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Abstract: In this paper, we study the trajectory tracking control of underactuated surface ves-
sels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and
communication resource constraints. Considering that the actuator is prone to bad faults, the uncer-
tainties formed by the combination of fault factors, dynamic uncertainties and external disturbances
are compensated by a single online updated adaptive parameter. In the compensation process, we
combine the robust neural-damping technology with the minimum learning parameters (MLPs), which
improves the compensation accuracy and reduces the computational complexity of the system. To
further improve the steady-state performance and transient response of the system, finite-time control
(FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the
event-triggered control (ETC) technology, which reduces the action frequency of the controller and
effectively saves the remote communication resources of the system. The effectiveness of the proposed
control scheme is verified by simulation. Simulation results show that the control scheme has high
tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the
adverse influence of fault factors on the actuator, and save the remote communication resources of the
system.

Keywords: fault-tolerant control; single parameter; finite-time control; event-triggered inputs;
underactuated surface vessels

1. Introduction

With the continuous development of the marine economy, intelligent unmanned surface vessels
have received special attention. To further improve the degree of automation of USVs, many studies
focus on improving the tracking performance of the vessel control system [1–3]. Trajectory tracking
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control is a very typical application scenario, which is often used to verify the effectiveness of control
schemes [4–6]. And in actual engineering, many engineering tasks are unavoidable to avoid making
the vessels track the predetermined trajectory, such as oil exploration, submarine cable laying, etc. The
tracking performance of the vessel is usually limited by the following factors:

1) Internal uncertain dynamics and external unmeasurable unknown environmental disturbances
lead to the failure to obtain accurate model information in the control scheme design.

2) For USVs performing missions in extreme environments, frequent actuator actions, as well as
the physical limitations of propulsion and steering devices, lead to actuator failures, which seriously
affect the tracking performance of the system.

The USVs trajectory tracking system has typical non-holonomic constraint characteristics. Under
the constraints physical, constraints of the actuator, the design of the control scheme needs to con-
sider more factors. (Pettersen et al. [7] and Do [8]) respectively used differential homeomorphism
and additional control methods to solve the underactuation problem. The method in [7] converted the
mathematical model of USVs into two chained subsystems through changes and stabilized the system
errors indirectly by designing control laws. In [8], by constructing a virtual transverse drive vector,
the virtual control variables of the original propulsion system were decomposed through a coordinate
transformation to achieve the purpose of applying part of the longitudinal drive to the transverse direc-
tion. However, both were control schemes designed based on accurate models. In other words, prior
knowledge of the model must be obtained in advance. (Zhang et al. [9]) carried out the state transition
for the system and considered the uncertain terms in the model. However, this method imposes a norm
limit on transverse and longitudinal errors in the design process, and the implicit assumption is that the
heading error must be less than 0.5 PI. In [10], new kinematic and dynamic equations were obtained by
using the definition of hands, and the control scheme was designed by combining the vector method.
However, both the underactuated transformation and the NNs algorithm used by the system may bring
huge computational load to the system.

In practice, the vessel’s control system cannot execute arbitrary control instructions. This is caused
by the saturation limit of the actuator. The steady state of the control system is challenged by the
non-smooth property of the saturation function. In numerous studies, there are two main types of
saturation. One method is to use the strong robustness of the control system to force the system error to
stabilize. The other is to adopt the active compensation method. For example, auxiliary system design,
smooth function approximation, and other methods. In [11], the smooth property of the Gaussian error
function was used to replace the non-linearity of the saturation function. However, the control scheme
is designed on the basis of a fully actuated system. In addition, (Zheng [12]) used a hyperbolic tangent
function to replace the nonlinearity caused by the non-smooth saturation function, but this method
increases the complexity of the control scheme design.

In the actual ocean voyage, due to the limitation of modeling technology and the unmeasurable
ocean environment, the tracking system cannot obtain the model dynamic parameters and the prior
information of unknown external disturbances in advance. Therefore, the vessel will inevitably be af-
fected by internal and external uncertainties. In view of the dynamic uncertainty of the USVs, it is a
very popular way to use intelligent control algorithms such as fuzzy or NNs to reconstruct the vessel.
(Zhou et al. [13] and Kong et al. [14]) designed the control scheme combined with the adaptive theory
without obtaining the prior information of the model. (Huang et al. [15]) combined with a disturbance
observer to compensate for the unmeasurable disturbances and further improved the tracking accuracy
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on the basis of [13] and [14]. Although the control effect of an intelligent algorithm is very consider-
able, we cannot ignore the huge load faced by the system. In other words, these burdens are unbearable
in real control systems. In order to solve this problem, (Zhang et al. [16]) converted the uncertainty of
the system into a single parameter form by combining the minimum learning parameter, which effec-
tively reduced the computational pressure of the system. However, the norm calculation method tended
to be conservative obviously, that is to say, we must inevitably sacrifice part of the tracking accuracy.
To solve this problem, a nonlinear function was introduced in [17] to filter the error through nonlinear
feedback.

For a USVs control system in normal operation, the stability of the system highly depends on the
normal operation of the actuator. However, when the USVs are operating, harsh sea conditions are
inevitable and the equipment is often subjected to seawater erosion. These adverse conditions may
become potential failure factors for the actuator. Therefore, developing a fault-tolerant control scheme
will undoubtedly improve the reliability of the vessel control system. In dynamic systems, adaptive
control is a common method compensating for the fault factors acting on the actuator. (Cai et al. [18])
and (Tang et al. [19]) designed fault-tolerant control schemes for strictly nonlinear systems and multi-
input multi-output systems, respectively. (Wang er al. [20] and Zheng et al. [21]) had applied the
submethod in a marine surface vessel control system. However, reference [21] only considered bias
faults.

