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Abstract: In this paper, we perform analytical and statistical studies of Revan indices on graphs G:
R(G) =

∑
uv∈E(G) F(ru, rv), where uv denotes the edge of G connecting the vertices u and v, ru is the

Revan degree of the vertex u, and F is a function of the Revan vertex degrees. Here, ru = ∆ + δ − du

with ∆ and δ the maximum and minimum degrees among the vertices of G and du is the degree of the
vertex u. We concentrate on Revan indices of the Sombor family, i.e., the Revan Sombor index and the
first and second Revan (a, b)-KA indices. First, we present new relations to provide bounds on Revan
Sombor indices which also relate them with other Revan indices (such as the Revan versions of the first
and second Zagreb indices) and with standard degree-based indices (such as the Sombor index, the first
and second (a, b)-KA indices, the first Zagreb index and the Harmonic index). Then, we extend some
relations to index average values, so they can be effectively used for the statistical study of ensembles
of random graphs.

Keywords: Revan Sombor index; modified Sombor index; (a, b)-KA indices; degree-based
topological indices; random graph

1. Introduction

A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the
bonds. Chemical Graph Theory is a branch of Mathematical Chemistry, which has an important effect
on the development of the Chemical Sciences. A topological index is a numerical parameter
mathematically derived from the graph structure. Several such topological indices have been
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considered in Theoretical Chemistry and have found some applications, especially in QSPR/QSAR
study see [1, 2].

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree
dG(u) of a vertex u is the number of vertices adjacent to u. Let ∆(G) and δ(G) denote the maximum and
minimum degree, respectively, among the vertices of G. The Revan vertex degree of a vertex u ∈ V(G)
is defined as rG(u) = ∆(G)+δ(G)−dG(u). The edge connecting the vertices u, v ∈ V(G) will be denoted
by uv. We refer to [3] for undefined notations and terminologies.

The first and second Revan indices of a graph G were introduced by Kulli in [4], and they are
defined as

R1(G) =
∑

uv∈E(G)

(
rG(u) + rG(v)

)
, R2(G) =

∑
uv∈E(G)

rG(u)rG(v).

The F-Revan index of a graph is defined in [5] as

FR(G) =
∑

uv∈E(G)

(
rG(u)2 + rG(v)2).

The Sombor index was introduced by Gutman in [6], defined as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2 .

Recently, a large number of studies on Sombor indices have been published, see e.g., [7–15].
The Revan Sombor index was proposed by Kulli and Gutman in [16] as

RSO(G) =
∑

uv∈E(G)

√
rG(u)2 + rG(v)2 .

The first and second Revan (a, b)-KA indices of a graph G are defined (generalizing the Revan
Sombor index), respectively, as

RKA1
a,b(G) =

∑
uv∈E(G)

(
rG(u)a + rG(v)a)b

,

RKA2
1,c(G) =

∑
uv∈E(G)

(
rG(u)rG(v)

)c
.

Recently, some (a, b)-KA indices have been used to analyze the properties of chemical compounds
and nanostructures. In particular, they have been applied to the study of benzenoid systems and
phenylenes, see for example [17–20].

Therefore, motivated both by their practical applications as well as by their theoretical properties,
mainly because of the close relationship with the well-known Sombor index [15], in this paper we
perform analytical and statistical studies on the recently introduced Revan Sombor indices.

2. Inequalities for the Revan Sombor index

Theorem 1. If G is a graph with maximum degree ∆ and minimum degree δ, and c ∈ R \ {0}, then

2c/2

∆c RKA2
1, c(G) ≤ RKA1

2,c/2(G) ≤
2c/2

δc RKA2
1, c(G) if c > 0,

2c/2

δc RKA2
1, c(G) ≤ RKA1

2,c/2(G) ≤
2c/2

∆c RKA2
1, c(G) if c < 0,
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and the equality in each bound is attained for each c if and only if G is a regular graph.

Proof. If c > 0, then

RKA1
2,c/2(G) =

∑
uv∈E(G)

(
rG(u)2 + rG(v)2)c/2

=
∑

uv∈E(G)

(
rG(u)rG(v)

)c
(

1
rG(u)2 +

1
rG(v)2

)c/2

≥
∑

uv∈E(G)

(
rG(u)rG(v)

)c
(

1
∆2 +

1
∆2

)c/2

=
2c/2

∆c RKA2
1, c(G),

and we obtain the converse inequality if c < 0. The equality in each bound is attained if and only if
rG(u) = rG(v) = ∆, i.e., dG(u) = dG(v) = δ for every uv ∈ E(G), that is, G is a regular graph.

