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Abstract: Recent works have illustrated that many facial privacy protection methods are effective in 

specific face recognition algorithms. However, the COVID-19 pandemic has promoted the rapid 

innovation of face recognition algorithms for face occlusion, especially for the face wearing a mask. 

It is tricky to avoid being tracked by artificial intelligence only through ordinary props because many 

facial feature extractors can determine the ID only through a tiny local feature. Therefore, the 

ubiquitous high-precision camera makes privacy protection worrying. In this paper, we establish an 

attack method directed against liveness detection. A mask printed with a textured pattern is proposed, 

which can resist the face extractor optimized for face occlusion. We focus on studying the attack 

efficiency in adversarial patches mapping from two-dimensional to three-dimensional space. 

Specifically, we investigate a projection network for the mask structure. It can convert the patches to 

fit perfectly on the mask. Even if it is deformed, rotated and the lighting changes, it will reduce the 

recognition ability of the face extractor. The experimental results show that the proposed method can 

integrate multiple types of face recognition algorithms without significantly reducing the training 

performance. If we combine it with the static protection method, people can prevent face data from 

being collected. 

Keywords: privacy protection; neural network; facial recognition; adversarial attacks; spatial mapping; 

transferability; nonlinear transformation 
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1. Introduction 

Nowadays, cameras with face recognition algorithms (FRA) are everywhere. Not only do FRAs 

get our facial features, but they are likely not to tell us what they are doing. What is worse, even people 

wearing masks or sunglasses cannot avoid face detectors. Especially after the COVID-19 pandemic, 

almost all commercial FRAs support the identification of occluded faces. Therefore, our facial privacy 

is under an unprecedented threat. Also, we cannot eliminate the collection of personal biological data 

in the physical world. 

 

Figure 1. A CCTV that recognizes masks and face IDs. By examining the closed-circuit 

television video through mask identification, we can know how many people follow the 

health guidance in specific areas, such as the Little Italian neighborhoods in New York city, 

provided by Tryo labs. 

In the past, people could easily hide their faces by wearing a mask, a hat or a pair of sunglasses. 

Some ingenious attack networks can generate printable patches [1] for an FRA and place them in parts 

of the body [2,3] to mislead the classifier [4]. Of course, numerous algorithms can protect static face 

privacy data. However, recent surveys have proved that our facial features can still be inferred when 

the faces don masks and other ornaments. As shown in Figure 1, CCTV in many neighborhoods can 

identify whether people are wearing masks and the state-of-the-art FRAs can still distinguish the face 

ID. These innovative recognition algorithms invalidate many liveness privacy protection algorithms, 

and most importantly, these models are freely available to anyone on the internet. 

The existing occlusion face recognition methods include representation-based and reconstruction-

based algorithms. The online evaluation uses a gradually growing network approach to remove an 

unwanted object. In [5], two discriminators are used to learn the global structure and the deep missing 
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region for face image reconstruction. Similarly, Ge et al. [6] applied a set of identity-centered features 

in the extractors as supervision to enable the clustering toward their identity centers. In [7], the authors 

restore the whole face with a local facial texture. In the reconstruction field, the deep features extracted 

from the unmasked regions are widely used [8]. Furthermore, the accuracy of the MTArcFace [9] 

algorithm to recognize the face donning a mask has exceeded 99.7%. To sum up, those recognition 

algorithms are very accurate for faces donning masks. In contrast, the development of facial privacy 

protection methods is much slower than that of FRAs. 

Attacking the existing FRAs is an effective means to protect face privacy in the physical world. 

Face information is obtained mainly through two modes. One is the face features to be sampled into 

multiple blocks of the same size. And, the other matching approach is detecting the key points. 

According to these theories, some methods have used cloak texture to protect IDs in face images. In 

other words, people use printed textures with deceptive features to deceive the camera and place them 

on clothes [4], hats [2], eyeglass frames [10] and other parts [3] of the liveness body. This device can 

play a role in the early stage. Nevertheless, facial recognition systems try to protect themselves from 

being attacked. For example, they can determine human beings by analyzing the wavelength of 

reflected light [11]. Kose and Dugelay [12] use the method based on linear back projection to 

discriminate between real and fake faces, and they asserted 88% classification accuracy with a depth 

map. Face synthesis [13], deepfakes [14], attribute manipulation [15] and expression swap [16] are 

good ways to protect privacy. However, they may be easily exploited by criminal motives. Some new 

in-depth definition identification technologies have been proposed to deal with privacy protection 

methods, as shown in Figure 2. Therefore, liveness privacy protection becomes more difficult. 