References [18–21] are all based on time-triggered control strategies, which will lead to broadband
congestion, aggravation of actuator wear, and other problems. On the contrary, an event-triggered
policy transfers control commands to the actuator only if the trigger condition is violated. Avoid the
huge communication burden brought about by the vessel control system in periodic control mode. At
the same time, the actuator does not have to repeatedly receive control commands, so as to effectively
reduce the failure rate of the equipment. Control schemes based on event-triggered control design
had been widely used in trajectory-tracking control [22–24]. (Xing et al. [25]) designed a novel fault-
tolerant control scheme based on an event trigger mechanism. Subsequently, (Zhang et al. [26] and
Zhu et al. [27]) had done similar research on course-keeping control and trajectory-tracking control,
respectively. All of them effectively compensate for the uncertain effect of fault factors in the system.
However, these control schemes only achieved convergence when the system time tends to infinity.
FTC can effectively improve the transient response steady-state performance of the system, which can-
not be ignored. Many authors have proved this conclusion [28–32]. If the idea of FTC is incorporated
into the design of a fault-tolerant control scheme, the tracking accuracy of the system will be further
guaranteed. Inspired by the above references, this paper designs a novel fault-tolerant control scheme.
The specific contributions of this paper are as follows:

1) In this study, we consider both internal and external uncertain dynamics. Reconstructing the dy-
namic uncertainty with RBFNNs combined with MLPs reduces the computational load of the system.
It is worth noting that the proposed control scheme does not require real-time updates of the neural
network weights.

2) Without prior knowledge of the model, the effects of input saturation limits and actuator faults
are considered. The relative threshold event trigger strategy is adopted to reduce the frequent update
of control commands and reduce actuator wear. The unknown factors including bias fault factors and
partial failure fault factors, as well as other unknown factors of the system are dynamically transformed
into a single-parameter linearized form, which is compensated by an adaptive parameter updated on-
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line.

2. Problem formulation and preliminaries

In general, the 3-DOF mathematical model of USV tracking control can be expressed in the follow-
ing form [22, 33]: 

ẋ = u cos (ψ) − v sin (ψ)
ẏ = u sin (ψ) + v cos (ψ)
ψ̇ = r

(2.1)


u̇ = 1

mu

[
τ

f
u + fu(u, v, r) + du

]
ν̇ = 1

mv

[
fv(u, v, r) + dv

]
ṙ = 1

mr

[
τ

f
r + fr(u, v, r) + dr

] (2.2)


fu (u, v, r) = (mvvr − Yṙr2 + Xuu + Xu|u| |u| u)
fv (u, v, r) = (Yvv + Y|v|v|v|v + Y|r|v|r|v + Yrr − muur + Y|v|r|v|r + Y|r|r|r|r)
fr (u, v, r) =

[
(mu − mv) uv + Yṙur + Nvv + Nrr + N|r|v|r|v + N|v|v|v|v + N|v|r|v|r + N|r|r|r|r

] (2.3)

where x, y, ψ represent the position and heading angle of the USV in the geodetic coordinate sys-
tem, respectively. u, v, r represent the surge velocity, sway velocity and yaw velocity, respectively.
fu (u, v, r), fv (u, v, r), fr (u, v, r) are the non-linear dynamics, respectively. mi, (i = u, v, r) are the in-
ertial mass. du, dv, dr represent the unmeasurable unknown disturbances, respectively. τ f

u
, τ f

r
are the

surge control force and the yaw control force due to actuator failure, respectively. In this work, we
focus on the Loss-of-effectiveness (LOE) and bias fault, the specific form is as follows:

τ
f
i = %iτi + σi (2.4)

if %i = 1, σi = 0, it means that the unmanned ship system is fault-free. If 0 < %i < 1, σi = 0, it means
that the actuator is suffering from a LOE fault. If %i = 1, 0 < σi < 1, it means that the actuator is
suffering from a bias fault.

In engineering practice, ship actuators inevitably suffer from physical limitations, which make the
control inputs τ f

u
, τ f

r
affected by input saturation, which are described as follows [27]:

τi =

{
sgn (τi) τi,max, if

∣∣∣τi,c

∣∣∣ > τi,max

τi,c, if
∣∣∣τi,c

∣∣∣ < τi,max
(2.5)

In view of the design of control law, the following assumptions are made and relevant definitions
and theorems are introduced:

Assumption 1. fi (u, v, r), (i = u, v, r) are unknown. The external disturbance di, (i = u, v, r) un-
known and bounded. So there are unknown positive constants σu, σv, σr such that du, dv, dr satisfy
|du| ≤ σu, |du| ≤ σv, |du| ≤ σr.

Definition 1. [34, 35] Nonlinear control systems are described as follows system (2.6)

ẋ = f (x) , x (0) = xo, x ∈ Ω0 ⊂ Rn (2.6)

where x ∈ Rn is the state variable of the system, Ω0 is a spherical domain containing the origin, and
f (x) is a continuous function. For any initial condition x0, if there is a constant = > 0 and a regulating
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time function 0 < T (xo) < ∞ such that ‖x (t)‖ ≤ =, t ≥ T (x0), then the system (2.6) can be said to be
semi-globally practical finite-time stable.

Lemma 1. [36] For the nonlinear system (2.6), assuming that there is a positive definite Lyapunov
function V (x): Ω0 → R and any scalar a > 0, b > 0 and 0 < κ < 1 such that the inequality
V̇(x) + aV(x) + bVκ(x) ≤ 0 holds, the system (2.6) is stable in finite time, and its adjustment time
satisfies:

T ≤
1

a(1 − t)
ln

aV1−κ (x0) + b
b

(2.7)

where V (x0) is the initial value of V (x).
Lemma 2. [37, 38] For any given continuous smooth function defined on the compact set Ω ⊂ Rn

h (x) = W∗T s (x) + ε,∀x ∈ Ω (2.8)

where ε is the approximation error, and for all x ∈ Ω, here is a vector ε∗ > 0, and |ε| ≤ ε∗ is satisfied.
s (x) is the NN basis function, which is represented by a Gaussian function, as follows:

s (x) = exp
[
−(X − ci)T (X − ci)

ω2
i

]
(2.9)

where ci is the center vector, and ωi is the width of the Gaussian function. W∗ is the weight vector
under ideal conditions. Usually the ideal neural network weight vector is an unknown vector and needs
to be estimated. It can be understood that |ε| can minimize ω on x ∈ Ω ⊂ Rn , that is

W∗ := arg min
W∈Rl

{
sup
x∈Ω

∣∣∣h(x) −WTS (x)
∣∣∣} (2.10)

Assumption 2. In the compact set Ωx ⊂ Rn, the weight W∗ of the RBFNNs used to approximate the
unknown vector is bounded, that is, ‖W∗‖ ≤ WM, where WM is a positive constant.

Lemma 3. [39] For any constant ς > 0 and any scalar ρ ∈ R, inequality (2.11) holds

0 ≤ |ρ| −
ρ2√
ρ2 + ς2

< ς (2.11)

Lemma 4. [40] For any a > 0 and x ∈ R, the following relation is satisfied.

