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Abstract: Myocardial contrast echocardiography (MCE) has been proposed as a method to assess 
myocardial perfusion for the detection of coronary artery diseases in a non-invasive way. As a critical 
step of automatic MCE perfusion quantification, myocardium segmentation from the MCE frames 
faces many challenges due to the low image quality and complex myocardial structure. In this paper, a 
deep learning semantic segmentation method is proposed based on a modified DeepLabV3+ structure 
with an atrous convolution and atrous spatial pyramid pooling module. The model was trained 
separately on three chamber views (apical two-chamber view, apical three-chamber view, and apical 
four-chamber view) on 100 patients’ MCE sequences, divided by a proportion of 7:3 into training and 
testing datasets. The results evaluated by using the dice coefficient (0.84, 0.84, and 0.86 for three 
chamber views respectively) and Intersection over Union(0.74, 0.72 and 0.75 for three chamber views 
respectively) demonstrated the better performance of the proposed method compared to other 
state-of-the-art methods, including the original DeepLabV3+, PSPnet, and U-net. In addition, we 
conducted a trade-off comparison between model performance and complexity in different depths of 
the backbone convolution network, which illustrated model application feasibility. 
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1. Introduction  

Coronary artery disease is the leading cause of cardiovascular mortality. Cardiac imaging 
has a pivotal role in preventing, diagnosing and treating ischemic heart disease. In recent years, 
non-invasive clinical cardiac imaging techniques have been rapidly developed; they are 
commonly used to assess myocardial ischemia and quantitative perfusion parameters, including 
single-photon emission computed tomography (SPECT), magnetic resonance imaging, computed 
tomography, myocardial contrast echocardiography (MCE), etc. Compared with the other cardiac 
imaging techniques, MCE has the advantages of being radiation-free, convenient and inexpensive 
(about 3–4 times less expensive than SPECT) [1]. MCE has been validated as an effective 
myocardial perfusion imaging method- to evaluate myocardial perfusion and infarction size [2,3], 
the microvascular changes after coronary revascularization [4] and the outcome in those 
undergoing a heart transplant [5]. 

In the clinical application of MCE, the ultrasound contrast agents (UEAs) containing the gas 
cores and lipid shells are injected intravenously into the myocardium. Contrast imaging can be 
generated from the signals produced by the resonance of microbubbles; blood containing 
microbubbles appear to be a bright white region [6]. Shown in Figure 1, after the distribution of the 
UEA reaches a stable state, high mechanical index impulses will be applied to clear all of the 
microbubbles, and then several end-systolic frames during the destruction-replenishment of UEA are 
selected to fit the time-intensity curve (shown in Figure 2), from which myocardial perfusion 
parameters such as blood volume, and flux rate can be obtained. 

 

Figure 1. MCE destruction and replenishment imaging. 
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Figure 2. Time-intensity curve of MCE destruction and replenishment. 

However, the analysis of MCE is very time-consuming, as it includes two steps that need to be 
done manually by experienced echocardiographers. Several end-systolic frames need to be extracted, 
and then the myocardium, i.e., the region of interest, needs to be segmented in the cardiac frames too. 
Therefore, automatic myocardial segmentation methods are desired for efficiency and 
operator-independence of the MCE perfusion analysis. Nevertheless, myocardial segmentation faces 
the following challenges. First, the concentration of UEA changes over time during destruction and 
replenishment, causing great intensity variations in images [7]. Second, the variations in shape and 
position of the myocardium according to different chambers, heart motions, patient individual 
differences, etc. Moreover, unclear myocardial borders and misleading structures such as papillary 
muscle have similar appearances to the myocardium. 

Existing myocardial segmentation methods could be broadly classified into traditional image 
segmentation algorithms and machine learning algorithms. Traditional image segmentation algorithms 
define the segmentation task as a contour finding problem by using optimization methods based on 
image information, such as active contour [8] and an active shape model [9]. Malpica et al. [10] 
proposed a coupled active contour model guided by optical flow estimates to track the myocardium in 
MCE. Pickard et al. [11] applied principal component analysis with an active shape model algorithm to 
model the shape variability; they proposed a specialized gradient vector flow field to guide the 
contours to the myocardial borders, Guo et al. [12] proposed an automatic myocardial segmentation 
method based on an active contours model and neutrosophic similarity score; they applied a clustering 
algorithm to detect the initial ventricle region to speed up the evolution procedure and increase 
accuracy. However, due to the low complexity of the traditional image segmentation algorithm, it 
does not perform well on the MCE myocardial segmentation task with a large intensity variation [13] 
and it still needs manual tracing of myocardial contours; in addition, the optimization algorithm 
would be easily stuck in the local optimal solution without a good manual initial contour. Machine 
learning algorithms for myocardial segmentation tasks are often defined as pixel-level classification 
tasks, known as semantic segmentation. Li et al. [13] combined a random forest with a shape model, 
achieving notable improvement in segmentation accuracy compared with the classic random forest 
and active shape model. In recent years, deep learning has shown superior performance and great 
potential in medical image analysis; the majority of these deep learning approaches in cardiac ultrasound 
focus on left ventricle segmentation. Azarmehr et al. [14] experimented with three deep learning left 
ventricle (LV) segmentation models (U-Net, SegNet and fully connected DenseNets) on 992 
echocardiograms, the U-net model outperformed the other models and achieved an average dice 
coefficient of 0.93. Veni et al. [15] proposed a U-net combined with a shape-driven deformable model in 