  

(a) (b) 

Figure 2. Interference effect of a mask with a simulated pattern. (a) The recognition rate 

is 99.899% when there is no occlusion, (b) the interference pattern can reduce the 

recognition rate, but the face confidence is more than 80%. 

To solve the optimization problem, various multi-objective evolutionary algorithms have been 

proposed. We can improve them by leveraging domain-specific information in training signals for 

related tasks. We proposed a privacy framework and showed that solving such a game is equivalent to 

solving a one-to-many objective linear programming problem. Its antagonism is a complex problem 

because there are multiple ways to sense the generated attack image, whereas many previous methods 

have failed. The improved training network makes the machine automatically perceive external 
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changes and adds a manual intervention mechanism. That can effectively improve the efficiency of the 

attack. All targets in mutual updating are black box algorithms. The key to this model is to preserve 

the trained parameters, accumulate new parameters at the inference level and maintain visibility at the 

image level as much as possible. 

This paper focuses on protecting people’s facial privacy in the real world. First, by studying the 

types and principles of FRAs, we prepare an attack method against commercial face detectors and 

improve their efficiency. We adopt the attention mechanism to keep the network stable and robust. 

Simultaneously, it is easy to fuse FRAs for multiple patterns. Second, we try to train some 2D images 

that can deceive any FRA. The difference from previous studies is that the protective texture can be 

compatible with most commercial FRAs. Finally, we design a projection network, which can project 

the attack texture from 2D to 3D. It will be easy to adapt the image to the mask. This 3D texture makes 

performance independent of angle and lighting. More importantly, these textures are natural from a 

visual point of view and will not make others feel suspicious and uncomfortable. 

2. Related work 

Protecting the private information in face images can be divided into two modes: one mode is 

by adding interference in the digital domain (digital attack), and another is by adding anti-

disturbance to real faces in the physical world (physical attack). Because attackers generally cannot 

access or modify the digital domain input of the physical world face recognition system, physical 

attacks have more practical significance for evaluating the robustness. However, compared with 

digital attack methods [17], the physical attack is more challenging due to the complex conditions 

of the physical world. 

2.1. Occlusion face recognition 

We classify the principle of occluded face recognition of three types: facial reconstruction, 

occlusion discarding and occlusion dictionary [18]. A linear combination of gallery images rebuilt the 

probing facial picture in facial reconstruction. The occlusion discarding strategy seeks to delete 

characteristics in FRAs that correspond to the occluded component. It is on the notion that the features 

damaged by the occluded section have a detrimental influence on the FRA. 

In reconstruction, Alyuz et al. [19] extended studies about occlusion removal and restoration 

techniques. They consider occlusion handling for surface registration and missing data handling for 

classification based on subspace analysis techniques. It is easy to use an adaptively selected model-

based registration technique for the alignment problem. Occlusions are recognized and eliminated after 

registering to the model that has been validated by non-occluded patches. A masking approach known 

as masked projection is presented during the classification step to allow subspace analysis techniques 

with insufficient data. Drira et al. [20] attempted to expect and complete the incomplete face curves 

by using a statistical shape model. In particular, this technique employs the principal components 

analysis (PCA) algorithm on the training data to generate a training shape, which is then used to 

estimate and rebuild the entire curves. The approach of recovering occluded regions by predicting 

missing curves that incorporate critical form data dramatically improved identification accuracy. 

Regarding occlusion discarding, Li et al. [21] presented a restoration step that employed a 

statistical estimate on curves to address missing data. In particular, the model created by PCA builds 
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partially observed curves. Guo et al. [22] used inverse rendering to make many photo-realistic facial 

pictures with varying features. They established a fine-detailed facial picture collection by transferring 

multiple detail scales from one image to the next. 

Regarding the occlusion dictionary, Hong et al. [23], Utomo and Kusuma [24] and Prinosil and 

May [25] have realized person re-identification from different angles and produced certain benefits. 