0 < |x| − x tanh
( x
a

)
≤ 0.2785a (2.12)

3. Control design and stability analysis

First, define the tracking error as follows

ze =

[
xe

ye

]
=

[
x − x∗

y − y∗

]
(3.1)

where x∗, y∗, are the reference position of the USV.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2131–2156.



2136

Taking the derivation of Eq (3.1), one can get

że = ugu (ψ) + vgv (ψ) −
(

ẋ∗

ẏ∗

)
(3.2)

where gu (ψ) =

[
cos (ψ)
sin (ψ)

]
, gv (ψ) =

[
− sin (ψ)
cos (ψ)

]
.

The virtual control law is designed to stabilize the error ze as follows:

α =

(
αx

αy

)
= u∗gu (ψ∗) = −k11ze −

k12ze√
‖ze‖

2 + ςz
2

− vgv (ψ) +

(
ẋ∗

ẏ∗

)
(3.3)

where k11, k12 are positive definite parameters.
It is not difficult to obtain the relationship in Eq (3.4) by further calculating Eq (3.3) u∗ = ‖α‖

ψ∗ = arctan
(
αy, αx

) (3.4)

where u∗ is the reference surge velocity, ψ∗ is the reference heading angle.
The heading angle error is defined as follows:

ψe = ψ − ψ∗ (3.5)

Taking the derivation of Eq (3.5), we can get

ψ̇e = r − ψ̇∗ (3.6)

To stabilize the error ψe a virtual control variables of the following form is designed:

r∗ = −k31ψe −
k32ψe√
|ψe|

2 + ςψ2
+ ψ̇∗ (3.7)

where k31 and k32 are positive definite parameters.
Filter u∗ and r∗ by using dynamic stability control (DSC) technology{

ηuβ̇u + βu = u∗

ηrβ̇r + βr = r∗
(3.8)

where the dynamic surface error e f ,u = βu − ud, e f ,r = βr − rd.
According to Eqs (3.2)–(3.8), it can be obtained

że = −k11ze −
k12ze√
‖ze‖

2+ςz2
+ ∆e

ψ̇e = −k31ψe −
k32ψe√
|ψe |

2+ςψ2
+ re

(3.9)

where ∆e = ugu (ψ) − u∗gu (ψ∗).
The velocity error variable is defined as follows
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{
ue = u − βu

re = r − βr
(3.10)

Taking the derivation of Eq (3.10), one can get u̇e = 1
mu

(
τ

f
u + fu (u, v, r) + du

)
− u̇∗

re = 1
mr

(
τ

f
r + fr (u, v, r) + dr

)
− ṙ∗

(3.11)

Since fu (u, v, r) and fr (u, v, r) are unknown, they cannot be used in the design of the controller.
Therefore, the RBFNNs are used to approximate the unknown nonlinear functions.{

fu (u, v, r) = Wu
Tσu (η) + εu

fr (u, v, r) = Wr
Tσr (η) + εr

(3.12)

where Wu and Wr are the neural network weights. σu (η) and σr (η) are the NN functions. εu and εr are
approximation errors. Substituting Eq (3.12) into Eq (3.11), one can get u̇e = 1

mu

(
%uτu + σu + Wu

Tσu (η) + εu + du

)
− β̇u

re = 1
mr

(
%rτr + σr + Wr

Tσr (η) + εr + dr

)
− β̇r

(3.13)

Next, by combining the idea of the relative threshold event triggering mechanism, the following
dynamic event triggering mechanism is designed [25]{

τu(t) = ωu (tk) ,∀t ∈ [tk, tk+1)
tk+1 = inf {t ∈ R ||eu (t)| ≥ η12 |τu (t)| + η11}

(3.14){
τr(t) = ωr (tk) ,∀t ∈ [tk, tk+1)

tk+1 = inf {t ∈ R ||er (t)| ≥ η22 |τr (t)| + η21}
(3.15)

where eu (t), er (t) are the measurement errors, and η11, η12, η21, η22 re the positive definite design
parameters. tk is the update time of the controller. During the time interval t ∈ [tk, tk+1], the control input
ωu (tk) and ωr (tk) remains unchanged. When the moment switches to tk+1, a new control command will
be sent to the actuator.

Under this event triggering mechanism, |ωu (t) − τu (t)| ≤ η12 |τu (t)| + η11 and |ωr (t) − τr (t)| ≤
η22 |τr (t)| + η21 are satisfied within any time. From this, when

∣∣∣λu,1 (t)
∣∣∣ ≤ 1,

∣∣∣λu,2 (t)
∣∣∣ ≤ 1,

∣∣∣λr,1 (t)
∣∣∣ ≤ 1,∣∣∣λr,2 (t)

∣∣∣ ≤ 1, it is not difficult to draw the following relationship{
ωu (t) =

[
1 + λu,1 (t) η12

]
τu(t) + λu,2 (t) η11

ωr (t) =
[
1 + λr,1 (t) η22

]
τr(t) + λr,2 (t) η21

(3.16)

Further, the following relationship can be obtained τu(t) =
ωu(t)

1+λu,1(t)η12
−

λu,2(t)η11

1+λu,1(t)η12

τr(t) =
ωr(t)

1+λr,1(t)η22
−

λr,2(t)η21

1+λr,1(t)η22

(3.17)

According to Eqs (3.14)–(3.17), the velocity error becomes u̇e = 1
mu

[
%uωu(t)

1+λu,1(t)η12
−

%uλu,2(t)η11

1+λu,1(t)η12
+ σu + Wu

Tσu (η) + εu + du

]
− β̇u

ṙe = 1
mr

[
%rωr(t)

1+λr,1(t)η22
−

%rλr,2(t)η21

1+λr,1(t)η22
+ σr + Wr

Tσr (η) + εr + du

]
− β̇r

(3.18)
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where %u
1+λu,1(t)η12

and %r
1+λr,1(t)η22

are nonlinear bounded functions with positive definite upper bound less
than 1.

