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Abstract: In this article, the dynamical behavior of a complex food chain model under a fractal
fractional Caputo (FFC) derivative is investigated. The dynamical population of the proposed model
is categorized as prey populations, intermediate predators, and top predators. The top predators are
subdivided into mature predators and immature predators. Using fixed point theory, we calculate
the existence, uniqueness, and stability of the solution. We examined the possibility of obtaining
new dynamical results with fractal-fractional derivatives in the Caputo sense and present the results
for several non-integer orders. The fractional Adams-Bashforth iterative technique is used for an
approximate solution of the proposed model. It is observed that the effects of the applied scheme
are more valuable and can be implemented to study the dynamical behavior of many nonlinear
mathematical models with a variety of fractional orders and fractal dimensions.
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1. Introduction

Food chains are essential phenomena for the environment in various fields such as ecological
science, applied mathematics, engineering, and economics. In a food chain model species, energy and
resources follow one track, while food webs have complexity because they are attached to numerous
food chains. Many trophic stages have been seen in a food chain. There are many groups of creatures
inside the stimulating stages, such as producers, consumers and decomposers. A formation-wise
lattice arrangement is used for a food web [1]. Using the techniques of mathematical analysis and
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modeling, we can model the food chain as a differential equation. In ecology, food chains are a chain
of creatures or organisms serving the organisms next to them, whereas a collection of food chains
joined together forms a food web [2, 3]. A flexible food chain theory, which shows the formation and
operational characteristics of low-entity-like food webs, aims to define how to build and interact with
ecosystem stability [4, 5]. The life cycle of numerous kinds of species in nature is classified into at
least two classes: mature and immature, with their behavior. The extensive study of food web models
is presented here [6, 7]. The influence of cannibalism on the environmental approach has been
deliberated widely for many decades. Terrestrial and aquatic food webs have cannibalistic
populations [8–10]. The stage-structured individuals commonly involve in cannibalism, whether in
the inhabitants or in the aquatic food chain. Diekmann investigated and examined the cannibalism
mathematical model [11]. An equator food web in which predator cannibalism was studied in [12].
Consequently, cannibalism has a very big impact on the system’s dynamics. Many creatures including
fish, birds, mammals, and others exhibit cannibalistic tendencies.

Fractional calculus has been developed over more than 300 years, and it is still a key idea for
understanding real-world problems [13, 14]. Numerous fractional derivatives, notably Caputo’s
derivative, have been presented in the literature on fractional calculus. The fractal-fractional,
Atangana–Baleanu, and Caputo–Fabrizio are the most commonly used derivatives [15–21]. The
fractal-fractional derivatives are a newly developed form of derivative that results from the recent
combination of the fractal and fractional derivative concepts (FFD). Normalization of the issues of
fractal-fractional orders is deliberated in [22, 23]. The cited literature shows that the concerned
models with fractal-fractional derivatives are relatively better than the integer order, which shows that
these derivatives are relatively acceptable for physical and real-world problems [24, 25]. The
researchers have also revealed that FFD gives outstanding results in the development of physical
modeling. The related numerical analysis and applications of FFD are given in [26–31]. The authors
in [32], studied a fractional prey-predator with respect to harvesting rate. Bonyah et al. [33], proposed
a listeriosis disease model, which is investigated under fractal-fractional in the sense of Caputo and
Atangana-Baleanu-Caputo operators. The authors in [34], used a novel numerical technique for the
Halvorsen system to analyze it fractionally, and discuss the chaotic behavior of the proposed system.
Din and Abidin investigated a vaccinated hepatitis B model with non-singular and non-local kernels
in [35].

The food web mathematical model is investigated through different techniques with integer and
non-integer orders [36, 37]. Motivated by the above literature, we study the food chain model [38] via
the FFC operator, which gives a better agreement than the integer order derivative [39].

FFCDδ,βX(t) =
(
η −
ηX(t)
β
− µ1Y(t)

)
X(t)

FFCDδ,βY(t) =
(
µ1ϵ1X(t) − µ2Z(t) − ρ1

)
Y(t)

FFCDδ,βZ(t) =
(
µ2ϵ2Y(t) + µ3ϵ3U(t) − ρ2

)
Z(t) + τU(t)

FFCDδ,βU(t) = νZ(t) −
(
τ + µ3Z(t) + ρ3

)
U(t), (1.1)

with initial values of X(0),Y(0),Z(0),U(0) ≥ 0. Where 0 < δ, β ≤ 1 and FFCD represents the FFC
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derivative. Motivated by the above literature, we investigate the model (1.1) via the FFC operator for
the dynamics to obtain the results more precisely for parametric accuracy than integer order. Here δ
represent non-integer order and β represent a non-integer fractal dimension in 0 < δ, β < 1.

