
number of samples correctly labeled as the target class by the classifiers versus the actual number of 
samples in the target class (see Eq (20)). On the other hand, specificity is defined as the number of 
samples correctly labeled as the non-target class by the classifiers versus the actual number of samples 
in the non-target class (see Eq (21)). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑡𝑝 ൅ 𝑡𝑛

𝑡𝑝 ൅ 𝑡𝑛 ൅ 𝑓𝑝 ൅ 𝑓𝑛
, 

(19)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
𝑡𝑝

𝑡𝑝 ൅ 𝑓𝑛
, 

(20)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ
𝑡𝑛

𝑡𝑛 ൅ 𝑓𝑝
. 

(21)

Here, 𝑡𝑝 , 𝑡𝑛 , 𝑓𝑝 , and 𝑓𝑛  refer to the true positive, true negative, false positive, and false 
negative indexes. 

3. Results 

Figure 2 shows the average normalized response of 131 MT neurons during the MGS task (see 
Methods). According to this figure, on average, no change in spiking activity is observed when 
comparing the response of neurons before and after the visual stimulus (i.e., fixation and memory 
periods, respectively). The inset bar graph in Figure 2 reveals no significant difference between the 
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average spiking activity of MT neurons in memory vs. fixation periods in both IN and OUT memory 
conditions (𝑝௙௜௫௔௧௜௢௡ ூே ௩௦,௠௘௠௢௥௬ ூே ൌ 0.385 and 𝑝௙௜௫௔௧௜௢௡ ை௎் ௩௦,௠௘௠௢௥௬ ை௎் ൌ 0.385). 

 

Figure 2. The normalized response of 131 MT neurons during the MGS task, including 
the fixation, visual, memory, and saccade periods. The average response in IN and OUT 
conditions are shown in green and pink, respectively. The inset bar graphs show the 
average firing rate of MT neurons in IN and OUT conditions during the fixation and 
memory periods. 

To detect the presence of the memory, we used the neural spiking activity in IN conditions during 
the fixation (when no working memory is involved) and memory (when deployment of top-down 
working memory signals is present) periods for feature extraction, selection, and classification. In the 
feature extraction step, 41 features are extracted from the IN conditions in fixation and memory periods. 
Therefore, the feature vector can be described as: 

- Index 1–6 are the fractal-based features, including HFD, KFD, GHE, MSFD, LTFD, and FV. 
- Index 7–34 are the transform-based features, including mean (index 7–10), variance (index 11–14), 
kurtosis (index 15–18), skewness (index 19–22), median (index 23–26), maximum (index 27–30), 
and minimum (index 31–34) of the components of DWT, DFT, DSTFT, and DST, respectively. 
- Index 35–41 are statistical features, including mean, variance, kurtosis, skewness, median, 
maximum, and minimum values of the firing rate signals within the fixation and memory periods. 
Finally, the selected features from the fixation IN and memory IN were classified using the SVM 

and KNN classifiers. Based on the selection method, classification was performed in four cases. 
To estimate the performance of the classifiers on the data, the k-fold cross-validation method (with 
𝑘 ൌ 10) and its balanced version called the A-test algorithm (with 𝑘 ൌ 10 and ten iterations) were 
employed as the procedure for performing the classification. Unlike the K-fold cross-validation 
method, the A-test algorithm ensures that the same number of samples from each class is included in 
all training and testing folds. Therefore, the A-test method might be more reliable, especially when 
classes contain unequal data samples. 

3.1. All extracted features combined 

In the first case, all extracted features, including 41 linear and nonlinear features, were used for 
the classification step. The results of the classification performance are shown in Figure 3. The details 
of the results can be found in Table 1. 
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Figure 3. The average performance of the classifiers SVM and KNN using the K-fold 
(with 𝐾 ൌ 10) and A-test (with 𝐾 ൌ 10 and 10 iterations) cross-validation methods. In 
this case, the classification was performed using all extracted features.  

Table 1. Classification performance results ( 𝑚𝑒𝑎𝑛% േ  𝑆𝑇𝐷% ) of fixation IN versus 
memory IN using all extracted features. 