Even commercial face identification software development kit (SDK) such as Baidu, Aliyun, Tencent, 

ArcFace (not InsightFace) and Face++ have made the accuracy of masked face recognition over 99%. 

At present, no matter how we cover up our facial privacy in the physical world, we can be captured by 

advanced FRAs. Tolosana et al. [26] have focused on the newest generation of deepfakes, emphasizing 

its advancements and problems for fake detection. 

2.2. Living face privacy 

Initiative protection mode is based on the detector’s compliance with the privacy convention. 

FRAs actively conceal the privacy of the captured picture and transmit clean data through the 

network. Blind vision involves the anonymous processing of an image or video. It uses a secure 

multi-party computing (SMC) method applied to visual algorithms to solve the privacy problem 

during processing [26]. SMC is a subfield of cryptography that allows several people to compute a 

function while keeping their inputs and themselves hidden. Sun et al. [28] used dynamic keys for 

decryption during image transmission, thus avoiding the risk of disclosure of fixed keys . Zhou and 

Pun [29] developed a new method called face pixelation in video live streaming to generate 

automatic personal privacy filtering during unconstrained streaming activities.  RGB cameras for 

active and assisted living applications [30] use object segmentation technology to process the 

images collected from the community in the back progress and hide the irrelevant face data in the 

pictures. The deepfake [14] mentioned above is also a way to protect privacy, although it is usually 

used for illegal purposes. Zheng et al. [31] used remote photo-plethysmography (RPPG) and region 

of interest with a high signal-to-noise ratio to forge physiological signals to protect the privacy of 

the subjects. Chen et al. provided evaluations of PulseEdit’s [32] performance against RPPG-based 

liveness identification and RPPG-based deepfake detection, demonstrating its capacity to avoid 

these visual security techniques and its critical role in the design of attack-resilient systems. Fawkes 

algorithm proposed by Shan et al. [33] hid the small perturbation in the position where the image is 

difficult to be detected, resulting in the loss of focus on the face detector. 

Passive protection has five categories: intervention, blind vision, secure processing, redaction 

and data hiding [34]. Although it often appears in static data protection, passive protection often 

comes with liveness data protection events in the physical world. The intervention approach 

addresses the problem of preventing someone from capturing private visual data from their 

surroundings. They intend to build environments that are resistant to capture. These methods 

interfere with the camera equipment by interfering with the special equipment of the camera’s optical 

lens, thus hindering the acquisition of pictures. The BlindSpot system was created by Patel and 

colleagues, and it detects many retro-reflective CCD or CMOS camera lenses in a safe area and then 

focuses a pulsating light toward the identified lens [35], destroying any photos those cameras may 

have recorded. Adversarial patches [36], AdvHat [2] and federated privacy [3] offer real-world 

approaches to creating universal, resilient and targeted hostile picture patches. When these patches 

are placed with a living face, they can cause an FRA to ignore the face or report an error target. 
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3. Materials and methods 

Physical attack methods generally include face stickers, wearing adversarial glasses, wearing a 

hat, etc. We should also consider different physical world conditions, including the chromatic 

aberration of a sticker, face variations and environmental condition variations. These are closely related 

to lighting conditions, camera angle, etc. Obviously, here are two methods to protect the privacy of 

physical faces: dodging attacks and impersonation attacks. The principle of dodging attacks is to reduce 

the similarity between face images with the same ID, which generally refers to cosine similarity 

(𝐿𝑠𝑖𝑚 = (1 + cos 𝑓(𝑥 + 𝛿), 𝑓(𝑥𝑎)) 2⁄ ), where x and xa come from the same ID and Lsim stands for 

adversary loss. 

The principle of an impersonation attack is to increase the similarity between face images with 

different IDs. In contrast to avoiding attacks, x and xa are sampled from two unequal identity IDs and 

can be optimized by minimizing 𝐿𝑠𝑖𝑚 = (1 − cos 𝑓(𝑥 + 𝛿), 𝑓(𝑥𝑎)) 2⁄ . 

3.1. Algorithm fusion 

The principle of privacy protection is an attack recognition algorithm. The real meaning of privacy 

protection is algorithm fusion because the existing face privacy protection algorithms are specified 

recognition models. However, the face recognition extractors in the physical world are different. They 

may lead to failure in reality because of using an independent theory. Further, we cannot receive the 

practices and results consumed by the multi-deep network. 