Combined with the design idea of the robust adaptive method of depth information, using the
RBFNNs and the MLPs, we can further obtain{ ∥∥∥Wu

Tσu (η) + εu + du − muβ̇u

∥∥∥ ≤ ∥∥∥Wu
T
∥∥∥ ‖σu (η)‖ +

∣∣∣εu + du − muβ̇u

∣∣∣ = ℘uζu (Z)∥∥∥Wr
Tσr (η) + εr + dr − mrβ̇r

∥∥∥ ≤ ∥∥∥Wr
T
∥∥∥ ‖σr (η)‖ +

∣∣∣εr + dr − mrβ̇r

∣∣∣ = ℘rζr (Z)
(3.19)

where

 ℘u = max
{∥∥∥Wu

T
∥∥∥ , ∣∣∣εu + du − muβ̇u

∣∣∣}
℘r = max

{∥∥∥Wr
T
∥∥∥ , ∣∣∣εr + dr − mrβ̇r

∣∣∣} ,
{
ζu (Z) = ‖σu (η)‖ + 1
ζr (Z) = ‖σr (η)‖ + 1

. With the transformation, the

adaptive learning parameters are significantly reduced.
To stabilize the influence of the fault factor on the system, the following variables is designed

[25, 26]  Ωu = 1
mu

(
%uλu,2(t)η11

1+λu,1(t)η12
− σu + ℘uζu (Z)

)
= δu$u

Ωr = 1
mr

(
%uλr,2(t)η21

1+λr,1(t)η22
− σr + ℘rζr (Z)

)
= δr$r

(3.20)

where δu =
%u

mu(1+λu,1(t)η12) , $u =
1+λu,1(t)η12

%u

(
%uλu,2(t)η11

1+λu,1(t)η12
− σu + ℘uζu (Z)

)
, δr =

%r

mr(1+λr,1(t)η22) , $r =

1+λr,1(t)η22

%r

(
%rλr,2(t)η21

1+λr,1(t)η22
− σr + ℘rζr (Z)

)
.

Through analysis, the dynamic error equation of the system becomes{
u̇e ≤ δu$u + 1

mu
δuωu (t)

ṙe ≤ δr$r + 1
mr
δrωr (t)

(3.21)

In view of this, the following control law is designed
ωu(t) = mu

[
−k21ue −

k22ue√
|ue |

2+ςu2
− tanh

(
ue
εu

)
ˆ̄$u

]
ωr(t) = mr

[
−k41re −

k42re√
|re |

2+ςr2
− tanh

(
re
εr

)
ˆ̄$r − ψe

] (3.22)

The adaptive law as follows  ˙̄̂$u = c1

[
tanh

(
ue
εu

)
− ı1 ˆ̄$u

]
˙̄̂$r = c2

[
tanh

(
re
εr

)
− ı2 ˆ̄$r

] (3.23)

Introduce the following Lyapunov function

V =
1
2

ze
T ze +

1
2
ψe

2 +
1
2

ue
2 +

1
2

re
2 +

δu

2c1
˜̄$u

2
+
δr

2c2
˜̄$r

2 (3.24)

where ˜̄$i = $̄i − ˆ̄$i, i = u, r.
Then, derivation of Eq (3.24) can be obtained

V̇ = ze
T że + ψeψ̇e + ueu̇e + reṙe −

δu

c3
˜̄$u

˙̄̂$u −
δr

c4
˜̄$r

˙̄̂$r (3.25)
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According to Eqs (3.1)–(3.9), |βu − u∗| ≤ γu, |βr − r∗| ≤ γr and Young’s inequality, we can get

ze
T że + ψeψ̇e = −ze

T k11ze −
ze

T k12ze√
‖ze‖

2 + ς2
z

+ ze
T ∆e − k31ψe

2 −
k32ψe

2√
|ψe|

2 + ς2
ψ

+ ψere +
γu + γr

2
(3.26)

In view of Eqs (3.10)–(3.23), and from Lemma 4, we can get

ueu̇e −
δu

c3
˜̄$u

˙̄̂$u ≤δuue

−k21re −
k22ue√
|ue|

2 + ςu
2

+$u − Tanh
(
ue

εu

)
ˆ̄$u


− δu ˆ̄$u

[
Tanh

(
ue

εu

)
ue − ı1 ˆ̄$u

]
≤δu

−k21ue
2 −

k22ue
2√

|ue|
2 + ςu

2
+ 0.2785εu$̄u −

ı1
2

˜̄$u
2 +

ı1
2
$̄u

2


(3.27)

reṙe −
δr

c4
˜̄$r

˙̄̂$r ≤δrre

−k41re −
k42re√
|re|

2 + S 2
r

− ψe +$r − Tanh
(

re

εr

)
ˆ̄$r


− δr ˜̄$r

[
Tanh

(
re

εr

)
re − ı2 ˆ̄$r

]
≤δr

−k41r2
e −

k42r2
e√

r2
e + ς2

r

− reψe + 0.2785εr$̄r −
ı2
2

˜̄$2
r +

ı2
2
$̄2

r


(3.28)

Substitute Eqs (3.26)–(3.28) into Eq (3.24), and according to 0 < δi < 1, i = u, r, we can get

V̈ ≤ − ze
Tκ11ze − κ12 ‖ze‖ − κ11ψe

2 − κ12 |ψe|

− κ21u2
e − κ22 |ue| −

ı1
2
δu ˜̄$2

u +
ı1
2
$̄2

u + 0.2785εu$̄u

− κ21r2
e − κ22 |re| −

ı2
2
δr ˜̄$r

2 +
ı2
2
$̄2

r + 0.2785εr$̄r

+
γu + γr

2
+

5
2

∆e
2 + ςmax (κ12 + κ22)

(3.29)

where κ11 = min {(k11 − 0.1) , k31}, κ12 = min {k12, k32}, κ21 = min {δuk21, δrk41}, κ22 = min {δuk22, δrk42}.
According to Young’s inequality, we can get ı1

4

∣∣∣ ˜̄$u

∣∣∣ ≤ ı1
4

∣∣∣ ˜̄$u

∣∣∣2 + ı1
16

ı2
4

∣∣∣ ˜̄$r

∣∣∣ ≤ ı2
4

∣∣∣ ˜̄$r

∣∣∣2 + ı2
16

(3.30)

Substitute Eq (3.30) into Eq (3.29), and further obtain

V̇ ≤ −ze
Tκ11ze − κ12 ‖ze‖ − κ11ψe

2 − κ12 ‖ψe‖ − κ21ue
2 − κ22 ‖ue‖ − κ21re

2 − κ22 ‖re‖

−
ı1
4 δu ˜̄$u

2
−

ı1
4 δu

∣∣∣ ˜̄$u

∣∣∣ + ı1
2 $̄

2
u −

ı2
4 δr ˜̄$r

2
−

ı2
4 δr

∣∣∣ ˜̄$r

∣∣∣ + ı2
2 $̄

2
r

+ 0.2785 (εu$̄u + εr$̄r) + 5
2∆e

2 + ı1+ı2
16 +

γu+γr
2

≤ −
ρ1
2

(
ze

T ze + ue
2 + δu

c1
˜̄$u

2
+ ψe

2 + re
2 + δr

c2
˜̄$r

2
)

