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Abstract: A system of ordinary differential equations is considered, which arises in the modeling of 
genetic networks and artificial neural networks. Any point in phase space corresponds to a state of a 
network. Trajectories, which start at some initial point, represent future states. Any trajectory tends to 
an attractor, which can be a stable equilibrium, limit cycle or something else. It is of practical 
importance to answer the question of whether a trajectory exists which connects two points, or two 
regions of phase space. Some classical results in the theory of boundary value problems can provide 
an answer. Some problems cannot be answered and require the elaboration of new approaches. We 
consider both the classical approach and specific tasks which are related to the features of the system 
and the modeling object. 
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1. Introduction 

Gene regulatory networks (GRN) exist in any cell of any living organism. Genetic networks are 
responsible for morphogenesis and adaptation to changes in the environment. Elements of these 
networks interact with each other, developing a general reaction of an organism to changes in the 
external environment. Biologists have created huge arrays of experimental data, which need to be 
analyzed, classified and utilized. For these purposes, mathematical models have been created. They 
are different, using mathematical theories such as Boolean algebras, graph theory, stochastic analysis 
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and more. To follow the evolution of GRN in time, dynamical systems are best suited. Models of 
GRN, based on differential equations, can be treated qualitatively and computationally. On the basis 
of this treatment, predictions of the behaviors of GRN can be made. The structure of GRN and 
principles of functioning can be clarified by studying the phase spaces of dynamical systems in a 
model. Management and control over GRN can be made possible in some practically important cases. 
Genetic networks are important in the treatment of various diseases, such as multiple sclerosis, 
chemotherapy for gastric cancer and leukemia. GRN can be modeled mathematically, and in case of 
success, the model is to be studied, using analytical and computational approaches. Evolution in time 
can be traced, following the trajectories of a dynamical system, which describe the behavior of GRN. 
For this, knowledge of attracting sets is important. This system consists of several ordinary 
differential equations (ODE), containing multiple parameters. The interrelation between genes is 
described by the 𝑛 × 𝑛 regulatory matrix W. This system is not a particular one. Its modification [1], 
used in the theory of artificial neural networks, is known to be able to approximate to arbitrary 
accuracy any dynamical system [2].  

We consider the n-dimensional dynamical system 

 

⎩
⎪
⎨

⎪
⎧

ௗ௫భ

ௗ௧
=

ଵ

ଵ ା ௘షഋభ(ೢభభೣభ శ ೢభమೣమ శ⋯శ ೢభ౤ೣ౤షഇభ) − 𝑥ଵ,

ௗ௫మ

ௗ௧
=

ଵ

ଵ ା ௘షഋమ(ೢమభೣభ శ ೢమమೣమ శ⋯శ ೢమ౤ೣ౤షഇమ) − 𝑥ଶ

…
ௗ௫೙

ௗ௧
=

ଵ

ଵ ା ௘షഋ౤(ೢ౤భೣభ శ ೢ౤మೣమ శ⋯శ ೢ౤౤ೣ౤షഇ౤). − 𝑥୬.

 (1) 

where 𝜇௜ > 0 and 𝜃௜ are parameters, and 𝑤௜௝ are elements of the 𝑛 × 𝑛 regulatory matrix  

 𝑊 =  ൭

𝑤ଵଵ … 𝑤ଵ௡

… … …
𝑤௡ଵ … 𝑤௡௡

൱. (2) 

Such systems arise in the theory of genetic regulatory networks [3–8], neural networks [9,10] and 
telecommunication networks [11]. 

These systems contain nonlinear terms, represented by the function 
ଵ

ଵା௘షഋ೥
, and the linear part 

also. The nonlinear function 𝑓(𝑧) is sigmoidal, that is, it is smooth, monotonically increasing from 
zero to unity and has a single inflection point. The sigmoidal functions are many, and the Hill and the 
Gompertz functions can be used as well. The argument of the function 𝑓(𝑧) can be replaced by the 
linear combinations of multiple variables 𝑥ଵ, … , 𝑥௡.  Thesevariables are interpreted as genes, 
expressing proteins and thuscommunicating with each other, developing a common response of thegene 
network to external and internal influences. In the theory of telecommunication networks 𝑥௜ are treated 
as source-destination pairs, and the optimal configuration of lightpaths is the problem to be solved. 