Also, if c > 0, then

RKA1
2,c/2(G) =

∑
uv∈E(G)

(
rG(u)rG(v)

)c
(

1
rG(u)2 +

1
rG(v)2

)c/2

≤
∑

uv∈E(G)

(
rG(u)rG(v)

)c
(

1
δ2 +

1
δ2

)c/2

=
2c/2

δc RKA2
1, c(G),

and we obtain the converse inequality if c < 0. The equality in each bound is attained if and only if
rG(u) = rG(v) = δ, i.e., dG(u) = dG(v) = ∆ for every uv ∈ E(G), that is, G is a regular graph.

Notice that the limit as c approaches zero, the bounds, both upper and lower, are all equal to m
(number of edges of G).

If we choose c = 1 in Theorem 1, then we obtain the following result.

Corollary 2. If G is a graph, then

√
2
∆

R2(G) ≤ RSO(G) ≤

√
2
δ

R2(G)

and the equality in each bound is attained if and only if G is a regular graph.

Theorem 3. If G is a graph with m edges and maximum degree ∆, and c > 0, then

RKA1
2,c/2(G) ≤

√
m∆cRKA1

1, c(G),

and the equality in the bound is attained for each c if and only if G is a regular graph.
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Proof. Cauchy-Schwarz inequality gives

RKA1
2,c/2(G) =

∑
uv∈E(G)

(
rG(u)2 + rG(v)2)c/2

≤
∑

uv∈E(G)

∆c/2(rG(u) + rG(v)
)c/2

≤

√( ∑
uv∈E(G)

∆c
)( ∑

uv∈E(G)

(
rG(u) + rG(v)

)c
)

=

√
m∆cRKA1

1, c(G) .

If the equality in the bound is attained for some c > 0, then rG(u) = rG(v) = ∆ for every uv ∈ E(G)
and so, G is a regular graph.

If G is regular, then√
m∆cRKA1

1, c(G) =
√

m∆c m2c∆c = m2c/2∆c = RKA1
2,c/2(G).

If we choose c = 1 in Theorem 3, then we obtain the following result.

Corollary 4. If G is a graph with m edges and maximum degree ∆, then

RSO(G) ≤
√

m∆R1(G)

and the equality in the bound is attained if and only if G is a regular graph.

We need the following well known inequalities for x1, x2 > 0 [21]:

xα1 + xα2 < (x1 + x2)α ≤ 2α−1(xα1 + xα2 ) if α > 1,
2α−1(xα1 + xα2 ) ≤ (x1 + x2)α < xα1 + xα2 if 0 < α < 1,

(x1 + x2)α ≤ 2α−1(xα1 + xα2 ) if α < 0,

and the equality in each non-strict inequality is attained for each α if and only if x1 = x2.

These inequalities allow to obtain the following result.

Theorem 5. If G is a graph and a, b, c ∈ R \ {0}, then

RKA1
ab/c, c(G) < RKA1

a,b(G) ≤ 2b−cRKA1
ab/c, c(G) if b > c, bc > 0,

2b−cRKA1
ab/c, c(G) ≤ RKA1

a,b(G) < RKA1
ab/c, c(G) if b < c, bc > 0,

RKA1
a,b(G) ≤ 2b−cRKA1

ab/c, c(G) if b < 0, c > 0,
RKA1

a,b(G) ≥ 2b−cRKA1
ab/c, c(G) if b > 0, c < 0,

and the equality in each non-strict inequality is attained for each a, b, c if and only if each connected
component of G is a regular graph.
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Proof. If α = b/c, x1 = rG(u)a and x2 = rG(v)a, then the previous inequalities give

rG(u)ab/c + rG(v)ab/c < (rG(u)a + rG(v)a)b/c ≤ 2b/c−1(rG(u)ab/c + rG(v)ab/c)
if b/c > 1,

2b/c−1(rG(u)ab/c + rG(v)ab/c) ≤ (rG(u)a + rG(v)a)b/c < rG(u)ab/c + rG(v)ab/c

if 0 < b/c < 1,
(rG(u)a + rG(v)a)b/c ≤ 2b/c−1(rG(u)ab/c + rG(v)ab/c)

if b/c < 0,

and the equality in each non-strict inequality is attained if and only if rG(u) = rG(v), i.e., dG(u) = dG(v).
Hence, we obtain