The explanation of the parameters used in the given model (1.1) is as, X(t) represent prey(lower level
species) density at time t; Y(t) represent intermediate predator density at time t; top predator density
(mature and immature of top-level kinds) at time t is symbolized by Z(t),U(t) respectively. η represents
the inherent growth rate and β represents the rate of transferring capability with the logical growth of
the prey. The intermediate predator eats the prey at the low level, with an occurrence rate of µ1 and
an adaptation rate of ϵ1, according to the Lotka-Volterra functional retaliate. It continues to decay
exponentially with a natural death rate ρ1 because they lack a food supply. Mature and immature are
the two classes of upper predators in the proposed model. The growth rate of Immature inhabitants is
considered rapidly along with their maternities denoted by µ2, while the mature inhabitants with growth
rate ν, while a part of the population grows up to become a mature population with an expansion rate τ.
Furthermore, µ2 and ν face usual death with mortality rates of ρ2 and ρ3. With the concentrated dose rate
µ3 and adaptation rate ϵ3, the mature top predators spells the middle predators by the Lotka–Volterra
functional retaliation. The lake of the accessibility of their favorite foodstuff, they disassemble the
upper immature predators centered on the Lotka–Volterra functional retaliation with risky violence
rate µ3 and adaptation rate ϵ3.

This paper is organized as follows: In Section 2, we present the basic definition of fractional
operators from the literature. In Section 3, by using the approach of fixed point theory, we find the
existence and uniqueness of the solution along with Ulam-Hyers stability for the considered model.
The approximate solution is obtained for the aforementioned model with the help of the fractional
Adams-Bashforth technique in Section 4. The numerical findings of the considered model have been
plotted graphically and discussed their dynamical behavior in Section 5. Finally, we conclude our
work in Section 6.

2. Basic definitions

Definition 1: [40] Suppose P(t) on t ∈ (a, b) is continuous as well as differentiable function, the
fractal-fractional operator of order δ and dimension β is defined as

FFDδ,βt (P(t)) =
1

(p − δ)
d

dtβ

∫ t

0
(t − y)p−δ−1P(y)dy, (2.1)

where p − 1 < δ, β ≤ p, for p ∈ N and dP(y)
dyβ = limt→0

P(t)−P(y)
tβ−yβ .

Definition 2: [40] Suppose P(t) is a continuous function and t ∈ (a, b), the fractal-fractional integral
of order δ is given as

FFIδP(t) =
β

Γ(δ)

∫ t

0
(t − y)δ−1yβ−1P(y)dy. (2.2)

Definition 3: The model (1.1) shows U-H stability if there is a real number Gδ,β ≥ 0 such that ∀
ϑ > 0 and all the roots Υ ∈ C1(X,R), the inequality as

|FFDδ,βΥ(t) − Π(t,Υ(t))| ≤ ϑ, t ∈ X,
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Y ∈ C1(X,R) is the only one root of model (1.1), ∋

|Υ(t) − Y(t)| ≤ Gδ,β, t ∈ X,

Definition 4: Consider a differentiable function f (t) ∈ H1 in interval (a, b), where a < b, and
δ ∈ [0, 1], the Caputo derivative is define as

C
a Dδt =

1
Γ(n − δ)

∫ x

a
f n(ζ)(t − ζ)(n−δ−1)dζ, f or n − 1 < δ < n (2.3)

C
a Dδt =

dn f (t)
dtn , f or δ = n,

Γ(.) represent the gamma function, and define as

Γ(n) =
∫ ∞

0
Ψx−1e−ΨdΨ, 0 < Re(x). (2.4)

Note: For the qualitative analysis, consider a Banach space U = X × X × X × X where X = G(X)

with norm: ∥Υ∥ = ∥X(t),Y(t),Z(t),U(t)∥ = maxt∈[0,T ]

{
|X| + |Y | + |Z| + |U |

}
.

3. Qualitative analysis

Here, we examine the existence and uniqueness of the solution of the given system (1.1).