Because many precedents have described how to tease FRAs with image interferences, privacy 

attacks on multiple FRAs have become rule-based. If a gauze mask is printed with a texture with 

general attack attributes, people who wear it will look more natural. We use the encoder to map some 

opponent features and mask shapes so that these faces can be regarded as another living person by the 

FRAs. The encoder abstracts the eigenvalues of the synthesized image and inputs them into several 

spliced FRAs. Then, the decoder feeds back the classification results of these spliced FRAs to the 

generator to adjust the attack parameters. When the synthesized texture reaches the attack threshold, 

the parameters can be output to the printable network to make a mask texture. The structure of the 

fusion network is shown in Figure 3. 

 

Figure 3. Structure of fusion network. 

Machine learning, as everyone knows, has generalization performance that is poor, but it often 

produces more optimized results on the specific problem with sufficient training. So, keeping the 

model available when changing the input and output is a challenge. Some traditional stitching ideas 
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can be applied in deep networks to simulate the generalization process, e.g., wiring together a 

collection of known algorithms. This smoother representation of the algorithm allows learning to adjust 

the internal mechanism of the algorithm itself through data feedback. 

The biggest problem we encountered by fusing face recognition attack algorithms is 

comprehending the internal concerns of a commercial algorithm. All black-box-based algorithms 

should be paralleled into the attack network to achieve compatibility. Although visual attention [37] 

technology is often used for character recognition to simulate the human eyes, similarly, it will bring 

surprising results in algorithm fusion. If a network can sense key nodes, its speed must be faster, and 

its accuracy will be higher than that of the pruning method. Squeezing eigenvalues of the same person’s 

face into small intervals is a good way of increasing the convergence speed of a network, as shown in 

Figure 4. However, with the accumulation of recognition algorithms, the capacity of feature space 

needs to be continuously adjusted, and gradient explosion may also occur in theory. Therefore, we 

should use the weighting function to interfere with the aggregation speed. See Eq (1), where w is the 

ith feature weight, l is the length of the face feature vector, x represents the attention distribution 

coefficient in the ith feature and y is used as the actual eigenvector estimation. Equation (2) defines the 

probability distribution of x, where s is the attention score [38]. 

  

(a) (b) 

Figure 4. Eigenvalue extrusion in encoder. (a) Eye eigenvalue distributions of different 

FRAs and (b) distribution extrusion of eye eigenvalues for different FRAs. 

Unlike in natural language recognition [39], the attention mechanism of facial features is a multi-

vector parallel query process, and the vector length is non-fixable. So, based on the first FRA, the 

filters are sorted according to the filter norm (e.g., L1 or L2) [40,41]. Such processing will reduce the 

resources occupied by the decoder so that the network optimization will not be slow because of the 

cask effect. The decoder normalizes the cut feature map and feeds it back to the generator, and the 

feature mapping set D represents the decoder, which is composed of multiple vectors (A) with the 

weight w, as shown in Eq (3). On the one hand, the decoder outputs the recognition result of the 

polymerized algorithm. On the other hand, it feeds the area of interest back to the generator. When the 

texture structure generated by Gaussian noise reaches the preset threshold, it can automatically or 

manually convert vector data into 2D coordinates for printing. Moreover, the ideal result should be to 

shift the attention of any target recognition algorithm. The image based on the attention mechanism is 

shown in Figure 5. 
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 𝑥𝑖 = softmax(𝑠𝑖) =
exp(𝑠𝑖)

∑ exp(𝑠𝑗)
𝑙
𝑗

 (2) 

 𝑫 =
𝑤1𝑨𝟏⨁𝑤2𝑨𝟐⨁⋯⨁𝑤𝑛𝑨𝒏

‖𝑨‖
 (3) 

   

(a) (b) (c) 

Figure 5. Fusion of FRAs based on an attention mechanism. (a) Generated mask on face 

model, (b) feature points of the two FRAs squeezed by the encoder and (c) attention shift 

model after decoding. 