(rG(u)ab/c + rG(v)ab/c)c < (rG(u)a + rG(v)a)b ≤ 2b−c(rG(u)ab/c + rG(v)ab/c)c

if b/c > 1, c > 0,
2b−c(rG(u)ab/c + rG(v)ab/c)c ≤ (rG(u)a + rG(v)a)b < (rG(u)ab/c + rG(v)ab/c)c

if b/c > 1, c < 0,
2b−c(rG(u)ab/c + rG(v)ab/c)c ≤ (rG(u)a + rG(v)a)b < (rG(u)ab/c + rG(v)ab/c)c

if 0 < b/c < 1, c > 0,
(rG(u)ab/c + rG(v)ab/c)c < (rG(u)a + rG(v)a)b ≤ 2b−c(rG(u)ab/c + rG(v)ab/c)c

if 0 < b/c < 1, c < 0,
(rG(u)a + rG(v)a)b ≤ 2b−c(rG(u)ab/c + rG(v)ab/c)c

if b < 0, c > 0,
(rG(u)a + rG(v)a)b ≥ 2b−c(rG(u)ab/c + rG(v)ab/c)c

if b > 0, c < 0,

and the equality in each non-strict inequality is attained if and only if dG(u) = dG(v).
If we sum on uv ∈ E(G) these inequalities, then we obtain the desired inequalities. Furthermore, the

equality in each non-strict inequality is attained for each a, b, c if and only if dG(u) = dG(v) for every
uv ∈ E(G); and this happens if and only if each connected component of G is a regular graph.

Remark 6. The excluded case b = c in Theorem 5 is not interesting, since RKA1
ab/c, c(G) = RKA1

a,b(G)
if b = c.

If we take a = 2, b = 1/2 and c = 1/α in Theorem 5, then we obtain the following result for the
Revan Sombor index.

Corollary 7. If G is a graph and α ∈ R \ {0}, then

RKA1
α, 1/α(G) < RSO(G) ≤ 21/2−1/αRKA1

α, 1/α(G) if α > 2,
21/2−1/αRKA1

α, 1/α(G) ≤ RSO(G) < RKA1
α, 1/α(G) if 0 < α < 2,

21/2−1/αRKA1
α, 1/α(G) ≤ RSO(G) if α < 0,

and the equality in each non-strict inequality is attained for each α if and only if each connected
component of G is a regular graph.
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The above bounds (in Theorem 5 and Corollary 7) are achieved for several families of graphs, e.g.,
the complete graph Kn, the complete bipartite graph Km,n, the cycle graph Cn, etc.

Recall that one of the most studied topological indices is the first Zagreb index, defined by

M1(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)

)
=

∑
u∈V(G)

dG(u)2.

Our next result relates M1 and RKA1
α, 1/α.

Theorem 8. If G is a graph with m edges, maximum degree ∆ and minimum degree δ, and α ∈ R \ {0},
then

2(∆ + δ)m − 21−1/αRKA1
α, 1/α(G) ≤ M1(G) < 2(∆ + δ)m − RKA1

α, 1/α(G) if α > 1,
2(∆ + δ)m − RKA1

α, 1/α(G) < M1(G) ≤ 2(∆ + δ)m − 21−1/αRKA1
α, 1/α(G) if 0 < α < 1,

M1(G) ≤ 2(∆ + δ)m − 21−1/αRKA1
α, 1/α(G) if α < 0,

and the equality in each non-strict inequality is attained for each α if and only if each connected
component of G is a regular graph.

Proof. If we take a = b = 1 and c = 1/α in Theorem 5, then we obtain the following result for
RKA1

1,1(G):
RKA1

α, 1/α(G) < RKA1
1,1(G) ≤ 21−1/αRKA1

α, 1/α(G) if α > 1,
21−1/αRKA1

α, 1/α(G) ≤ RKA1
1,1(G) < RKA1

α, 1/α(G) if 0 < α < 1,
21−1/αRKA1

α, 1/α(G) ≤ RKA1
1,1(G) if α < 0,

and the equality in each non-strict inequality is attained for each α if and only if each connected
component of G is a regular graph.