2084 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 2081–2093. 

the form of a level set. The U-net model is used to produce the segmentation of LV, which is considered 
as a prior shape; then, the prior shape drives the level set to converge the final shape; the model 
produced a 0.86 dice coefficient on a private 2D echocardiographic dataset. Hu et al. [16] proposed a 
segmentation model based on a bilateral segmentation network (BiSeNet); it consists of two paths, a 
spatial path for capturing low-level spatial features and a context path for exploiting high-level 
context semantic features; they also used a fusion module to fuse the features of those two paths, 
achieving a dice coefficient of 0.932 and 0.908 in the left ventricle and left atrium, respectively. To 
the best of our knowledge, Li et al. [17] was the first to apply deep learning methods to MCE 
segmentation; they proposed an encoder-decoder architecture based on a U-net, introduced a 
bi-directional training schema incorporating temporal information in MCE sequences and achieved 
the highest segmentation precision compared to the traditional U-net model. 

However, we believe that the MCE segmentation accuracy still has great improvement space 
due to the rapid development of new deep learning algorithms. Among all of the deep learning 
algorithms, DeepLabv3+ [18] has become an excellent algorithm in the field of medical 
segmentation by virtue of its ability to extract multi-scale information and its encoder-decoder 
structure. Thus, in this paper, we propose a semantic segmentation method based on DeepLabV3+ to 
solve the segmentation problem in the MCE automatic perfusion quantification. 

2. Materials and methods 

2.1. Dataset description 

Li et al. [17] have made the MCE dataset publicly available; it consists of MCE data from 100 
patients from Guangdong Provincial People’s Hospital. Apical two-chamber view (A2C), apical 
three-chamber view (A3C) and apical four-chamber view (A4C) MCE data were collected from each 
patient. Every MCE sequence has 30 end-systolic frames. In summary, there are 100 (patients) × 3 
(chamber views) × 30 (end-systolic frames) = 9000 frames. The manual annotations of the 
myocardium were performed by an experienced echocardiographer. We split the dataset into the 
training dataset and test dataset at a proportion of 7:3. The segmentation models were trained for 
each chamber view separately; the detailed data information is illustrated in Table 1. 

Table 1. Detailed dataset information. Each patient has three chamber views (apical 
two-chamber view, apical three-chamber view, apical four-chamber view), and each 
chamber view has 30 frames. 

 Patient number MCE sequence number Frame number 

training data 70 210 6300 

testing data 30 90 2700 

2.2. Segmentation model 

As shown in Figure 3, the segmentation model was modified based on Deeplabv3+; it consists 
of a dilated ResNet backbone to extract feature maps, an atrous spatial pyramid pooling (ASPP) 
module to convert feature maps into multi-scale information and a decode module to generate the 
final predictions. 
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Figure 3. Architecture of modified segmentation model; the figure was adapted from DeepLabV3+. 

2.2.1. Backbone 

The backbone network was based on a modified 101 depth ResNet [19]. First, we replaced 
the 7 × 7 convolution in the input stem with a 3 × 3 convolution to improve the performance and 
accelerate the training process [20]. the standard ResNet uses downsampling operations such as a 
convolutional layer with a stride greater than 1 to increase feature maps. However, it would cause 
receptive field reduction; thus, DeepLabV3+ utilizes dialated convolutions [21] to alleviate 
spatial information losses from downsampling operations, also known as atrous convolution. The 
implementation of atrous convolution involves adding zeros between weights in the 
convolutional kernel with a stride of 1, as shown in Figure 4. In this way, features can be 
extracted across pixels, increasing the receptive field without introducing redundant parameters 
that need to be learned. Figure 5 shows a comparison of the original ResNet and dilated ResNet 
in the final two groups of the ResNet. 

 

Figure 4. (a) Standard convolutional kernel and (b) convolutional kernel with dilation 
factor = 2; the figure was adapted from DeepLabV3+. 
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Figure 5. Final two groups (G4 and G5) of original ResNet (a) and dilated ResNet (b), 
where c, h and w respectively stand for the channel, height and weight of the feature map; 
d is the dilation factor, the dilation factor of standard convolution equals to 1; the figure 
was adapted from DeepLabV3+. 