Classifier Assessment criterion K-fold (𝑲 ൌ 𝟏𝟎) A-test (𝑲 ൌ 𝟏𝟎, 𝒊𝒕𝒆𝒓 ൌ 𝟏𝟎) 

SVM 
Accuracy 𝟗𝟖. 𝟖𝟓 േ 𝟐. 𝟔𝟎 98.77 േ 0.16 

sensitivity 97.69 േ 5.19 97.54 േ 0.32 

specificity 100 േ 0 100 േ 0

KNN 
Accuracy 𝟗𝟖. 𝟒𝟔 േ 𝟏. 𝟗𝟗 97.92 േ 0.41 

sensitivity 97.69 േ 3.72 97 േ 0.67

specificity 99.23 േ 2.43 98.85 േ 0.54 

Figure 3 shows that the SVM and KNN classifiers SVM and KNN classifiers performed closely 
(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ௌ௏ெ ൌ 98.85 േ 2.6; 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௄ேே ൌ 98.46 േ 1.99) in distinguishing fixation IN and memory 
IN data. However, SVM performed slightly better than KNN (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ௌ௏ெ െ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௄ேே ൏ 1%) in 
both cross-validation approaches. Table 1 reveals that the average accuracy is higher in the K-fold 
approach; however, the standard deviation mentioned in the A-test method is considerably lower. This 
shows that in different iterations, the average accuracy is not changed remarkably, and thus, the results 
are valid. 

3.2. GA selecting method 

Here, 20 features were selected using the GA feature selection method, including three fractal-
based features (including the HFD, the KFD, and the FV), 14 transform-based features (including the 
mean of DFT, the mean of DST, the variance of DFT, the variance of DSTFT, the variance of DST, the 
kurtosis of DWT, the kurtosis of DSTFT, the skewness of DFT, the skewness of DSTFT, the median 
of DWT, the median of DFT, the median of DST, the maximum of DWT, and the minimum DWT), 
and three statistical features (including the skewness, the median, and the minimum values). Figure 4 
and Table 2 demonstrate the classification results using the 20 GA-based selected features. 

K-fold A-test
90

92

94

96

98

100
SVM
KNN
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Figure 4. The average performance of the classifiers SVM and KNN using the K-fold 
(with 𝐾 ൌ 10) and A-test (with 𝐾 ൌ 10 and 10 iterations) cross-validation methods. In 
this case, the classification was performed using the feature selected by GA. 

Table 2. Classification performance results ( 𝑚𝑒𝑎𝑛% േ  𝑆𝑇𝐷% ) of fixation IN versus 
memory IN using the GA as the feature selection method. 

Classifier Assessment criterion K-fold (𝑲 ൌ 𝟏𝟎) A-test (𝑲 ൌ 𝟏𝟎, 𝒊𝒕𝒆𝒓 ൌ 𝟏𝟎) 

SVM 
Accuracy 98.46 േ 2.69 𝟗𝟗. 𝟎𝟒 േ 𝟎. 𝟑𝟑 

sensitivity 96.92 േ 5.38 98.08 േ 0.65 

specificity 100 േ 0 100 േ 0

KNN 
Accuracy 𝟗𝟗. 𝟐𝟑 േ 𝟏. 𝟔𝟐 99.19 േ 0.12 

sensitivity 98.46 േ 3.24 98.38 േ 0.24 

specificity 100 േ 0 100 േ 0

According to Figure 4, unlike Figure 3, the KNN classifier performed slightly more 
effectively than the SVM classifier (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௄ேே െ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ௌ௏ெ ൏ 1%). Table 2 shows that the 
GA-selected feature improved the classification performance, especially for the KNN classifier 
(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௄ேே ൌ 99.23 േ 1.62 ). In addition, the KNN classifier has more reliable  results since it 
generally has a lower standard deviation. 

3.3. PSO selecting method 

Employing the PSO feature selection method, 17 features were selected, including three fractal-
based features (including the HFD, the KFD, and the FV), 12 transform-based features (including the 
mean of DFT, the mean of DST, the variance of DFT, the variance of DSTFT, the kurtosis of DWT, 
the kurtosis of DSTFT, the skewness of DFT, the median of DWT, the median of DFT, the median of 
DST, the maximum of DWT, the minimum of DWT), and two statistical features (including the 
variance, and the maximum values). Similar to the previous subsections, Figure 5 and Table 3 illustrate 
the classification performance considering the PSO-based selected features. 
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Figure 5. The average performance of the classifiers SVM and KNN using the K-fold 
(with 𝐾 ൌ 10) and A-test (with 𝐾 ൌ 10 and 10 iterations) cross-validation methods. In 
this case, the classification was performed using the feature selected by PSO. 

Table 3. Classification performance results ( 𝑚𝑒𝑎𝑛% േ  𝑆𝑇𝐷% ) of fixation IN versus 
memory IN using the PSO as the feature selection method. 