These inequalities and the identity

RKA1
1,1(G) =

∑
uv∈E(G)

(
rG(u) + rG(v)

)
= 2(∆ + δ)m − M1(G)

finish the proof.

The first and second (a, b)-KA indices of a graph G are defined in [17], respectively, as

KA1
a,b(G) =

∑
uv∈E(G)

(
dG(u)a + dG(v)a)b

,

KA2
a,b(G) =

∑
uv∈E(G)

(
dG(u)adG(v)a)b

.

The following result relates the KA1
a, b and RKA1

a, b indices.

Theorem 9. If G is a graph with maximum degree ∆ and minimum degree δ, and a, b ∈ R \ {0}, then

δab

∆ab KA1
a, b(G) ≤ RKA1

a, b(G) ≤
∆ab

δab KA1
a, b(G) if ab > 0,

∆ab

δab KA1
a, b(G) ≤ RKA1

a, b(G) ≤
δab

∆ab KA1
a, b(G) if ab < 0,

and the equality in each inequality is attained for each a, b if and only if G is a regular graph.
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Proof. Let us define the function f : [δ,∆] × [δ,∆]→ (0,∞) by

f (x, y) =
(∆ + δ − x)a + (∆ + δ − y)a

xa + ya .

Note that if a > 0, the numerator of f is strictly decreasing on [δ,∆] on each variable and its
denominator is strictly increasing on [δ,∆] on each variable. Hence, f is a strictly decreasing function
on [δ,∆] on each variable, and so,

δa

∆a = f (∆,∆) ≤ f (x, y) ≤ f (δ, δ) =
∆a

δa .

If x = dG(u) and y = dG(v), then

δa

∆a

(
dG(u)a + dG(v)a) ≤ rG(u)a + rG(v)a ≤

∆a

δa

(
dG(u)a + dG(v)a).

Notice that if b > 0, then the above inequality is preserved; thus

δab

∆ab

(
dG(u)a + dG(v)a)b

≤
(
rG(u)a + rG(v)a)b

≤
∆ab

δab

(
dG(u)a + dG(v)a)b

.

In contrast, if b < 0, then the inequality above is not preserved; thus

∆ab

δab

(
dG(u)a + dG(v)a)b

≤
(
rG(u)a + rG(v)a)b

≤
δab

∆ab

(
dG(u)a + dG(v)a)b

.

If a < 0, then f is a strictly increasing function on [δ,∆] on each variable, and so,

∆a

δa

(
dG(u)a + dG(v)a) ≤ rG(u)a + rG(v)a ≤

δa

∆a

(
dG(u)a + dG(v)a).

Thus,
δab

∆ab

(
dG(u)a + dG(v)a)b

≤
(
rG(u)a + rG(v)a)b

≤
∆ab

δab

(
dG(u)a + dG(v)a)b

if b < 0, and

∆ab

δab

(
dG(u)a + dG(v)a)b

≤
(
rG(u)a + rG(v)a)b

≤
δab

∆ab

(
dG(u)a + dG(v)a)b

if b > 0.
If we sum on uv ∈ E(G) these inequalities, then we obtain the desired inequalities. Furthermore,

since f is a strictly monotone function, the equality in each inequality is attained for each a, b if and
only if dG(u) = dG(v) = δ for every uv ∈ E(G) or dG(u) = dG(v) = ∆ for every uv ∈ E(G); and this
happens if and only if G is a regular graph.

The Revan Sombor and the Sombor indices have the same value for every regular graph. The
following result, which is a consequence of Theorem 9 with a = 2 and b = 1/2, relates these two
indices for every graph.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1801–1819.



1808

Corollary 10. If G is a graph with maximum degree ∆ and minimum degree δ, then

δ

∆
SO(G) ≤ RSO(G) ≤

∆

δ
SO(G)

and the equality in each inequality is attained if and only if G is a regular graph.

Another remarkable topological index is the harmonic index, defined in [22] as

H(G) =
∑

uv∈E(G)

2
du + dv

.

This index has attracted a great interest in the lasts years (see, e.g., [23–27]).
The next result relates the RKA1

a, 1/a and the harmonic indices.

Theorem 11. If G is a graph with maximum degree ∆ and minimum degree δ, and a ∈ R, then

21/a∆δH(G) ≤ RKA1
a, 1/a(G) <

1
2

(∆ + δ)2H(G) if a > 1,

2∆δH(G) < RKA1
a, 1/a(G) ≤ 2−2+1/a(∆ + δ)2H(G) if 0 < a < 1,

RKA1
a, 1/a(G) ≤ 2−2+1/a(∆ + δ)2H(G) if a < 0.