− ρ2

[(
1
2ze

T ze

) 1
2

+
(

1
2ue

2
) 1

2
+ ( δu

2$̄u
˜̄$u

2)
1
2
+
(

1
2ψe

2
) 1

2
+

(
1
2re

2
) 1

2
+ ( δr

2$̄r
˜̄$r

2)
1
2
]
+Θ

≤ −ρ1V − ρ2V
1
2 + Θ

(3.31)
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where ρ1 = min
{
2κ11, 2κ21,

ı1c1
2 ,

ı2c2
2

}
, ρ2 = 2

1
2 min

{
κ12, κ22,

ı1c1
4 ,

ı2c2
4

}
, Θ = ı3

2 $̄
2
u + ı4

2 $̄
2
r +

γu+γr
2 +

0.2785 (εu$̄u + εr$̄r) + 5
2∆e

2 + ı1+ı2
16 .

According to Eq (3.31), one can get

V̇ ≤ −`ρ1V − (1 − `) ρ1V − ρ2V
1
2 + Θ (3.32)

where 0 < ` < 1.
According to Eq (3.32), if V > Θ

`ρ1
, one can get

V̇ ≤ − (1 − `) ρ1V − ρ2V
1
2 (3.33)

According to Lemma 1, it can be known that the system will stabilize to the region c in finite time,
and the stabilization time is

T ≤
4

(1 − `) ρ1
ln

[
(1 − `) ρ1V1/2 (0) + ρ2

ρ2

]
(3.34)

where V (0) is the initial value of V .
According to the measurement error eu = ωu (t) − τu (t), er = ωr (t) − τr (t), one can get d

dt |eu| =
d
dt (eu ∗ eu)

1
2 = sign (eu) ėu ≤ |ω̇u (t)|

d
dt |er| =

d
dt (er ∗ er)

1
2 = sign (er) ėr ≤ |ω̇r (t)|

(3.35)

Since all the variables that make up ωu (t), ωr (t) are globally bounded, ωu (t), ωr (t) are continu-
ous. Therefore, there must be positive definite constants ζu, ζr, satisfying the conditions |ω̇u (t)| ≤ ζu,
|ω̇r (t)| ≤ ζr.When t = tk, there are eu (tk) = 0, er (tk) = 0, lim

t→tk+1
eu (t) = η12 |τu (t)| + η11 and

lim
t→tk+1

er (t) = η22 |τr (t)| + η21. Therefore, there must be time intervals tu
∗ and tr

∗ satisfying tu
∗ ≥

η12 |τu(t)|−η11
ζu

, tr
∗ ≥

η22 |τr(t)|−η21
ζr

, which can avoid Zeno behavior.

4. Simulation

In this section, we select Cybership 2 model for simulation, and its parameters are detailed in [41].
In order to verify the effectiveness of the designed ETC trajectory tracking control scheme, the time-
varying disturbance of Eq (4.1) is selected to simulate the external uncertain disturbance in the actual
voyage, which is detailed as follows

du = 11/12 [1 + 0.35 sin (0.3t) + 0.15 cos(0.5t)]
dv = 26/17.76 [1 + 0.3 sin(0.4t) + 0.2 cos(0.1t)]
dr = 950/636 [1 + 0.3 sin(0.3t) + 0.1 cos(0.5t)]

(4.1)

In addition, the specific forms of LOE fault and bias fault are as follows{
%u = 0.6 + 0.4 exp (−0.2t)
%r = 0.8 + 0.2 exp (−0.1t)

(4.2)
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σu = 0.2 + 0.5 sin (0.1t)
σr = 0.2 + 0.6 cos (0.1t)

(4.3)

In order to quantitatively analyze the tracking performance of the control scheme designed in this
paper, the integrated absolute error (IAE) and mean integrated absolute control (MIAC) of Eq (4.4) are
used to evaluate the steady-state performance and energy consumption performance. IAE =

∫ t f

0
|υe| dt, υ = x, y

MIAC = 1
t f

∫ t f

0
|ωi (t)| dt, i = u.r

(4.4)

In this paper, two sets of simulation experiments are carried out under the circular reference trajec-
tory and the trapezoidal reference trajectory.

4.1. Simulation experiment 1

The circular reference trajectory is as follows{
x∗ = 25 sin (0.01πt)
y∗ = 25 − 25 cos (0.01πt)

(4.5)

The controller parameters under the circular trajectory are shown in Table 1.

Table 1. Controller parameters.

Circular trajectory k11 = 0.2 k12 = 0.03 k21 = 0.8 k22 = 0.2
k31 = 2.0 k32 = 0.3 k41 = 0.8 k42 = 0.3
c1 = 0.1 ı1 = 0.01 c2 = 0.01 ı1 = 1
ςz = 0.05 ςψ = 0.05 ςu = 0.05 ςr = 0.05
η11 = 0.05 η12 = 0.05 η21 = 0.05 η22 = 0.05
εu = 0.05 εr = 0.05

Table 2. Performance index comparison of the schemes of ETC and FTC.