3.2. Texture projection 

Although simulation stickers can use attacks to achieve the effect of privacy protection, 

considering the changes of light and angle in the wild world, it is easy to invalidate the planar texture 

pattern. Therefore, the generated texture must be projected onto the mask with three creases. The 

projection here includes two parts: one is the projection of the mask on the face, and the other is the 

projection of the texture on the mask. Further, we convert it from 3D to 2D, and then convert it to 3D 

again. 

First, the discrete point elimination method [42] is used to record the 3D scattered point 

information of the human face in which the coordinate is p. We put the virtual mask onto a face 

image with the assistance of surface shape and curvature scales [43], where δ represents the network 

topology coefficient. To be sure, aligning the mask with the nose coordinates as the starting point 

makes the mapping between the 2D and the 3D plane more symmetrical. Locking the range of the 

geometric surface indices in [0.85,1] can make the image fit with an object surface as much as 

possible [44], especially when mapping the nasal tip area. For this training, we chose to use the 

FRGCv2 database [45]. The 2D space shall conform to Eq (4), where the sequence comprises the L2 

norm maximum of p between UV space and XYZ space [46]. The face after transposition is closer 

to the tension on the plane, as shown in Figure 6. 

 𝑑𝒙,𝑦 = max
𝛿∈{−1,0,1}

‖𝑝𝑢,𝑣 − 𝑝𝑥+𝛿,𝑦+𝛿,𝑧+𝛿‖ (4) 
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(a) (b) 

Figure 6. 2D expansion of a human face. (a) Front of 3D image and (b) 3D image tiled 

into a plane. Most facial features are planarized. 

Second, the mask needs to be laid flat on the 2D face and passed through a suitable position. 

Usually, the size of masks that meet the biological evaluation of medical devices (according to the 

ISO10993-1 standard) is 17.5 cm × 15.5 cm after deployment. So, the outspread mask must be larger 

than the area under the nose. We chose to apply the Dirichlet boundary condition [47] and the energy 

E defined in Eq (5), where 𝐹𝑚  symbolizes the function of linear transformation constrained by 

piecewise constraints, 𝑠𝑚 represents the boundary of 3D to 2D mapping and μ is the unit slice of the 

3D face surface. This convex mapping can constrain the discrete conformal graph (maximum angle 

hold). Therefore, it is only necessary to ensure that the nose and the first outer edge are mapped as 

shown in Figure 7. And, the area below the third inner edge can be ignored. So far, we can print the 

texture on the 2D mask according to the face shape. 

 

Figure 7. Conformal mapping of mask and 2D face. The mapping result can be represented 

by orthogonalizing the positive highlight area (nose tip) of the 2D image with the first outer 

edge of the mask. The nose tip is usually 3.5 cm away from the upper edge of the mask. 

Finally, considering that the mask will block some texture information after being folded, a grid 

training network needs to predict which features will fail when they are occluded. For positioning, we 

print 1.5 cm chessboard grids on the prefabricated masks. It should be noted that most of the parts 
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cause large-scale texture distortion in blue areas, as shown in Figure 8. A 2D set 𝑔𝑖 =  {𝑥𝑖
𝑡 , 𝑦𝑖

𝑡} 

denotes the pixels of a regular grid, and 𝑥𝑖
𝑠 presents the source pixel in the expanded mask, as shown 

in Figure 7. By the four points of the ith cell and corresponding projected cell, it can be transformed 

to the matrix of the spatial 𝑀𝜃, as shown in Eq (6). The class of transformations 𝒯𝜃 may be more 

constrained, such as that used for attention, allowing cropping, translation and isotropic scaling [46]. 

 𝐸 =
1

2
∫ 𝑠𝑚|∇𝐹𝑚|𝑑𝜇 (5) 

 (𝑥𝑖
𝑠 , 𝑦𝑖

𝑠) = 𝒯𝜃(𝑥𝑖
𝑡 , 𝑦𝑖

𝑡) = 𝑀𝜃 (
𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

) (6) 

   

 

(a) (b) (c)  

Figure 8. Customized mapping training samples. (a) The masks full of grids. (b) The large 

distortion area on the front of the sample is a triangle. (c) The trapezoidal regions can also 

be approximated to triangles because the influence of the marginal grids usually does not 

work. 