Our attention to these problems stems from the fact that they are a focus of research on the border 
of mathematics and biology, and the classical mathematical approach should be corrected and adapted 
to the special needs of practicioners. 

Some authors [12,13] interpret this system as a model for a not so large real genomic network, 
which is functioning in an organismsuffering from leukemia (a kind of blood cancer). Following Wang 
et al. [12], the genetic network can be in various states, and some of these states are associated with the 
disease, while some are considered as “normal”. From the mathematical point of view, the respective 
system of order 60 (only!) has attractive equilibria (critical points), and some of them are conditionally 
“bad”, and some are “normal”. The current state of an organism is associated with the state vector 
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𝑋(𝑡) = (𝑥ଵ(𝑡), … , 𝑥௡(𝑡)), which consists of solutions of the autonomous system (1) represented by 
trajectories, which are curves connecting the current state 𝑋(𝑡), which depends on the initial conditions 
𝑋(0), and the “final” state, which is treated as an “attractor”. 

2. Two-dimensional systems 

It is reasonable to start with a system of the form (1), which contains only two equations and 
corresponds to a two-element network. The system has the form 

 ቐ
𝑥ᇱ

ଵ =
ଵ

ଵ ା ௘షഋభ(ೢభభೣభ శ ೢభమೣమ షഇభ) − 𝑥ଵ,

𝑥ᇱ
ଶ =

ଵ

ଵ ା ௘షഋమ(ೢమభೣభ శ ೢమమೣమ షഇమ) − 𝑥ଶ.
 (3) 

and it defines the vector field (𝑥ଵ, 𝑥ଶ), which can bevisualized. Any solution of the system can be 
viewed as a trajectory (𝑥ଵ(𝑡), 𝑥ଶ(𝑡)), which is usually a curve in the phase plane (𝑥ଵ, 𝑥ଶ). We will 
refer to this system as a 2D-system. Consequently, a system of three equations will be called a 
3D-system and so on. Even in the 2D-case, the system contains eight parameters, and therefore the 
solutions of the system can exhibit various behaviors. Signs and values of the elements 𝑤௜௝ of the 
regulatory matrix reflect the character of interrelations between elements 𝑥௜. The structure of the 
phase portraits heavily depends on the nullclines, which are defined by the equations 

 ቐ
𝑥ଵ =

ଵ

ଵ ା ௘షഋభ(ೢభభೣభ శ ೢభమೣమ షഇభ) ,

𝑥ଶ =
ଵ

ଵ ା ௘షഋమ(ೢమభೣభ శ ೢమమೣమ షഇమ) .
 (4) 

The solutions of the system (4) are critical points, which are called in some contexts “equilibria”. 
The local analysis of solutions of 2D-systems can be conducted by considering the linearized (around 
a critical point) system and computing some values, called the characteristic values [14]. The three 
types of behaviors are shown in Figure 1(a)–(c). Usually the trajectories of a2D-system are attracted 
by stable equilibria. Sometimes the attracting set is a limit cycle. More complicated structures can be 
attractors as well. 

In the theory of boundary value problems for ordinary differential equations, the quasilinear 
equations were paid special attention by researchers. Fixed point theorems of functional analysis 
were used to prove the existence of solutions to several quasi-linear problems (e.g., [15,16]). The 
system (1) is quasi-linear, and its 2D version (3) can be written in a convenient form, 

 ൜
𝑥ᇱ

ଵ = −𝑥ଵ + 𝑓ଵ(𝑥ଵ, 𝑥ଶ),

𝑥ᇱ
ଶ = −𝑥ଶ + 𝑓ଶ(𝑥ଵ, 𝑥ଶ).