ETC scheme FTC scheme
IAE x − x∗ 6.6594 6.4818

y − y∗ 84.1017 85.1983
MIAC τu 0.5945 0.5941

τr 0.7903 0.6599

The data in Figures 1–10 and Table 2 show that the USVs system shows satisfactory tracking perfor-
mance under the constraints of input saturation, actuator failure, communication congestion and other
conditions. Under the two control schemes, the errors of the system are all within a reasonable range.
First, under the constraints of actuator saturation, Figure 6 shows that the control inputs to the system
are all within a reasonable range. According to the performance index data of MIAC in Table 2, the
energy consumption of the ETC scheme is slightly higher than that of the continuous FTC scheme.
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However, within the simulation time, the controller updates for the continuous control scheme both are
20,000 times, compared to 2636 and 574 times for the ETC scheme. On the contrary, the ECT control
scheme in this paper effectively reduces the frequency of updating of the controller instructions. Fig-
ures 4 and 5 show the tracking error trend of the system with time, respectively, which are bounded
under the two fault-tolerant control schemes. According to the performance index given by IAE in
Table 2, the tracking accuracy of the continuous FT fault-tolerant control scheme is slightly better than
that of the ETC control scheme. Figure 9 shows the time interval of event triggering, we can clearly
see that the control instruction does not trigger infinite times in a very short period of time. Figure 7
and 8 show that both the NN weights and the estimates of the uncertain terms are bounded.
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Figure 1. Actual and reference trajectories in (x, y) plane.
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Figure 2. Time evolution of actual position and heading angle.
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Figure 3. Surge velocity and yaw rate.
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Figure 4. Time evolution of the trajectory tracking errors.
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Figure 5. Time evolution of the velocity errors.
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Figure 6. Time evolution of the control input.
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Figure 7. Curve of estimation ˆ̄$u and ˆ̄$u.
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Figure 8. Curve of estimation Ŵu and Ŵr.
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Figure 10. The number of controller updates.

4.2. Simulation experiment 2

The trapezoidal reference trajectory is as follows
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y∗ = 10 t ≤ 47
y∗ =

√
100 − (t − 47)2 47 < t ≤ 53

y∗ = 65−t
1.5 53 < t ≤ 62

y∗ = 10 −
√

100 − (t − 68)2 62 < t ≤ 68
y∗ = 0 68 < t ≤ 112
y∗ = 10 −

√
100 − (t − 112)2 112 < t ≤ 118

y∗ = t−115
1.5 118 < t ≤ 127

y∗ =
√

100 − (t − 133)2 127 < t ≤ 133
y∗ = 10 133 < t ≤ 200

(4.6)

The controller parameters under the trapezoidal reference trajectory are shown in Table 3.

Table 3. Controller parameters.

Trapezoidal trajectory k11 = 0.2 k12 = 0.05 k21 = 1.5 k22 = 0.2
k31 = 1.9 k32 = 0.7 k41 = 1.5 k42 = 1.5

c1=1 ı1 = 1 c2 = 0.001 ı1 = 3
ςz = 0.05 ςψ = 0.05 ςu = 0.05 ςr = 0.05
η11 = 0.05 η12 = 0.05 η21 = 0.05 η22 = 0.05
εu = 0.05 εr = 0.05

Table 4. Performance index comparison of the schemes of ETC and FTC.

ETC scheme FTC scheme
IAE x − x∗ 8.8848 9.2154

y − y∗ 17.4747 17.5333
MIAC τu 1.4084 1.0757

τr 1.4065 0.8849

The simulation results under the trapezoidal trajectory are shown in Figures 11–20 and Table 4.
Under the trapezoidal trajectory, the two fault-tolerant control schemes also show excellent tracking
performance. Figures 14 and 15 show that the tracking error and velocity error of the system are
within a small range. According to the performance indicators given by IAE in Table 4, we find that
the tracking performance of the ETC control scheme is slightly better than that of the FTC control
scheme. Figure 20 shows that under the FTC control scheme, the update of the controller are also
20,000 times, while the FTC are 4795 and 612 times. Furthermore, according to the performance
index data in Table 4, the energy consumption of the ETC scheme is slightly higher than that of the
FTC scheme. Figures 17 and 18 show that the estimates of NNs weights and uncertainty terms are
bounded. The above data show that all signals in the closed-loop tracking system are bounded, and the
proposed ETC control scheme effectively solves the problems of actuator failure, input saturation, and
communication resource limitation.

In addition, the ETC scheme in this paper is essentially an active fault-tolerant control method,
while the even FTC scheme is actually a passive fault-tolerant control method. FTC can improve the
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steady state of the system, and ETC can reduce the operating frequency of the controller. In the actual
system, the introduction of ETC will inevitably sacrifice part of the control performance. However, the
method of compensating fault factors by event-triggered mechanism in this paper finally obtains the
control effect almost indistinguishable from the continuous FTC scheme, and effectively reduces the
frequency of controller update and the frequency of actuator wear.
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Figure 11. Actual and reference trajectories in (x, y) plane.
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Figure 14. Time evolution of the trajectory tracking errors.
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Figure 16. Time evolution of the control input.
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Figure 17. Curve of estimation ˆ̄$u and ˆ̄$u.
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Figure 20. The number of controller updates.

In summary, through the verification and analysis of two sets of simulation experiments, the ETC
control scheme designed in this paper has demonstrated several superior performances in solving actua-
tor faults, dealing with external interference, reducing the frequency of control commands and ensuring
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high-precision tracking effects. Moreover, the controller designed in this paper has a concise structure
and is easier to apply in engineering.

5. Conclusions

In this paper, a novel fault-tolerant control scheme is designed for USVs. By introducing MLPs
technology, the uncertain dynamics, unknown interference, and fault factors of the system are con-
verted into the form of single parameter. Since the controller involves only the adjustment of a single
parameter, the structure of the controller in this paper is simple and easy to apply in practice. Upon
non-respect of the response of the event-triggered mechanism, the communication resources occupied
by the control scheme presented in this paper will be lower in the actual system. The theoretical anal-
ysis shows that the ETC control scheme designed in this paper ensures that all the error signals of
the USVs system converge to a small set around the origin in a finite time, and all the signals in the
tracking system are bounded.

Acknowledgments

The authors would like to acknowledge the National Natural Science Foundation of
China (NSFC51779136), Science and Technology Commission of Shanghai Municipality
(NO.20dz1206002).

Conflict of interest

The authors declare there are no conflict of interest.