3.1. Existence

Nonlinear and non-local behavior characterized the suggested system (1.1). There are no particular
methods for figuring out the nonlinear system’s exact roots. In rare circumstances, nevertheless, it
could have an exact result. Here, we apply the functional analysis rule to determine if the system under
consideration has a solution. The right side of the system (1.1) as a result of the suggested integral
being differentiable as

RLDδ,βX(t) = ββ−1Λ1(X,Y,Z,U, t) =
(
η −
ηX(t)
β
− µ1Y(t)

)
X(t)

RLDδ,βY(t) = ββ−1Λ2(X,Y,Z,U, t) =
(
µ1ϵ1X(t) − µ2Z(t) − ρ1

)
Y(t)

RLDδ,βZ(t) = ββ−1Λ3(X,Y,Z,U, t) =
(
µ2ϵ2Y(t) + µ3ϵ3U(t) − ρ2

)
Z(t) + τU(t)

RLDδ,βU(t) = ββ−1Λ4(X,Y,Z,U, t) = νZ(t) −
(
τ + µ3Z(t) + ρ3

)
U(t), (3.1)

For t ∈ Λ the proposed system maybe written as

RLDδΨ(t) = βtβ−1Υ(t,Ψ(t)), 0 < δ, β ≤ 1,
Ψ(0) = Ψ0. (3.2)
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Using the Riemann-Liouville integral and replace RLDδ,β by CDδ,β the solution of (3.2) will be obtain as

Ψ(t) = Ψ0(t) +
β

Γ(δ)

∫ t

0
yβ−1(t − y)δ−1Υ(y,Ψ(y))dy, (3.3)

for relation

Ψ(t) =
(
X(t),Y(t),Z(t),U(t)

)T

Ψ0(t) =
(
X(0),Y(0),Z(0),U(t)

)T

Υ(t,Ψ(t)) =
(
Λ j(X,Y,Z,U, t)

)T

, j = 1, 2, 3, 4.

. (3.4)

Now, we are in a position to convert system (1.1) to a fixed-point phenomenon with operator 𭟋 : S→ S
defined as

𭟋(Ψ)(t) = Ψ0(t) +
β

Γ(δ)

∫ t

0
yβ−1(t − y)δ−1Υ(y,Ψ(y))dy. (3.5)

The following theorem is used to analyze the existence results for the suggested model (1.1).

Theorem 1. [41] Let the operator 𭟋 : S→ S, is said to be a completely-continuous mapping if

J(𭟋) = {Ψ ∈ S : Ψ = τ𭟋(Ψ), 0 < τ < 1},

is bounded, then 𭟋 has at least one fixed-point in S.

Theorem 2. Suppose Υ : Ξ × S→ R be a continuous operator, then 𭟋 shows the compactness.

Proof. To prove this theorem, first we have show that 𭟋 : S → S in Eq (3.3) is continuous. Consider
a bounded subset E of S, then there exists HΥ > 0 with |Υ(t,Ψ(t))| ≤ HΥ,∀ Ψ ∈ E. And any Ψ ∈ E
we have

∥𭟋(Ψ)∥ ≤
βHΥ
Γ(ϱ)

max
0<t<T

∣∣∣∣∣ ∫ t

0
(τ − y)δ−1yβ−1dy

∣∣∣∣∣
≤
βHΥ
Γ(δ)

max
0<t<T

∫ t

0
(1 − z)β−1zδ−1tδ+β−1dz

≤
βHΥT δ+β−1

Γ(δ)
E(δ, β). (3.6)

Hence, Eq (3.6), shows that the operator 𭟋 is uniformly bounded, where E(δ, β) represent Beta function.
Furthermore, we have to prove equi-continuity of the operator 𭟋,∀ t1, t2 ∈ Ξ and Ψ ∈ E, we get

∥𭟋(Ψ(t1)) − 𭟋(Ψ(t2))∥ ≤
βHΨ
Γ(δ)

max
0<t<T

∣∣∣∣∣ ∫ t1

0
(t1 − y)δ−1yβ−1dy −

∫ t2

0
(t2 − y)δ−1yβ−1dy

∣∣∣∣∣
≤
βHΨE(δ, β)
Γ(δ)

(tδ+β−1
1 − tδ+β−1

2 )→ 0 as t1 → t2.