 (5) 

The traditional boundary conditions that can be associated with (5) are 

 𝑥ଵ(0) = 𝐴,    𝑥ଵ(𝑇) = 𝐵,    (6) 

 𝑥ଶ(0) = 𝐴,    𝑥ଶ(𝑇) = 𝐵, (7) 

 𝑥ଵ(0) = 𝐴,    𝑥ଶ(𝑇) = 𝐵,   (8) 

 𝑥ଶ(0) = 𝐴,    𝑥ଵ(𝑇) = 𝐵, (9) 

 𝑥ଵ(0) = 𝑥ଵ(𝑇),   𝑥ଶ(0) = 𝑥ଶ(𝑇). (10) 
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Since 𝑓ଵ and 𝑓ଶ in (5) are continuous and bounded, the above problems are quasi-linear. It 
follows from the general theory of boundary value problems (BVP) for ordinary differential 
equations (ODE) [15,16] that the problems (8) and (9) are solvable for any 𝐴 and 𝐵, since the 
corresponding homogeneous problems 

 ቐ

𝑥′ଵ = −𝑥ଵ,

𝑥′ଶ = −𝑥ଶ,

𝑥ଵ(0) = 0,   𝑥ଶ(𝑇) = 0

 (11) 

(and for 𝑥ଶ(0) = 0, 𝑥ଵ(𝑇) = 0 also) have the trivial solutions only. 
This is not the case for the problems (6) and (7), since the homogeneous problems 

 ቐ

𝑥′ଵ = −𝑥ଵ,

𝑥′ଶ = −𝑥ଶ,

𝑥ଵ(0) = 0,   𝑥ଵ(𝑇) = 0

 (12) 

(and for 𝑥ଶ(0) = 0, 𝑥ଶ(𝑇) = 0 also) have nontrivial solutions in the form 𝑥ଵ(𝑡) ≡ 0, 𝑥ଶ(𝑡) = 𝑒ି௧. 
As to the periodic problem (10), it always has a solution in the form of a constant (𝑥∗

ଵ, 𝑥∗
ଶ). 

This follows from the geometricalfact that both nullclines in (4) are located in the strips 0 < 𝑥ଵ < 1 
and 0 < 𝑥ଶ < 1, respectively, and therefore must intersect. The more interesting case is to have a 
non-constant solution, but additional restrictions are required for this. 

The most influential factor on the behavior of solutions is the matrix 𝑊, which is called the 
regulatory matrix (thus the abbreviation GRN). 

Consider three matrices 

 𝑊௔ = ቀ
1 1
1 1

ቁ, 

 𝑊௕ = ቀ
0 −2

−2 0
ቁ, 

 𝑊௖ = ቀ
2 1

−1 2
ቁ (13) 

and the respective 2D-systems of the form (3). In the theory of genetic networks these types of 
interrelations between genes are called, respectively, activation, inhibition and mixed 

activation-inhibition. To be definite, let other parameters be 𝜇ଵ = 𝜇ଶ = 5, 𝜃ଵ =
௪భభା௪భమ

ଶ
, 𝜃ଶ =

௪మభା௪మమ

ଶ
. These choices of 𝜃 put a critical pointat the central location. 

The cross-points of nullclines are marked by the small black disks. Only one critical point is in 
Figure 1(c). The phase portrait (on the larger scale) of the same system is depicted in Figure 1(d). It is 
clear that the problem (9) is not solvable for some values of 𝐴, 𝐵. 

All the boundary conditions above mean that solutions are sought which connect subspaces of the 
extended phase space. 

For the purposes of modeling genetic networks, other conditions fit better. Look at Figure 1(a). 
Both side critical points have their basins of attraction, that is, the sets of initial conditions which are 
connectable with the respective critical point. Both basins of attraction are separated by separate axes 
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of the middle critical point, which is a saddle. At least in the unit quadrant 𝑄ଶ, there are no trajectories 
connecting points from different basins of attraction. This means that the BVP with the boundary sets 

 (𝑥ଵ(0), 𝑥ଶ(0)) = 𝑃ଵ,        (𝑥ଵ(𝑇), 𝑥ଶ(𝑇)) = 𝑃ଶ (14) 

is not solvable in 𝑄ଶ. This boundary problem is over-determined, since the number of conditions (four) 
is greater than the number of equations (two). 