References

1. W. Wu, Z. Peng, D. Wang, L. Liu, Q. L. Han, Network-based line-of-sight path tracking of un-
deractuated unmanned surface vehicles with experiment results, IEEE Trans. Cybern., 52 (2021),
10937–10947. https://doi.org/10.1109/TCYB.2021.3074396

2. Y. Zhao, X. Qi, Y. Ma, Z. Li, R. Malekian, M. A. Sotelo, Path following optimization for an
underactuated usv using smoothly-convergent deep reinforcement learning, IEEE Trans. Intell.
Transp. Syst., 22 (2021), 6208–6220. https://doi.org/10.1109/TITS.2020.2989352

3. N. Wang, Y. Gao, H. Zhao, C. K. Ahn, Reinforcement learning-based optimal tracking control
of an unknown unmanned surface vehicle, IEEE Trans. Neural Networks Learn. Syst., 32 (2020),
3034–3045. https://doi.org/10.1109/TNNLS.2020.3009214

4. M. Liu, F. Zhao, J. L. Yin, J. W. Niu, Y. Liu, Reinforcement-tracking: an effective trajectory
tracking and navigation method for autonomous urban driving, IEEE Trans. Intell. Transp. Syst.,
23 (2021), 6991–7007. https://doi.org/10.1109/TITS.2021.3066366

5. Z. P. Yan, H. Y. Yang, W. Zhang, F. T. Lin, Q. S. Gong, Y. Zhang, Bionic
fish tail design and trajectory tracking control, Ocean Eng., 257 (2022), 111659.
https://doi.org/10.1016/j.oceaneng.2022.111659

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2131–2156.

http://dx.doi.org/https://doi.org/10.1109/TCYB.2021.3074396
http://dx.doi.org/https://doi.org/10.1109/TITS.2020.2989352
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2020.3009214
http://dx.doi.org/https://doi.org/10.1109/TITS.2021.3066366
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2022.111659


2154

6. X. X. Liu, W. Wang, X. L. Li, F. S. Liu, Z. H. He, Y. Z. Yao, et al., MPC-
based high-speed trajectory tracking for 4WIS robot, ISA Trans., 123 (2022), 413–424.
https://doi.org/10.1016/j.isatra.2021.05.018

7. K. Y. Pettersen, F. Mazenc, H. Nijmeijer, Global uniform asymptotic stabilization of an under-
actuated surface vessel: Experimental results, IEEE Trans. Control Syst. Technol., 12 (2004),
891–903. https://doi.org/10.1109/TCST.2004.833643

8. K. D. Do, Practical control of underactuated ships, Ocean Eng., 37 (2010), 1111–1119.
https://doi.org/10.1016/j.oceaneng.2010.04.007

9. G. Q. Zhang, J. Q. Li, X. Jin, C. Liu, Robust adaptive neural control for wing-sail-
assisted vehicle via the multiport event-triggered approach, IEEE Trans. Cybern., 2021 (2021).
https://doi.org/10.1109/TCYB.2021.3091580

10. G. B. Zhu, M. Yong, S. L. Hu, Single-parameter-learning-based finite-time tracking control
of underactuated MSVs under input saturation, Control Eng. Pract., 105 (2020), 104652.
https://doi.org/10.1016/j.conengprac.2020.104652

11. G. B. Zhu, J. L. Du, Global robust adaptive trajectory tracking control for surface ships under input
saturation, IEEE J. Ocean. Eng., 45 (2020), 442–450. https://doi.org/10.1109/JOE.2018.2877895

12. Z. W. Zheng, Y. T. Huang, L. H. Xie, B. Zhu, Adaptive trajectory tracking control of a fully
actuated surface vessel with asymmetrically constrained input and output, IEEE Trans. Control
Syst. Technol., 26 (2018), 1851–1859. https://doi.org/10.1109/TCST.2017.2728518

13. B. Zhou, B. Huang, Y. M. Su, Y. X. Zheng, S. Zheng, Fixed-time neural network trajec-
tory tracking control for underactuated surface vessels, Ocean Eng., 236 (2021), 109416.
https://doi.org/10.1016/j.oceaneng.2021.109416

14. L. H. Kong, W. He, C. G. Yang, G. Li, Z. Q. Zhang, Adaptive fuzzy control for a ma-
rine vessel with time-varying constraints, IET Control Theory Appl., 12 (2018), 1448–1455.
https://doi.org/10.1049/iet-cta.2017.0757

15. C. F. Huang, X. K. Zhang, G. Q. Zhang, Improved decentralized finite-time formation control
of underactuated USVs via a novel disturbance observer, Ocean Eng., 174 (2019), 117–124.
https://doi.org/10.1016/j.oceaneng.2019.01.043

16. Q. Zhang, G. B. Zhu, X Hu, R. M. Yang, Adaptive neural network auto-berthing control of marine
ships, Ocean Eng., 17 (2019), 40–48. https://doi.org/10.1016/j.oceaneng.2019.02.031

17. Y. Ma, G. B. Zhu, Z. X. Li, Error-driven-based nonlinear feedback recursive design for adaptive
NN trajectory tracking control of surface ships with input saturation, IEEE Intell. Transp. Syst.
Mag., 11 (2019), 17–28. https://doi.org/10.1109/MITS.2019.2903517

18. J. P. Cai, C. Y. Wen, H. Y. Su, Z. T. Liu, Robust adaptive failure compensation of hysteretic
actuators for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control., 58 (2013),
2388–2394. https://doi.org/10.1109/TAC.2013.2251795

19. X. D. Tang, G. Tao, S. M. Joshi, Adaptive output feedback actuator failure compensation for
a class of non-linear systems, Int. J. Adapt. Control Signal Process., 19 (2005), 419–444.
https://doi.org/10.1002/acs.843

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2131–2156.

http://dx.doi.org/https://doi.org/10.1016/j.isatra.2021.05.018
http://dx.doi.org/https://doi.org/10.1109/TCST.2004.833643
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2010.04.007
http://dx.doi.org/https://doi.org/10.1109/TCYB.2021.3091580
http://dx.doi.org/https://doi.org/10.1016/j.conengprac.2020.104652
http://dx.doi.org/https://doi.org/10.1109/JOE.2018.2877895
http://dx.doi.org/https://doi.org/10.1109/TCST.2017.2728518
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2021.109416
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2017.0757
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2019.01.043
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2019.02.031
http://dx.doi.org/https://doi.org/10.1109/MITS.2019.2903517
http://dx.doi.org/https://doi.org/10.1109/TAC.2013.2251795
http://dx.doi.org/https://doi.org/10.1002/acs.843


2155

20. Y. L. Wang, Q. L. Han, Network-based fault detection filter and controller coordinated design for
unmanned surface vehicles in network environments, IEEE Trans. Ind. Inf., 12 (2016), 1753–1765.
https://doi.org/10.1109/TII.2016.2526648

21. Z. W. Zheng, L. Sun, L. H. Xie, Error-constrained LOS path following of a surface vessel
with actuator saturation and faults, IEEE Trans. Syst. Man. Cybern Syst., 48 (2018), 1794–1805.
https://doi.org/10.1109/TSMC.2017.2717850