In this work, the integer sampling kernel can improve the mapping performance from 2D to 3D, 

the relationship between input the feature map U and output map V is shown in Eq (7), where b rounds 

x to the nearest integer and δ{} is the Kronecker delta function [48], 𝑈𝑛,𝑚
𝑐  is the value at the location 

(n,m) in Channel c and we get a solid coordinate system of 90 cm units, as shown in Figure 9. At the 

same time, for the case that we need to restore the pixel information from the UV plane to the XY 

plane, that is, 3D to 2D, we propose a differentiable inverse transform. This sampling efficiency can 

improve the conversion efficiency of the camera according to the reference [49]. As shown in Eq (8), 

we described part of the mask fitting points in 428 keys. These key points are Delaunay-triangulated. 

Let the triangle set corresponding to the set P = {P1,...,P2} on the plane be T, which must meet the 

following requirements: (a) the endpoint of the triangle exactly belongs to the set P; (b) the edges of 

any two triangles do not intersect or the edges of adjacent triangles coincide and (c) T forms the convex 

hull of P. At this time, the face and mask are composed of several blocks. The more triangle blocks 

that are connected, the more the depth of information affects robustness. When constructing the 

Delaunay triangulation network and using the local optimization procedure, combine two common 

triangles into a polygon, and use the maximum empty circle criterion to detect whether the fourth 
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vertex of the polygon is within the triangle’s circumscribed circle. If it is, adjust the diagonal as shown 

in Figure 10. 

 𝑉𝑖
𝑐 = ∑ ∑ 𝑈𝑛,𝑚

𝑐𝑊
𝑚 𝛿{([𝑥𝑖

𝑠 + 𝑏] − 𝑚)𝐻
𝑛 × ([𝑦𝑖

𝑠 + 𝑏] − 𝑛)} {
𝑏 = 0, 𝑥, 𝑦 < 0.5
𝑏 = 1, 𝑥, 𝑦 > 0.5

 (7) 

 
𝜕𝑉𝑖

𝑐

𝜕𝑈𝑛,𝑚
𝑐 = ∑ ∑ 𝑈𝑛,𝑚

𝑐𝑊
𝑚 max(0,1 − |𝑥𝑖

𝑠 −𝑚|)max(0,1 − |𝑦𝑖
𝑠 − 𝑛|)𝐻

𝑛  (8) 

 

Figure 9. Mapping process from XY to XYZ and UV space. The plane template of the 

mask is mapped to the sample of the face with a mask through the 𝒯 function. At the same 

time, the attack patch is generated according to the mask specification and a 3D attack 

patch appears on the mask in the 90 cm coordinate system. 

 

Figure 10. Local optimization procedure for Delaunay triangulation. 

However, only local optimization cannot increase the accuracy of depth information. Thus, we 

used the interpolation method to increase the depth as shown in Figure 11: (a) Find an auxiliary window 

Rect containing the in-point set and connect the diagonal lines of Rect to form two triangles as the 

initial grid in P. (b) Insert a point P in T and determine the triangle where P is located to search for 

adjacent triangles and circumscribe circles. (c) Delete all triangles of the circumscribed circle 

containing P to form a polygonal cavity containing P, and then connect the vertices of P and the cavity 

to form a new grid. (d) Skip (c) and repeat (b). 
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(a) (b) 

  

(c) (d) 

Figure 11. Point-by-point insertion algorithm for depth information. (a) Set a new node P, 

(b) decide how to connect P with other nodes, (c) delete the AB side and (d) Generate a 

new triangle block. 

Target recognition needs to map the extracted 2D features into the 3D point cloud template by 

combining 2D calibration and RGB projection. Here, a dataset marks the point cloud coordinates, 

labels, colors and correlation matrix data of the wrinkle area of the PrivacyMask for a variety of faces 

and angles. The application of the dataset can also effectively filter the irrelevant points in two-

dimensional space, prune the mapping and only keep the view cone key point cloud data. Because the 

angles of the camera and the face are random, the camera coordinates need to have different initial 

values. Therefore, the UV plane and XYZ plane need to be constantly converted to rotate from the 

XYZ plane to the camera’s orthogonal position. First, the camera establishes a virtual XYZ coordinate 

system and uses the UV image to map the cone coordinate system when the UV coordinates are shifted. 