The equality in the first inequality is attained for each a if and only if each connected component
of G is ∆-regular or δ-regular. The equality in the two last inequalities is attained for each a if G is a
regular graph.

Proof. Recall that

(xa
1 + xa

2)1/a < x1 + x2 ≤ 21−1/a(xa
1 + xa

2)1/a if a > 1,
21−1/a(xa

1 + xa
2)1/a ≤ x1 + x2 < (xa

1 + xa
2)1/a if 0 < a < 1,

21−1/a(xa
1 + xa

2)1/a ≤ x1 + x2 if a < 0,

for x1, x2 > 0, and the equality in each non-strict inequality is attained for each a if and only if x1 = x2.
Let us define the function g : [δ,∆] × [δ,∆]→ (0,∞) by

g(x, y) =
(
(∆ + δ − x)a + (∆ + δ − y)a)1/a(x + y).

If a > 1, then

g(x, y) <
(
(∆ + δ − x) + (∆ + δ − y)

)
(x + y) =

(
2(∆ + δ) − (x + y)

)
(x + y)

≤
(
2(∆ + δ) − (∆ + δ)

)
(∆ + δ) = (∆ + δ)2,

since x + y ∈ [2δ, 2∆]. Thus, (
rG(u)a + rG(v)a)1/a

< (∆ + δ)2 1
dG(u) + dG(v)

for every uv ∈ E(G), and so,

RKA1
a, 1/a(G) <

1
2

(∆ + δ)2H(G).

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1801–1819.
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Also,
g(x, y) ≥ 2−1+1/a((∆ + δ − x) + (∆ + δ − y)

)
(x + y)

= 2−1+1/a(2(∆ + δ) − (x + y)
)
(x + y) ≥ 2−1+1/a4∆δ

since x + y ∈ [2δ, 2∆]. The equality in the previous bound is attained if and only if we have either
x = y = δ or x = y = ∆. Therefore,

(
rG(u)a + rG(v)a)1/a

≥ 21/a∆δ
2

dG(u) + dG(v)

for every uv ∈ E(G), and so,
RKA1

a, 1/a(G) ≥ 21/a∆δH(G).

The equality in this bound is attained for each a > 1 if and only if for each edge uv ∈ E(G) we have
either dG(u) = dG(v) = ∆ or dG(u) = dG(v) = δ, that is, each connected component of G is ∆-regular or
δ-regular.

Assume now a < 1, then

g(x, y) ≤ 2−1+1/a((∆ + δ − x) + (∆ + δ − y)
)
(x + y)

= 2−1+1/a(2(∆ + δ) − (x + y)
)
(x + y)

≤ 2−1+1/a(2(∆ + δ) − (∆ + δ)
)
(∆ + δ) = 2−1+1/a(∆ + δ)2,

since x + y ∈ [2δ, 2∆]. Thus,

(
rG(u)a + rG(v)a)1/a

≤ 2−2+1/a(∆ + δ)2 2
dG(u) + dG(v)

for every uv ∈ E(G), and so,

RKA1
a, 1/a(G) ≤ 2−2+1/a(∆ + δ)2H(G).

If G is a regular graph with m edges, then

RKA1
a, 1/a(G) = 21/a∆m = 2−2+1/a(2∆)2 m

∆
= 2−2+1/a(∆ + δ)2H(G).

If 0 < a < 1, then we have

g(x, y) >
(
(∆ + δ − x) + (∆ + δ − y)

)
(x + y)

=
(
2(∆ + δ) − (x + y)

)
(x + y) ≥ 4∆δ

since x + y ∈ [2δ, 2∆]. Therefore,

(
rG(u)a + rG(v)a)1/a

> 2∆δ
2

dG(u) + dG(v)

for every uv ∈ E(G), and so,
RKA1

a, 1/a(G) > 2∆δH(G).
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If we choose a = 2 in Theorem 11, then we obtain the following result for the Revan Sombor index.

Corollary 12. If G is a graph with maximum degree ∆ and minimum degree δ, then

√
2∆δH(G) ≤ RSO(G) <

1
2

(∆ + δ)2H(G)

and the equality in the first inequality is attained if and only if each connected component of G is
∆-regular or δ-regular.