  

(a) (b) 

  

(c) (d) 

Figure 1. Phase portraits. (a)The phase portrait for the case Wa; (b) The phase portrait for 
the case Wb; (c) The phase portrait for the case Wc; (d) The scaled phase portrait for the 
case Wc. 

2.1. The alternative formulation of a boundary value problem 

Let𝐴 be an attracting set for the system (3) [17]. This means that there exists a vicinity 𝑈of 
𝐴such that for any trajectory Γ with the initial conditions in 𝑈, this trajectory stays in 𝑈eventually, 
and the distance d(Γ,𝐴) tends to zero as t goes to infinity. The corresponding boundary condition can 
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be written as (𝑥ଵ(+ꝏ), 𝑥ଶ(+ꝏ)) ∈ 𝐴. Of course, astable equilibrium and a limit cycle are attractors. 
Let us formulate the problem: 

 ൫𝑥ଵ(0), 𝑥ଶ(0)൯ = 𝑃(0),  

 (𝑥ଵ(+ꝏ), 𝑥ଶ(+ꝏ)) ∈ 𝐴, (15) 

where 𝑇 is some number, which may be different for different trajectories. Since the second condition 
is looked at as depending on 𝑇, it can be written in a neutral form (𝑥ଵ(𝑡), 𝑥ଶ(𝑡)) ∈ 𝐴. 
Example 1. 

Let the 2D-system be with the matrix 𝑊௔ as in (13). Let 𝐴ଵ be the upper stable equilibrium (it is 
a stable node). The problem is 

 (𝑥ଵ(0), 𝑥ଶ(0)) = 𝑃(0),   (𝑥ଵ(+ꝏ), 𝑥ଶ(+ꝏ)) = 𝐴ଵ. (16) 

This problem is solvable for any 𝑃(0) belonging to the basin ofattraction of the point 𝐴ଵ. The 
problem has no solutions if 𝑃(0) is in the basin of attraction of the lower stable equilibrium 𝐴ଶ. 
Example 2. 

Consider the 2D-system corresponding to the matrix 𝑊௠ in (13). Let 𝐿 be the limit cycle which 
is depicted in Figure 1(c). The problem is 

 (𝑥ଵ(0), 𝑥ଶ(0)) = 𝑃(0),   (𝑥ଵ(+ꝏ), 𝑥ଶ(+ꝏ)) ∈ 𝐿. (17) 

3. Three-dimensional systems 

The classical boundary value problems for the third-order systems of the form (1) can be  

 ቐ

𝑥ᇱ
ଵ = −𝑥ଵ + 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ),

𝑥ᇱ
ଶ = −𝑥ଶ + 𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ),

𝑥ᇱ
ଷ = −𝑥ଷ + 𝑓ଷ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ),

 (18) 

where 

 𝑥ଵ(0) = 𝐴,    𝑥ଶ(0) = 𝐵, 𝑥ଵ(𝑇) = 𝐶,   (19) 

 𝑥ଵ(0) = 𝐴,    𝑥ଵ(𝑇) = 𝐵, 𝑥ଶ(𝑇) = 𝐶, (20) 

 𝑥ଵ(0) = 𝐴,    𝑥ଶ(0) = 𝐵, 𝑥ଷ(𝑇) = 𝐶,  (21) 

 𝑥ଵ(0) = 𝐴,    𝑥ଶ(𝑇) = 𝐵, 𝑥ଷ(𝑇) = 𝐶,  (22) 

 𝑥ଵ(0) = 𝑥ଵ(𝑇),   𝑥ଶ(0) = 𝑥ଶ(𝑇), 𝑥ଷ(0) = 𝑥ଷ(𝑇). (23) 

The functions 𝑓௜ are sigmoidal functions of the form as in (1). They are continuous and 
bounded, and in accordance with the general theory [15,16], they are solvable, if the linear 
homogeneous problem has only the trivial solution. 