Then, the training results and 3D templates are used to project the UV coordinates into the XYZ 

coordinate system. Then, the depth information of the Z axis is rotated through the T-Net network to 

get the 3D coordinates of the target, as shown in Figure 12. After being verified by a multi-task 

convolutional neural network [3], the generated countermeasure patch can be printed on the mask, as 

shown in Figure 13. 

The printed mask did not appear as strange or uncomfortable images, nor did it have terrible 

effects. It is a relative obedience pattern that makes people have no sense of conflict, although the 

texture on the mask looks like a catfish. The lead (Pb)-containing coating is used in the experiment. In 

the actual production, please use printing materials that meet local standards. 
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Figure 12. 2D to 3D vision conversion method. 

   

(a) (b) (c) 

Figure 13. Privacy mask. (a) Front 0 degree of the mask, (b) up 45 degrees of the mask 

and (c) lateral 45 degrees of the mask. 

4. Experiments and results 

The experiments were conducted to explore the effectiveness of algorithm fusion compatibility 

proof and liveness face privacy protection. We modified the Labeled Faces in the Wild (LFW) dataset 

and the Real World Masked Faces dataset [50] for training. The Andy_Lau dataset and masked-LFW 

dataset were used for testing. At the same time, 30 volunteers took part in the living test. 

4.1. Attention-based approach experiment 

In the experiment, we selected Baidu (BD), Arcface (AF) and Face++ (FA) as the adversary FRAs. 

Because these algorithms open some facial feature anchors, it is easy to add observation windows in 

the encoder to detect whether the generated texture is in the predetermined position. 

We picked 5000 faces for the training set and registered them to the adversary FRAs. In the 
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first round, we fed 4000 faces in 4000 photos, and the remaining 1000 faces with over 4000 photos 

were trained in the second round. As an index of the training results, the false and non-match rate 

was evaluated; it represents the confidence in the FRA subtracted by 1. Two important findings in 

Figure 14 were confirmed: (1) for a single adversary FRA, the attention mechanism does not 

significantly increase the FNMR, but it keeps the network stable; (2) after the second training round 

(from 4500 minutes), the FNMR of the network with the attention mechanism increased faster. 

 

Figure 14. Application of attention mechanism in training network. Curves with different 

colors represent different adversary FRAs. And, the dotted line represents the generation 

network, and the solid line represents the network with the attention mechanism. 

The experimental results show that the Baidu FRA has a big jump; at the same time, the 

FALSE (0.0) burst when the confidence was less than 0.05. It brings about the FNMR up to 1.0 

suddenly from the 7500th minutes; clearly, this result does not accord with the principle of 

statistics. So, it needs to set the expected average value according to each SDK or experimental 

performance of FRAs. And, the following target FNMR was defined as [0.80,0.95] according to 

the Cannikin law [51]. 

We took the Baidu FRA with changeable training parameters as the baseline and connected 

several FRAs in parallel to the decoder. As shown in Figure 15, the training efficiency with the attention 

mechanism (solid line) is higher than unmodified ones (dotted line), and the training process is more 

rapid and stable. It makes the network more comfortable to deal with multiple FRAs. At the same time, 

we also confirm that it is difficult to train a good result for all closed-source FRAs using generative 

adversarial networks alone. 
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Figure 15. Attention mechanism in multi-adversary FRAs. BD stands for Baidu, AF stands 

for Arcface and FA symbolizes Face++. The plus sign indicates several FRAs’ parallel 

training. 

4.2. Fusion experiments 

This experiment verifies whether our model has good robustness when dealing with multiple 

types of FRAs. Our goal is to make static face IDs invisible in Baidu, Azure face, Face++, ArcFace, 

Huawei, Aliyun and Tencent. The privacy protection methods compared are AdvHat (AH) [2], Pautov’s 

eyeglasses (PE) [3], Simen’s patches (SP) [4] and adversarial Patch (AP) [36]. 

AH uses a regular color printer to produce a rectangle sticker on the hat. An adversary sticker is 

created by using a unique algorithm that simulates the out-of-plane deformation of the picture of the 

sticker position on the hat. This approach claims that it can perplex the most sophisticated public face 

ID models. PE can print eyeglasses that make faces invisible in the LResNet100E-IR and 

ArcFace@ms1m-refine-v2 models. SP and AP cause detector classification error, so it cannot track the 

faces. We tested these state-of-the-art methods with the texture generated by our network to contrast 

the effect on the listed FRAs. 