3. Revan Sombor indices on random graphs

Recently, within a statistical approach to degree-based topological indices (TIs) on random graphs
(see e.g., [28–30]), it has been shown that the average values of TIs like the average Randic index,
⟨R(G)⟩, the average harmonic index, ⟨H(G)⟩, and the average of some Sombor indices are highly
correlated with the average Shannon entropy of the eigenvectors of the corresponding adjacency
matrix [31, 32]. Here, ⟨·⟩ denotes the average over an ensemble of random graphs. This is a notable
result because it puts forward the application of degree-based TIs beyond mathematical chemistry (it
is relevant to add that random graphs have also been studied by means of eigenvalue-based TIs such
as the Estrada index, the Laplacian Estrada index, and Rodriguez-Velazquez indices, see
e.g., [33, 34].) Specifically, on the one hand, certain average TIs can provide equivalent information
than traditional, spectrum-based, random matrix theory measures. On the other hand, TIs may be used
to predict spectral properties of random graphs.

Therefore, motivated by potential applications, in what follows we apply for the first time (to our
knowledge) Revan degree-based indices on random graphs. Indeed, since the inequalities obtained in
Section 2 are not restricted to any particular type of graph, we first quantify them for random graphs
and later we extend some of them to index average values, as needed in statistical studies of random
graphs.

Below we consider two prominent models of random graphs: Erdös-Rényi (ER) graphs and random
geometric (RG) graphs. ER graphs [35,36] GER(n, p) are formed by n vertices connected independently
with probability p ∈ [0, 1]. While RG graphs [37, 38] GRG(n, r) consist of n vertices uniformly and
independently distributed on the unit square, where two vertices are connected by an edge if their
Euclidean distance is less or equal than the connection radius r ∈ [0,

√
2].

3.1. Quantification of inequalities for random graphs

In the Theorems presented in Section 2 we know the graph properties needed for the equalities
involved have to be attained, however we do not really know how strong the inequalities could be for
arbitrary graphs. Thus, in this subsection we quantify the inequalities of those Theorems on random
graphs.

To ease the quantification of the six Theorems presented in Section 2 we:

(i) write the left inequality of Corollary 2 as

0 ≤ RSO(G) −

√
2
∆

R2(G), (3.1)
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(ii) write Corollary 4 as
0 ≤

√
m∆R1(G) − RSO(G), (3.2)

(iii) write the right inequality in the second line of Corollary 7, for α = 1/2, as

0 < RKA1
1/2,2(G) − RSO(G), (3.3)

(iv) write the left inequality in the second line of Theorem 8, for α = 1/2, as

0 < M1(G) − 2 (∆ + δ) m + RKA1
1/2,2(G), (3.4)

(v) write the left inequality of Corollary 10 as

0 ≤ RSO(G) −
δ

∆
SO(G), (3.5)

and
(vi) write the left inequality of Corollary 12 as

0 ≤ RSO(G) −
√

2δ∆H(G). (3.6)

Then, in Figure 1 [in Figure 2] we plot the right hand side of Eqs (3.1)–(3.6) as a function of the
probability p [the connection radius r] of ER [RG] graphs of size n. For each value of p [r] we present
results for 10 graph realizations.

For both random graph models, ER and RG graphs, we observe two different behaviors for the right
hand side of Eqs (3.1)–(3.6): On the one hand, the right hand side of Eqs (3.1), (3.2), (3.5) and (3.6)
are close to zero for n → 0 and p → 0 or r → 0, then grow with p or r, approach a maximum value
at p = pmax or r = rmax, and finally decrease abruptly and become zero at p = 1 or r =

√
2. For ER

graphs pmax is very close to 1, so the decrease of the right hand side of Eqs (3.1), (3.2), (3.5) and (3.6)
is not displayed in Figure 1; while for RG graphs rmax ≈ 0.8 for Eqs (3.1) and (3.2) and rmax ≈ 0.64 for
Eqs (3.5) and (3.6), as can be seen in Figure 2. On the other hand, the right hand side of Eqs (3.3) and
(3.4) is close to zero for n→ 0 and p→ 0 or r → 0, then grow with p or r approaching their maximum
values at p = 1 or r =

√
2. That is, the right hand side of Eqs (3.3) and (3.4) are increasing functions

of n and p or r.
Moreover, we can estimate the right hand side of Eqs (3.3) and (3.4) as follows. As it is shown in