2.2.2. Atrous spatial pyramid pooling module 

The ASPP module applies atrous convolution to extract multi-scale information by using atrous 
convolution with different dilation factors. The ASPP module consists of one 1 × 1 standard 
convolution and 3 × 3 atrous convolutions in parallel. The original DeepLabV3+ model proposed 
dilation factors of 6, 12 and 18 for atrous convolutions; however, the original structure may not be 
suitable because the myocardial border is not very clear due to the huge intensity variation in MCE; 
so, we added convolution with dilation factor 4 to the ASPP module to obtain more detailed spatial 
information. In conclusion, the ASPP module gets five feature maps from five parallel atrous 
convolutions and concatenates them together; it then sends them to the decoder. The detailed 
architecture of the ASPP module is shown in Figure 3. 

2.2.3. Decoder 

The decoder decodes features aggregated by the encoder at multiple levels and generates a 
semantic segmentation mask from high dimensional feature vectors. The decoder is simple but 
effective, and it is the most most significant improvement of the DeepLabV3+ compared to the 
predecessor DeepLabV3 [22]; in this way, the detailed boundaries of the myocardium can be 
recovered faster and stronger [18]. In the decoder module, the feature map from the encoder is first 
upsampled by 4 bilinearly and then concatenated with the lower-level feature map from the backbone 
after channel reduction from 1 × 1 convolution; since the lower-level feature map contains more 
spatial information, the fusion of the lower-level feature map and high-level feature map improves 
the segmentation accuracy. After a 3 × 3 convolution, the segmentation prediction is obtained by 
upsampling by 4 bilinearly. 
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2.3. Experiment setup 

The model was implemented by using a Pytorch 1.11.0 deep learning framework and trained 
using NVIDIA RTX 2060 SUPER with 8 GB of memory. All images were center cropped to 256 
× 256 and RGB pixels were normalized using the following: mean = [0.485, 0.456, 0.406], 
standard deviation = [0.229, 0.224, 0.225]. 

For data augmentation, during the training phase, all images were randomly scaled by [0.8, 1.2], 
rotated by [-5◦, 5◦] and randomly flipped by a probability of 0.5. During the testing phase, we did not 
apply any augmentations. 

Every model was trained for 80 epochs that contained 84000 iterations. Stochastic gradient 
descent was used as the optimizer, where the momentum was set to 0.9 and the weight decay was set 
to 3e-5. The initial learning rate was set to 0.01, and the minimum learning rate was set to 0.001 and 
followed the polynomial decay policy, which is defined as 

                 𝑙𝑟  initial_lr  1  iteration 
 num_iteration 

power 
 (1) 

where iteration represents the current iteration, num_iteration represents the total iteration, initial_lr 
= 0.01, power = 0.9. 

Moreover, we used dice loss [23] as our loss function due to the imbalance problem, because 
the myocardium is small compared to the large heart chamber; it is defined as 

                            𝑙𝑜𝑠𝑠dice 𝑃, 𝑇 1
| ∩ |

| | | |
 (2) 

where P is the predicted myocardium area and T is the ground truth of the myocardium area. In addition, 
we added an auxiliary loss [24] only in the training phase to help optimize the learning process. 

3. Results and discussion 

3.1. Evaluation criterion 

The Dice coefficient and intersection over union (IoU) were used as evaluation criteria to 
evaluate the performance of the model; they are defined as 

                                     𝑑𝑖𝑐𝑒 𝑃, 𝑇
| ∩ |

| | | |
 (3) 

                                      𝐼𝑂𝑈 𝑃, 𝑇
| ∩ |

∪
 (4) 

where P is the predicted myocardium area and T is the ground truth. 

3.2. Results and comparison 

The visualization of the segmentation results are illustrated in Figure 6; six apical four-chamber 
view MCE images were randomly selected from a subject in the test dataset and input into our 
trained model. It can be seen from the figure that the proposed model gets the correct prediction of 
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myocardium in the presence of the misleading structure, papillary muscle. The boundaries of the 
predicted segmentation area have a great match with the ground truth. 

 

Figure 6. Randomly selected input images from test dataset, model prediction, and 
boundary comparison. (The blue and green outlines refer to the ground truth and 
prediction respectively.) 
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Moreover, we compared the modified DeepLabV3+ to the original DeepLabV3+, the results of Li et 
al. [17] and other state-of-the-art models, e.g., a U-net [25] with a Deeplabv3 backbone and PSPnet [24] 
with a ResNet-101 backbone; the results are shown in Table 2. 