Which shows that 𭟋 is equi-continuous, hence the operator is bounded and as well as continuous,
therefore by “Arzelá-Ascoli” theorem, 𭟋 is relatively-compact and so completely continuous. Further,
we use the hypothesis
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(a) There exists a constant MΥ > 0 such that for every Ψ, Ψ̄ ∈ ℧ we have∣∣∣∣∣Υ(t,Ψ) − Υ(t, Ψ̄)
∣∣∣∣∣ ≤ MΥ

∣∣∣∣∣Ψ∣∣∣∣∣ − ∣∣∣∣∣Ψ̄∣∣∣∣∣.
□

3.2. Existence of unique solution

Here, we are going to study the uniqueness of the solution for model (1.1) with the aid of fixed-point
theory [41].

Theorem 3. The suggested model (1.1) has unique solution by using hypothesis (a) and for β < 1 as

β =
βMΥ𭟋δ+β−1(E

(
δ, β)

)
Γ(δ)

. (3.7)

Proof. Suppose that, max0<t<T |Υ(t, 0)| = VΥ < ∞, such that

βT δ+β−1(E(δ, β)
)
VΥ

Γ(δ) − βT δ+β−1(E(δ, β)
)
MΥ
≤ r, (3.8)

here, we investigate that 𭟋(Er) is a subset of Er and Er =
{
Ψ ∈ V : ||Ψ|| ≤ r

}
where Ψ ∈ Er, so we have

∥𭟋(Ψ)∥ ≤
β

Γ(δ)
max
0<t<T

∫ t

0
yβ−1(t − y)δ−1(|Υ(t,Ψ(t)) − Υ(t, 0)| + |Υ(t, 0)|

)
dy

≤
β𭟋δ+β−1E(δ, β)(MΥ∥Ψ| +VΥ)

Γ(δ)

≤
β𭟋δ+β−1E(δ, β)(MΨr +VΥ)

Γ(δ)
≤ r.

According to Eq (3.5), the operator 𭟋 is defined and by hypothesis (a) for all t ∈ Ξ,Ψ, ¯W ∈ Ξ, we get

∥𭟋(Ψ) − 𭟋(W)∥ ≤
β

Γ(δ)
max
0<t<T ]

∣∣∣∣∣ ∫ t

0
yβ−1(t − y)δ−1Υ(y,Υ(y))dy −

∫ t

0
yβ−1(t − y)δ−1Υ(y,Υ(y))dy

∣∣∣∣∣
≤ β∥Υ − W̄∥. (3.9)

Hence, the operator 𭟋 has contraction by Eq (3.9). Therefore the equation Eq (3.3) has unique solution
and so model (1.1) has a unique solution. □

3.3. Ulam-Hyers stability

Here, we have to study the stability analysis for the proposed problem (1.1) for this we use the
well-known theorem of functional analysis the “Hyers-Ulam” type stability analysis, holding that ϑ is
independent, i.e., ϑ(0) = 0 and ϑ ∈ C(Ξ), then

• |ϑ(t)| ≤ α, for α > 0;
• FFDδ,βt Ψ(t) = ϑ(t,Ψ(t)) + ϑ(t).
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Lemma 1. The solution of a perturb equation is

FFDδ,βΨ(t) = ϑ(t,Ψ(t)) + ϑ(t)
Ψ(0) = Ψ0, (3.10)

satisfying ∣∣∣∣∣Ψ(t) −
(
ϑ0(t) +

β

Γ(δ)

∫ t

0
yβ−1(t − y)δ−1ϑ(y, ϑ(y))

)∣∣∣∣∣ ≤ (
βTδ+β−1E(δ, β)
Γ(δ)

)
ϵ

= Cδ,βϵ. (3.11)

Theorem 4. From Eq (3.11) and supposition (a), the solution of the suggested model (1.1) is U-H
stable, so the obtain result of the given system is U-H stable if β < 1, where β is in Eq (3.7).

Proof. Let G ∈ S has a unique solution and Ψ ∈ S is the solutions of Eq (3.3), further we use fractal-
fractional integral Definition 2, we obtain

|Ψ(t) − G(t)| =
∣∣∣∣∣Ψ(t) −

(
G0(t) +

β

Γ(ϱ)

∫ t

0
(t − y)ϱ−1yβ−1ϑ(y,G(y))dy

)∣∣∣∣∣
≤

∣∣∣∣∣Ψ(t) −
(
Ψ0(t) +

β

Γ(δ)

∫ t

0
(t − y)δ−1yβ−1ϑ(y,Ψ(y))dy

)∣∣∣∣∣
+

∣∣∣∣∣(Ψ0(t) +
β

Γ(δ)