It can be inferred from Table 1 that some methods claiming to have efficient privacy protection 

show weaknesses in commercial FRAs. AH and PE need to train for a designative type of FRA. If they 

meet multiple FRAs, they cannot improve FNMRs. SP can only take effect for the target detection 

algorithm of a white-box model. The texture of AP cannot affect any FRA in the list. Obviously, our 

method is robust. 
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Table 1. Robustness experiments of image privacy protection methods. 

Method Framework 
FNMR 

Baidu Azure Face++ ArcFace Huawei Aliyun Tencent 

AH LResNet100E-IR 0.038 0.015 0.013 0.213 0.011 0.012 0.017 

PE LResNet100E-IR 0.371 0.421 0.396 0.679 0.420 0.272 0.450 

SP YOLOv2 0.016 0.015 0.012 0.010 0.012 0.014 0.013 

AP EOT [52] 0.013 0.015 0.011 0.011 0.012 0.014 0.013 

PM(ours) ArcFace-v2 0.912 0.973 0.902 0.923 0.988 0.918 0.972 

4.3. Liveness experiment 

We invited 30 volunteers to wear masks with over 100 textures to participate in the experiment. 

The adversary FRAs were Baidu, Azure face, Face++, ArcFace, Huawei, Aliyun, Tencent and Apple 

(IOS 15.3) face ID algorithms. 

An experiment on recognizing occluded faces showed that all algorithms involved have high 

accuracy when people wear clear masks or wear common obstructing texture decorations. These FRAs 

have a high recognition rate when they store a blurred picture, as shown in Figure 16. All of the FRAs 

can resist the pattern interference on the mask, even if the pattern is half of a face. 

Except for Apple face ID, all FRAs were installed on the same hardware platform, in which the 

camera resolution was 2K. The volunteers conducted two groups of experiments. First, we asked each 

volunteer to test 500 times in an FRA and replace the PrivacyMask one at a time. Second, an FRA 

identified 30 volunteers in turn, and each volunteer needed to wear different PrivacyMasks each time. 

Finally, the average confidence was recorded, as shown in Figure 17. The experiments show that the 

FRAs cannot identify the subjects. People wearing the PrivacyMask can cause the FRA to mismatch 

face IDs. It is an excellent way to protect faces in the physical world from being tracked or 

authenticated. The confidence of Huawei and the Apple IOS was 0 because Huawei cannot output 

confidence less than 0.6 and the Apple IOS is a complete black-box model and does not output 

confidence.  

 

Figure 16. Accuracy experiment of face recognition without PrivacyMasks. 
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Figure 17. Accuracy experiment of face recognition with PrivacyMask. 

5. Discussion 

Our method is easy to commercialize and may be used by criminals to avoid monitoring 

equipment. Therefore, we did not release code and experimental data. The intact privacy protection 

contains three parts: static data privacy protection, physical world privacy protection and face 

recognition authorization. We have completed the first two works. The main content of the recognition 

authorization is that the generated facial texture carries keys and the discriminator allowed by the user 

will not be affected by these protective textures. After we complete the final work, there will be no 

way to hide face IDs illegally. Also, the public security-related camera will be able to recognize the 

people wearing the PrivacyMask. 

6. Conclusions 

PrivacyMask can generate some textures that can be printed on the mask, which makes the face 

detector lose its identification ability. In short, this method can protect the face in the physical world 

by using the attack principle. People can wear this mask to deal with face privacy snooping and face 

feature tracking in an unknown environment. The pattern of this mask will not put users in an awkward 

situation compared with the similar mask products. Our proposed texture mapping method can 

effectively solve the failure caused by the change of light and angle. The experimental results verified 

the robustness of PrivacyMask against the state-of-the-art face ID system of Baidu, Huawei and Apple, 

with a success rate of over 95%. Also, the attention mechanism can keep the network stable and reduce 

the gradient problems. It makes the idea of algorithm fusion easier to implement. Further, combined 

with the static data protection method we proposed before, a closed loop to protect face privacy has 

been formed. 
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