Table 2. Dice, IoU of modified, original DeepLabV3+, Li’s model, PSPnet and 
U-net,where A2C represents apical two-chamber view, A3C represents apical 
three-chamber view, A4C represents apical four-chamber view. 

 Modifed Original Li’s model PSPnet U-net
DeepLabV3+ DeepLabV3+    

Dice      

A2C 0.84 0.84 0.81 0.83 0.82 
A3C 0.84 0.83 0.81 0.84 0.82 
A4C 0.86 0.84 0.82 0.83 0.80 
IoU      

A2C 0.74 0.72 0.69 0.73 0.69 
A3C 0.72 0.71 0.65 0.72 0.70 
A4C 0.75 0.75 0.71 0.72 0.72 

The modified DeepLabV3+ improved the segmentation results for the dice coefficient in A3C 
by 0.01 and in A4C by 0.02, and for the IoU in A2C by 0.02 and A3C by 0.01. Moreover, the 
modified DeepLabV3+ also outperformed other state-of-the-art models in both metrics. 

To see the trade-off between model performance and complexity, we also tested the model with 
different depths of ResNet, i.e., 18 and 50, and compared it with the PSPnet and U-net. The number 
of parameters and GFlops (giga floating-point operations per second) were selected to indicate the 
model complexity, and the average IoU of all chamber views was selected to evaluate the model 
performance. In addition, the MCE frame per second processed (FPS) was evaluated on a personal 
computer with the RTX 2060 super and an Intel® Core™ i5-9600 processor; the results are shown in 
Table 3 and the comparisons of the number of parameters and GFlops to the average IoU are 
illustrated in Figure 7 and Figure 8, respectively. 

Table 3. Number of parameters, GFlops, Average IoU and FPS of different depths of the 
modified DeepLabV3+, PSPnet and U-net. 

 No. of parameters GFlops Average IoU 
(%) 

FPS 

modified DeepLabV3 + 
(ResNet18) 

12.47 54.21 70.94 39.6 

modified DeepLabV3 + 
(ResNet50) 

43.58 176.25 72.81 21.2 

modified DeepLabV3 + 
(ResNet101) 

62.68 255.14 74.23 15.2 

PSPnet (ResNet101) 68.07 256.44 72.68 15.7 

U-net 29.06 203.43 71.02 20.5 

Although the parameter count of PSPnet (ResNet101) increased 36.87% and GFlops 
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increased 31.27% relative to the modified DeepLabV3+ (ResNet50), DeepLabV3+ (ResNet50) 
still outperformed PSPnet, which proves the efficiency of the proposed model. Comparing different 
ResNet backbone depths of the modified DeepLabV3+ and 18 depth only had 28.61% and 19.89% of the 
parameter count of the 50 depth and 101 depth, respectively, and 30.76% and 21.25% of GFlops of 
the 50 depth and 101 depth, respectively; it still had a 97.43% IoU for the 50 depth and 95.56% 
IoU for the 101 depth. 

 

Figure 7. Number of parameters versus the average IoU of different models. 

 

Figure 8. GFlop versus the average IoU of different models. 

The feasibility of model application takes both performance and computational complexity into 
consideration; we believe balance can be made based on the depth of the backbone ResNet. 
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4. Conclusions 

This paper proposed a modified architecture DeepLabV3+ model for MCE segmentation. The 
model consists of three main modules: the backbone, ASPP module and decoder. The backbone 
utilizes ResNet with atrous convolution, which allows the algorithm to find the best balance between 
the receptive field from a large field of view and the resolution of the feature map from a small field 
of view. The modified ASPP module also applies atrous convolution with different dilation factors to 
resample multi-scale patterns from the feature maps extracted from the backbone. The decoder 
combines the lower-level feature map from the encoder and high-level feature map from the decoder 
to generate the final prediction. A comparison between the proposed model and other state-of-the-art 
models, i.e., the PSPnet and U-net was conducted; the proposed model has achieved the best scores 
for both the dice and IoU. Moreover, we also did a performance and complexity analysis for all of 
the models, including the proposed model with different backbone depths, PSPnet and U-net; the 
results show the efficiency of the proposed architecture, and a comparison of the different depths of 
ResNet backbone illustrated the application feasibility of the proposed model. In the future study, we 
will focus on the balance of performance and complexity of the model to seek opportunities for the 
application in clinical analysis. Moreover, the Li et al. data only provides MCE frames rendered by a 
coloring mapping procedure; however, the rendering schema depends on settings from different 
companies and radiologists, so it will reduce the objectives and make the segmentation lose detail, 
which might bring variation to the algorithm’s performance. Thus, we hope to experiment with our 
model on original MCE frames to improve the robustness and generalization ability in the future. 
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