 

⎩
⎨

⎧
𝑥′ଵ = −𝑥ଵ,

𝑥′ଶ = −𝑥ଶ,

𝑥ᇱ
ଷ = −𝑥ଷ,

+ ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

 (24) 
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For instance, the problems (18),(21) have a solution for any 𝐴, 𝐵, 𝐶 since the homogeneous 
problem has only the trivial solution for any T. 

 

⎩
⎨

⎧
𝑥′ଵ = −𝑥ଵ,

𝑥′ଶ = −𝑥ଶ,

𝑥ᇱ
ଷ = −𝑥ଷ,

𝑥ଵ(0) = 0,   𝑥ଶ(0) = 0,   𝑥ଷ(𝑇) = 0

 (25) 

The periodic problem is a special one. It has a solution since any system of the form (1) has at 
least one critical point (the constant solution). 

As in the case of 2D systems, the alternative boundary value problem can be posed in the form 

 (𝑥ଵ(0), 𝑥ଶ(0), 𝑥ଷ(0)) = 𝑃(0),   (𝑥ଵ(+ꝏ), 𝑥ଶ(+ꝏ), 𝑥ଷ(+ꝏ)) ∈ 𝐴. (26) 

Example 3.  
Consider the system (1), where 𝜇ଵ = 𝜇ଷ = 5, 𝜇ଶ = 15, 𝜃ଵ = 𝜃ଷ = 1.5, 𝜃ଶ = −0.25 , and the 

regulatory matrix is 

 𝑊 = ൭
1 0 2
0 −1 0.5
2 0 1

൱. (27) 

 

Figure 2. Nullclines. Red represents 𝑥ଵ; green represents 𝑥ଶ; blue represents 𝑥ଷ. 

This system has exactly three critical points, which are calculated and depicted as the cross-points 

of the nullclines in Figure 2. The first one is (0.001; 0.305; 0.001). The linearization around it in a 

standard way yields the linear system. Let the 3 by 3 coefficient matrix of the linearized system be 

denoted as M. The characteristic equation det(M−E)=0 can be written in the form 

 −𝜆ଷ + 𝐴𝜆ଶ + 𝐵𝜆 + 𝐶 = 0, (28) 

where 𝐴 = −6.18; 𝐵 = −9.33; 𝐶 = −4.16 . Solving the equation, we have 𝜆ଵ = −4.18; 𝜆ଶ =

−1.003; 𝜆ଷ = −0.9916. The type of this critical point is a stable node. 
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The characteristic equation for the critical point (0.5; 0.5; 0.5) is (29), where 𝐴 = −4.25; 𝐵 =

8.56; 𝐶 = 29.39. Solving the equation, we have 𝜆ଵ = −4.75; 𝜆ଶ = −2.25; 𝜆ଷ = 2.75. The type of 
this critical point is a saddle. 

The characteristic equation for the critical point (0.99; 0.69; 0.99)  is (28), where 𝐴 =

−6.18; 𝐵 = −9.33; 𝐶 = −4.16. Solving the equation, we have 𝜆ଵ = −4.18; 𝜆ଶ = −1.003; 𝜆ଷ =

−0.9916. The type of this critical point is a stable node. 

  

(a) (b) 

 

(c) 

Figure 3. Visualization of nullclines and the periodic solution. (a) The nullclines. 𝑥ଵ-red, 
𝑥ଶ-green, 𝑥ଷ-blue. (b) The periodic solution. (c) The graphs of 𝑥௜(𝑡), 𝑖 = 1,2,3. 