Classifier Assessment criterion K-fold (𝑲 ൌ 𝟏𝟎) A-test (𝑲 ൌ 𝟏𝟎, 𝒊𝒕𝒆𝒓 ൌ 𝟏𝟎) 

SVM 
Accuracy 99.23 േ 2.43 𝟗𝟗. 𝟓𝟎 േ 𝟎. 𝟐𝟔 

sensitivity 98.46 േ 4.87 99.00 േ 0.52 

specificity 100 േ 0 100 േ 0

KNN 
Accuracy 𝟗𝟖. 𝟖𝟓 േ 𝟏. 𝟖𝟔 98.77 േ 0.24 

sensitivity 97.69 േ 3.72 97.77 േ 0.24 

specificity 100 േ 0 99.77 േ 0.37 

In contrast to Figure 3, in this case, Figure 5 shows that the PSO-selected features helped the 
SVM classifier improve its performance (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ௌ௏ெ ൌ 99.50 േ 0.26) more considerably than the 
KNN classifier (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ 98.85 േ 1.86 ). Besides, Table 3 reveals that the KNN classifier has 
more reliable results due to the lower standard deviation on average. 

3.4. ACO selecting method 

Using the ACO algorithm for selecting the optimum features, a total of 20 features were selected, 
including three fractal-based features (including the HFD, the GHE, and the FV), 14 transform-based 
features (including the skewness of DSFTF, the variance of DWT, the kurtosis of DSTFT, the skewness 
of DWT, the kurtosis of DFT, the mean of DST, the skewness of DFT, the min of DFT, the mean of 
DWT, the variance of DSTFT, the variance of DST, the maximum of DFT), and five statistical 
features (including the skewness, the maximum, the variance, the kurtosis, and the minimum values). 
Figure 6, as well as Table 4, contains the results of performing the classification using the ACO-
based selected features. 
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Figure 6. The average performance of the classifiers SVM and KNN using the K-fold 
(with 𝐾 ൌ 10) and A-test (with 𝐾 ൌ 10 and 10 iterations) cross-validation methods. In 
this case, the classification was performed using the feature selected by ACO.  

Table 4. Classification performance results ( 𝑚𝑒𝑎𝑛% േ  𝑆𝑇𝐷% ) of fixation IN versus 
memory IN using the ACO as the feature selection method. 

Classifier Assessment criterion K-fold (𝑲 ൌ 𝟏𝟎) A-test (𝑲 ൌ 𝟏𝟎, 𝒊𝒕𝒆𝒓 ൌ 𝟏𝟎) 

SVM 
Accuracy 99.23 േ 1.62 𝟗𝟗. 𝟒𝟐 േ 𝟎. 𝟐𝟎 

sensitivity 98.46 േ 3.24 98.85 േ 0.41 

specificity 100 േ 0 100 േ 0

KNN 
Accuracy 99.62 േ 1.22 𝟗𝟗. 𝟔𝟓 േ 𝟎. 𝟏𝟐 

sensitivity 99.23 േ 2.43 99.31 േ 0.24 

specificity 100 േ 0 100 േ 0

Figure 6 illustrates that using the ACO-selected features, the average performance of both 
classifiers in detecting the presence of working memory is significantly enhanced compared to Figure 3, 
wherein all features were involved in the classification procedure (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ௌ௏ெ ൌ 99.42 േ 0.20 ; 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௄ேே ൌ 99.65 േ 0.12 ). From Table 4, it can be seen that the KNN classifier not only has 
slightly better performance (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௄ேே െ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ௌ௏ெ ൏ 0.5%) but also, due to the lower standard 
deviation, has a more reliable performance. 

4. Discussion 

The brain is the most complex system in the human body. This complexity is reflected in the 
signals recorded from the brain. Thus, brain-associated data such as EEG or the spiking activity of 
neurons predominantly have nonlinear properties. This nonlinearity can be captured by FD, which is 
an index of complexity. To obtain FD of a time series, different algorithms have been proposed, such 
as HFD [30], KFD [31], GHE [32], MSFD [33], LTD [35], and FV [37]. However, transform-based 
features and statistical indexes are popular in signal processing. The main objective of this paper was 
to examine the ability of machine-learning methods to detect the presence of working memory using 
various linear and nonlinear features. Therefore, we used several algorithms to obtain the FD value 
(including HFD, KFD, GHE, MSFD, LTFD, and FV) and different transforms to obtain the frequency 
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and/or time-frequency components (including statistical measures of DWT, DFT, DSTFT, and DST) 
of the average spiking activity of MT neurons. Also, we included some of the important statistical 
indexes (including mean, variance, kurtosis, skewness, median, maximum, and minimum values) in 
the feature set.  