∫ t

0
(t − y)δ−1yβ−1ϑ(y,Ψ(y))dy

)
−

(
G0(t) +

β

Γ(δ)

∫ t

0
(t − y)δ−1yβ−1ϑ(y,G(y))dy

)∣∣∣∣∣
≤ Cδ,βϵ +

βTδ+β−1MΨ
Γ(δ)

E(δ, β)∥Ψ − G∥

≤ Cδ,β + β∥Ψ − G∥,

hence

∥Ψ − G∥ ≤ Cδ,β + β∥Ψ − G∥. (3.12)

Equation (3.12), can be written as

∥Ψ − G∥ ≤

( Cδ,β
1 − β

)
ϵ. (3.13)

Hence, from Eq (3.13) satisfying all the conditions of Ulam-Hyers stability so we claimed that Eq (3.3)
shows that the solution of the proposed system is stable. □

4. Approximate solution

In this part of the manuscript, we find the approximate solution of the proposed system (1.1) under
numerical scheme of fractional Adams Bashforth iterative technique [42]. The given system may be
written as

FFDδ,βX(t) = N1
(
X(t), t

)
=

(
η −
ηX(t)
β
− µ1Y(t)

)
X(t)
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FFDδ,βY(t) = N2
(
Y(t), t

)
=

(
µ1ϵ1X(t) − µ2Z(t) − ρ1

)
Y(t)

FFDδ,βZ(t) = N3
(
Z(t), t

)
=

(
µ2ϵ2Y(t) + µ3ϵ3U(t) − ρ2

)
Z(t) + τU(t)

FFDδ,βU(t) = N4
(
U(t), t

)
= νZ(t) −

(
τ + µ3Z(t) + ρ3

)
U(t), (4.1)

and

X(t) = X(0) + β

Γ(δ)

∫ t

0
xβ−1(t − y)δ−1N1(X, y)dy (4.2)

Y(t) = Y(0) + β

Γ(δ)

∫ t

0
xβ−1(t − y)δ−1N2(Y, y)dy (4.3)

Z(t) = Z(0) + β

Γ(δ)

∫ t

0
xβ−1(t − y)δ−1N3(Z, y)dy (4.4)

U(t) = U(0) + β

Γ(δ)

∫ t

0
xβ−1(t − y)δ−1N4(U, y)dy, (4.5)

to calculate the approximate solution for Eq (4.2) using the advance iterative technique tk+1. The
approximate solution for the first class of the proposed system as

Xk+1(t) = X(0) +
β

Γ(δ)

∫ tk+1

0
xβ−1(t − y)δ−1N1(X, y)dy, (4.6)

we get the approximate integral as in the form

Xk+1(t) = X(0) +
β

Γ(δ)

k∑
α=0

∫ tk+1

tα
xβ−1(tk+1 − y)δ−1N1(X, y)dy. (4.7)

For an infinite values of [tα, tα+1] in the form of Lagrange interpolation polynomial with function
N1(X, y) along with ℏ = [tα − tα−1] such that

X⊛(k) ≈

[
(t − tα−1)tβ−1

α N1(A(α), tα) − (t − tα)t
β−1
α−1N1(A(α−1), tα−1)

]
ℏ

, (4.8)

put Eq (4.8) in Eq (4.7) we get

X(k+1) = X(0) +
β

Γ(δ)

k∑
j=0

∫ t j+1

t j

yβ−1(tk+1 − y)δ−1X⊛k dy. (4.9)

In right hand side of the integral of Eq (4.9) gives an approximate solution for the class X(t) in proposed
system by using FF derivative operator with Caputo derivative operator.

X(k+1) = X(0) +
βℏδ

Γ(δ + 2)

k∑
α=0

[
tβ−1
α N1(X(α), tα)

×

(
(1 + k − α)β(2 + k + β − α) − (k − α)β(2 + k + 2β − α)

)
Mathematical Biosciences and Engineering Volume 20, Issue 2, 2094–2109.
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− tβ−1
α−1N1(Xh(α−1), tα−1)

(
(1 + k − α)β + 1 + (α − k)β(k − α + 1 + β)

)]
, (4.10)

similarly, the remaining terms might be like as

F(k+1) = F (0) +
βℏδ

Γ(δ + 2)

k∑
α=0

[
tβ−1
α N2(F(α), tα)