Example 4.  
Consider 𝜇ଵ = 𝜇ଷ = 5, 𝜇ଶ = 15, 𝜃ଵ = 1.5; 𝜃ଶ = 1, 𝜃ଷ = −0.5 . The regulatory matrix of the 

system (1) is 

 𝑊 = ൭
1 0 2
1 1 0

−2 0 1
൱. (29) 

There are exactly three critical points. The characteristic equation for the critical point 
(0.5; 0.5; 0.5) is (28), where 𝐴 = 3.25; 𝐵 = −7.69; 𝐶 = 17.36. Solving the equation, we have 𝜆ଵ =
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2.75; 𝜆ଶ,ଷ = 0.25 ± 2.5 𝑖. The type of the critical point is a 3D unstable focus-node. The nullclines 
and the graph of solutions are depicted in Figure 3. The self-excited attractor and the dynamics of 
Lyapunov exponents are depicted in Figure 4. 

  

(a) (b) 

 

(c) 

Figure 4. Visualization of self-excited attractor and the dynamics of Lyapunov exponents.  
(a) The self-excited chaotic attractor; (b) The graphs of 𝑥௜(𝑡), 𝑖 = 1,2,3;  (c) The 
Lyapunov exponents, 𝐿𝐸ଵ = 0.04; 𝐿𝐸ଶ = 0; 𝐿𝐸ଷ = −1.17 (obtained by application of 
the program by M. Sandri [18]). 

Example 5. 
Consider the system 

 

⎩
⎪
⎨

⎪
⎧

ௗ௫భ

ௗ௧
=

ଵ

ଵ ା ௘షഋభ(ೢభభೣభ శ ೢభమೣమ శ ೢభయೣయషഇభ) − 𝑣ଵ𝑥ଵ,

ௗ௫మ

ௗ௧
=

ଵ

ଵ ା ௘షഋమ(ೢమభೣభ శ ೢమమೣమ శ ೢమయೣయషഇమ) − 𝑣ଶ𝑥ଶ,

ௗ௫య

ௗ௧
=

ଵ

ଵ ା ௘షഋయ(ೢయభೣభ శ ೢయమೣమ శ ೢయయೣయషഇయ). − 𝑣ଷ𝑥ଷ,

 (30) 

where 𝑣ଵ = 0.65, 𝑣ଶ = 0.42, 𝑣ଷ = 0.1, 𝜇ଵ = 𝜇ଶ = 7, 𝜇ଷ = 13, 𝜃ଵ = 0.5, 𝜃ଶ = 0.3, 𝜃ଷ = 0.7. It is a 
slight modification of the system from the works [19,20]. The regulatory matrix of the system (31) is 
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 𝑊 = ൭
0 1 −5.65
1 0 0.133
1 0.02 0.03

൱. (31) 

The initial conditions are 

 𝑥ଵ(0) = 0.3; 𝑥ଶ(0) = 1.5; 𝑥ଷ(0) = 0.2. (32) 

There is one critical point. The characteristic equation for the critical point (0.37; 1.59; 0.22) is (29), 
where 𝐴 = −1.16; 𝐵 = −0.42; 𝐶 = −0.69. Solving the equation, we have 𝜆ଵ = −1.26; 𝜆ଶ,ଷ =

0.05 ± 0.74 𝑖. The critical point isof the 3D unstable saddle-focus type. The system is chaotic in the 
sense that solutions exhibit non-regular behavior. 

4. Conclusions 

The boundary value problems of a new kind arose from studies of mathematical models associated 
with genetic, neural and telecommunication networks. The behavior of GRN on bounded time intervals 
can be described by systems of ordinary differential equations of the form (1). The interrelation between 
elements of GRN is encrypted in the regulatory matrix W. The individual properties of genes are 
described by the parameters µ and θ. In the mathematical model (1), the unit cube Q is an invariant set, 
and trajectories cannot exit it. The nullclines can (and they do) intersect only in Q. The equilibria (critical 
points) exist. It is possible that they are attractive, and cases where all the equilibria are non-attractive are 
possible also. Then, more complicated attractive sets exist, and more often they are periodic ones. The 
boundary value problems of the forms (16),(17),(27) arise naturally in this context. The boundary value 
problems on finite intervals also can be studied in light of suggestions in the paper [12]. The problem of 
redirecting a trajectory from the basin of attraction of a “bad” attracting set to a “normal” one, changing 
the adjustable parameters, is of great practical importance. 
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