22. Y. J. Deng, X. K. Zhang, N. Im, G. Q. Zhang, Q. Zhang, Model-based event-triggered tracking
control of underactuated surface vessels with minimum learning parameters, IEEE Trans. Neural
Networks Learn. Syst., 31 (2020), 4001–4014. https://doi.org/10.1109/TNNLS.2019.2951709

23. S. L. Yu, J. S. Lu, G. B. Zhu, S. J. Yang, Event-triggered finite-time tracking control of under-
actuated MSVs based on neural network disturbance observer, Ocean Eng., 253 (2022), 111169.
https://doi.org/10.1016/j.oceaneng.2022.111169

24. Y. J. Deng, X. K. Zhang, Event-triggered composite adaptive fuzzy output-feedback control for
path following of autonomous surface vessels, IEEE Trans. Fuzzy Syst., 29 (2021), 2701–2713.
https://doi.org/10.1109/TFUZZ.2020.3006562

25. L. T. Xing, C. Y. Wen, Z. T. Liu, H. Y. Su, J. P. Cai, Adaptive compensa-
tion for actuator failures with event-triggered input, Automatica, 85 (2017), 129–136.
https://doi.org/10.1016/j.automatica.2017.07.061

26. G. Q. Zhang, S. Gao, J. Q. Li, W. D. Zhang, Adaptive neural fault-tolerant control for course
tracking of unmanned surface vehicle with event-triggered input, Proc. Inst. Mech. Eng., Part I: J.
Syst. Control Eng., 235 (2021), 1594–1604. https://doi.org/10.1177/09596518211013155

27. G. B. Zhu, Y. Ma. Z. X. Li, R. Malekian, M. Sotelo, Event-triggered adaptive neural fault-tolerant
control of underactuated MSVs with input saturation, IEEE Trans. Intell. Transp. Syst., 23 (2021),
7045–7057. https://doi.org/10.1109/TITS.2021.3066461

28. Y. P. Weng, N. Wang, Finite-time observer-based model-free time-varying
sliding-mode control of disturbed surface vessels, Ocean Eng., 251 (2022),
110866.https://doi.org/10.1016/j.oceaneng.2022.110866

29. N. Wang, Y. Gao, C. Yang, X. F. Zhang, Reinforcement learning-based finite-time tracking control
of an unknown unmanned surface vehicle with input constraints, Neurocomputing, 484 (2022),
26–37. https://doi.org/10.1016/j.neucom.2021.04.133

30. Y. L. Yu, C. Guo, T. S. Li, Finite-time los path following of unmanned surface vessels with time-
varying sideslip angles and input saturation, IEEE/ASME Trans. Mechatron., 27 (2022), 463–474.
https://doi.org/10.1109/TMECH.2021.3066211

31. N. Wang, H. K. He, Dynamics-level finite-time fuzzy monocular visual servo of
an unmanned surface vehicle, IEEE Trans. Ind. Electron., 67 (2020), 9648–9658.
https://doi.org/10.1109/TIE.2019.2952786

32. M. Y. Fu, L. L. Wang, Finite-time coordinated path following control of underac-
tuated surface vehicles based on event-triggered mechanism, Ocean Eng., 246 (2022),
110530.https://10.1016/j.oceaneng.2022.110530

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2131–2156.

http://dx.doi.org/https://doi.org/10.1109/TII.2016.2526648
http://dx.doi.org/https://doi.org/10.1109/TSMC.2017.2717850
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2019.2951709
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2022.111169
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2020.3006562
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2017.07.061
http://dx.doi.org/https://doi.org/10.1177/09596518211013155
http://dx.doi.org/https://doi.org/10.1109/TITS.2021.3066461
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2022.110866
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.04.133
http://dx.doi.org/https://doi.org/10.1109/TMECH.2021.3066211
http://dx.doi.org/https://doi.org/10.1109/TIE.2019.2952786
http://dx.doi.org/https://10.1016/j.oceaneng.2022.110530


2156

33. T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons,
New York, NY, USA, 2011.

34. F. Wang, B. Chen, X. P. Liu, C. Lin. Finite-time adaptive fuzzy tracking con-
trol design for nonlinear systems, IEEE Trans. Fuzzy Syst., 26 (2018), 1207–1216.
https://doi.org/10.1109/TFUZZ.2017.2717804

35. Z. W. Zheng, M. Feroskhan, L. Sun, Adaptive fixed-time trajectory tracking control of a strato-
spheric airship, ISA Trans., 76 (2018), 134–144. https://doi.org/10.1016/j.isatra.2018.03.016

36. S. H. Yu, X. H. Yu, B. Shirinzadeh, Z. H. Man, Continuous finite-time control for
robotic manipulators with terminal sliding mode, Automatica, 41 (2005), 1957–1964.
https://doi.org/10.1016/j.automatica.2005.07.001

37. R. M. Sanner, J. J. E. Slotine, Gaussian networks for direct adaptive control, IEEE Trans. Neural
Network Learn. Syst., 3 (1992), 837–863. https://doi.org/10.1109/72.165588

38. A. J. Kurdila, F. J. Narcowich, J. D. Ward, Persistency of excitation in identification
using radial basis function approximants, SIAM J. Control Optim., 33 (1995), 625–642.
https://doi.org/10.1137/S0363012992232555

39. C. L. Wang, Y. Lin, Decentralized adaptive tracking control for a class of in-
terconnected nonlinear time-varying systems, Automatica, 54 (2015), 16–24.
https://doi.org/10.1016/j.automatica.2015.01.041

40. M. M. Polycarpon, Stable adaptive neural control scheme for nonlinear systems, IEEE Trans.
Autom. Control, 41 (1996), 447–451. https://doi.org/10.1109/9.486648

41. B. S. Park, J. W. Kwon, H. Kim, Neural network-based output feedback control for
reference tracking of underactuated surface vessels, Automatica, 77 (2017), 353–359.
https://doi.org/10.1016/j.automatica.2016.11.024

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2131–2156.

http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2017.2717804
http://dx.doi.org/https://doi.org/10.1016/j.isatra.2018.03.016
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2005.07.001
http://dx.doi.org/https://doi.org/10.1109/72.165588
http://dx.doi.org/https://doi.org/10.1137/S0363012992232555
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2015.01.041
http://dx.doi.org/https://doi.org/10.1109/9.486648
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2016.11.024
http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem formulation and preliminaries
	 Control design and stability analysis
	Simulation
	Simulation experiment 1
	Simulation experiment 2

	Conclusions