Selecting the optimum features can be an optimization problem that, in most cases, results in 
improving the classifiers’ performance. Such methods mainly focus on finding the best set of features 
that can lead to the best classification result. In this way, it can also help reduce the feature space’s 
dimensionality and simplify the classification problem. Hence, after performing the classification with 
all extracted features, we examined whether the feature selection method could enhance the 
classification performance. Accordingly, we used GA, PSO, and ACO algorithms to select the 
optimum features for detecting the presence of working memory. In the classification step, the ability 
of two machine-learning algorithms, namely SVM and KNN classifiers, were employed to detect the 
presence of memory. KNN is typically considered a nonlinear classifier as it has a nonlinear decision 
boundary whilst SVM can be a nonlinear classifier if it uses a nonlinear kernel function. In general, 
the nonlinearity of the decision boundary enables a classifier to learn and distinguish the data classes 
more precisely and define the membership’s probability to each data class for new data. For this reason, 
we used SVM with a three-order polynomial kernel function and KNN with three nearest neighbors. 
It should be noted that cross-validation methods can determine the validity of classification results, 
particularly when the number of samples is not too high. Therefore, K-fold (with 10 folds) and A-test 
(with 10 folds and 10 iterations) cross-validation methods were performed to show the results’ robustness. 

 

Figure 7. The best performance of KNN and SVM classifiers employing no selection 
algorithm as well as the GA, PSO, and ACO selection methods. 

The best classification performance of the SVM and KNN classifiers is summarized in Figure 7. 
According to this figure, when no selection algorithms were employed, the SVM classifiers led to the 
best performance (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ௌ௏ெ ൌ 98.85 േ 2.60). The same result can be seen in the case where the 
PSO algorithm was used to select the features (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ௌ௏ெ ൌ 99.50 േ 0.26). In contrast, when the 
GA- and ACO-selected features were used as the input of the classification algorithms, the KNN 
classifier reached higher average accuracy ( 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௄ேே ൌ 99.23 േ 1.62  and 99.65 േ 0.12 , 
respectively). Moreover, Figure 7 shows that employing the selection method can improve the 
classification performance since, in all cases, the average accuracy was grown compared to the case 
where no selecting method was employed. 
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In total, Figure 7 reveals that when the features were selected using the ACO algorithm, the KNN 
classifier could detect the presence of working memory with the accuracy of 99.65% and the standard 
deviation of 0.12 (using the A-test cross-validation method), which is the highest obtained average 
accuracy among the studied cases. In this case, three out of six FD-base features (including the HFD, 
the GHE, and the FV), 14 out of 28 transform-based features (including the skewness of DSFTF, the 
variance of DWT, the kurtosis of DSTFT, the skewness of DWT, the kurtosis of DFT, the mean of 
DST, the skewness of DFT, the min of DFT, the mean of DWT, the variance of DSTFT, the variance 
of DST, the maximum of DFT), and five out of seven statistical-based features (including the 
skewness, the maximum, the variance, the kurtosis, and the minimum values) were involved in the 
classification procedures. 

To obtain the neural code for spatial working memory represented in the firing rate of visual 
neurons, we compared the neural responses of MT neurons during the memory period (where the 
monkey is actively memorizing a location) with the neural activity during the fixation period (when 
no working memory is present). This approach could be questioned as one can argue that any 
differences between the neural responses during memory and fixation periods could occur due to 
other cognitive signals such as arousal or expectation than spatial working memory. Here we 
review a series of neurophysiological evidence revealing the dependence of these response changes 
(i.e., the differences of neural responses between memory and fixation period) on the content of 
working memory: 

- By measuring the neural responses of extrastriate neurons to visual probes presented during 
fixation and memory periods, a recent study showed a strong modulation of RF profile in V4 and 
MT neurons that were dependent on the content of working memory [19]. It was shown that 
during the maintenance of spatial information, only the neurons whose RFs during the fixation 
period were close to the remembered location, expanded and shifted their RFs towards that 
location during the memory period. 
- It was also found that the encoding of the visual probe’s location by the population of MT 
neurons was enhanced during the memory period compared to the fixation period. In detail, this 
was measured by the ability of MT individual neurons’ firing activity to discriminate two different 
visual probes (two-point discriminability). In fact, this memory-related enhancement in two-point 
discriminability only occurred to those visual probes that were presented near the locus of 
working memory. 
- At the level of LFP, it has been shown that the amount of information regarding the visual input 
conveyed by the alpha-beta phase of spike times increases during the memory period compared 
to the fixation period. This phenomenon only occurred to those visual probes which were 
presented near the remembered location.  
- Furthermore, it was shown that the discrimination between visual probes, based on the phase of 
each spike in the alpha-beta frequency range, is enhanced during the memory period compared to 
fixation. This discrimination enhancement was observed for the visual probes presented near the 
locus of working memory.  
As the differences between the neural responses during memory and fixation periods occur in a 

spatial-specific manner (i.e., near the locus of working memory), it would be very unlikely to relate 
these response changes to any other cognitive signals, such as arousal, than spatial working memory. 
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