×

(
(1 + k − α)β(2 + k + β − α) − (k − α)β(2 + k + 2β − α)

)
− tβ−1

α−1N2(F(α−1), tα−1)
(
(1 + k − α)β + 1 + (α − k)β(k − α + 1 + β)

)]
, (4.11)

C(k+1) = C(0) +
βℏδ

Γ(δ + 2)

k∑
τ=0

[
tβ−1
α N3(C(α), tα)

×

(
(1 + k − α)β(2 + k + β − α) − (k − α)β(2 + k + 2β − α)

)
− tβ−1

α−1N3(C(α−1), tα−1)
(
(1 + k − α)β + 1 + (α − k)β(k − α + 1 + β)

)]
. (4.12)

5. Numerical simulation

In this portion, the desired analytical results are simulated via MATLAB-18. The validity and
efficiency are verified via numerical simulation of the numerical results of the food web under the FFC
operator. The evolution of all the classes of the proposed food web model is provided for a few sets
of fractional order δ and fractal dimension β. For the required simulation, we choose the parameter
values that are given in Table 1 from [38].

Table 1. Initial and parameters numerical values for food web model (1.1).

Parameter value Parameter value Parameter value
η 1 β 100 µ1 1.0
µ2 0.25 µ3 0.1 ρ1 0.01
ρ2 0.2 ρ3 0.01 τ 0.15
ν 0.15 ϵ1 0.65 ϵ2 0.5
ϵ3 0.5

In the numerical simulation, we have provided the graphical representation of all four
compartments of the proposed food-web model on different fractional orders δ and fractal dimensions
β in Figure 1(a)–(d). All the quantities show chaotic behavior as the food web depends on all the
compartmental values. The Figure 1(a) shows the dynamics of the prey population fluctuating and
then becoming stable on different fractional orders. The Figure 1(b) shows the dynamics of an
intermediate predator class, which also fluctuates and then becomes convergent. Figure 1(c) is for a
mature predator population, which shows chaotic behavior along with an increase in its numbers and
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then becomes stable. Figure 1(d) is for the immature predator population, which also shows the
oscillation and increase moving towards stability.

Next, Figure 2(a)–(d) shows the chaotic behaviors in the 3D figures related to each other. In
Figure 2(a), the three quantities of X,Y and Z are presented showing their relation depending on each
other and converges with the passage of time. Figure 2(b) shows the dynamics of X and Y with
circulating motion and then converges to a point with zero radius. Figure 2(c) represents the dynamics
of BC showing chaotic behaviors and dependence of Y and Z on each other.

In the rest of the figures, Figure 3(a)–(d) shows the dynamics of four food-web agents with the same
data but only changes the initial data of first agent prey populations X in 2D representation.

Figure 4(a)–(d) represents the dynamics of four food-web agents with the same data but only
changes the initial data of first agent prey populations X in 3D representation.
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Figure 1. The dynamics of the model (1.1) with solid fractal dimension β = 0.99 and various
fractional orders δ.
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Figure 2. The dynamics of the model (1.1) with solid fractal dimension β = 0.99 and various
fractional orders δ.
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Figure 3. The dynamics of the model (1.1) with solid fractal dimension β = 0.99 and various
fractional orders δ.
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Figure 4. The dynamics of the model (1.1) with solid fractal dimension β = 0.99 and various
fractional orders δ.

6. Conclusions

We have investigated a three-species food chain mathematical model under fractal-fractional
derivative in the sense of Caputo, where top predators are stage-structured with a mature predator
having a cannibalistic feature. At the first level, the prey grows logistically in the absence of the
predators. The existence and uniqueness of the solution are studied using fixed point theory. The
stability analysis of the proposed model is studied with the help of the Ulam-Hyers technique. The
fractional Adams-Bashforth iterative scheme is applied for the numerical calculations. The results are
studied for various fractional orders δ and fractal dimension β. This analysis gives us the results for
the food chain of prey and predator in the ecosystem. It also provides us a stable situation for both the
species on different fractal dimension and fractional orders in the complex geometrical analysis. In
the graphical representation, we also provide the dependence of each species in the environment
which shows the chaotic behavior. Each and every quantity has been shown in a spectral format which
shows the total density of all compartments which will be effective for checking inside behavior lying
between 0 and 1. We may also study the proposed system by global piecewise derivative for the
crossover dynamical behavior along with the existence and uniqueness of the solution and
numerical solutions.
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