Ref. [39], for ER and RG graphs in the dilute limit (i.e., when ⟨dG⟩ ≫ 1) we have that δ ≈ ∆ ≈ ⟨dG⟩ ≈

⟨rG⟩; where ⟨dG⟩ and ⟨rG⟩ are the average degree and average Revan degree, respectively. Therefore,
for ER and RG graphs in the dilute limit, we can write the right hand side of Eq (3.3) as

RKA1
1/2,2(G) − RSO(G)

=
∑

uv∈E(G)

(
rG(u)1/2 + rG(v)1/2)2

−
∑

uv∈E(G)

√
rG(u)2 + rG(v)2

≈
∑

uv∈E(G)

(
2 ⟨rG⟩

1/2 )2
−

∑
uv∈E(G)

√
2 ⟨rG⟩

2 = 4 ⟨rG⟩m −
√

2 ⟨rG⟩m

≈ 4 ⟨dG⟩m −
√

2 ⟨dG⟩m =
4 −
√

2
2

n ⟨dG⟩
2 ; (3.7)
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Figure 1. Right hand side of (a) Eq (3.1), (b) Eq (3.2), (c) Eq (3.3), (d) Eq (3.4), (e) Eq (3.5)
and (f) Eq (3.6) as a function of the probability p of Erdős-Rényi graphs GER(n, p) of size n.
Each symbol corresponds to a single graph realization. Dashed lines in (c) [(d)] correspond
to Eq (3.7) [(3.8)] with ⟨dG⟩ = (n − 1)p.

while the right hand side of Eq (3.4) can be written as

M1(G) − 2 (∆ + δ) m + RKA1
1/2,2(G) =

∑
uv∈E(G)

(
dG(u) + dG(v)

)
−2 (∆ + δ) m +

∑
uv∈E(G)

(
rG(u)1/2 + rG(v)1/2)2

≈
∑

uv∈E(G)

2 ⟨dG⟩ − 4 ⟨dG⟩m +
∑

uv∈E(G)

(
2 ⟨rG⟩

1/2 )2

= −2 ⟨dG⟩m + 4 ⟨rG⟩m ≈ −2 ⟨dG⟩m + 4 ⟨dG⟩m = 2 ⟨dG⟩m

= n ⟨dG⟩
2 . (3.8)
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Figure 2. Right hand side of (a) Eq (3.1), (b) Eq (3.2), (c) Eq (3.3), (d) Eq (3.4), (e) Eq (3.5)
and (f) Eq (3.6) as a function of the connection radius r of random geometric graphs GRG(n, r)
of size n. Each symbol corresponds to a single graph realization. Dashed vertical lines in
(a,b) [(e,f)] mark the maximum data values which occur at r ≈ 0.8 [r ≈ 0.64]. Dashed lines
in (c) [(d)] correspond to Eq (3.7) [Eq (3.8)] with ⟨dG⟩ = (n − 1)r2(π − 8r/3 + r2/2).

Indeed, in panels (c) and (d) of Figures 1 and 2 we plot (as dashed lines) Eqs (3.7) and (3.8),
respectively, and observe a very good correspondence with the computational data, even for relatively
small values of p or r. In Figure 1(c),(d) we used ⟨dG⟩ = (n − 1)p for ER graphs; while in Figure
2(c),(d) we used ⟨dG⟩ = (n − 1) f (r), with f (r) = r2(π − 8r/3 + r2/2), for RG graphs.

3.2. Inequalities for index average values

Since there is a growing interest in the average values of TIs, in particular when applied to random
graphs (see e.g., [28–31]), it should be desirable to state inequalities for them. Fortunately, due to
linearity, Theorem 5 can be straightforwardly extended to index average values; it reads as:
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Corollary 13. If {G} is an ensemble of graphs and a, b, c ∈ R \ {0}, then〈
RKA1

ab/c, c(G)
〉
<

〈
RKA1

a,b(G)
〉
≤ 2b−c

〈
RKA1

ab/c, c(G)
〉

if b > c, bc > 0,

2b−c
〈
RKA1

ab/c, c(G)
〉
≤

〈
RKA1

a,b(G)
〉
<

〈
RKA1

ab/c, c(G)
〉

if b < c, bc > 0,〈
RKA1

a,b(G)
〉
≤ 2b−c

〈
RKA1

ab/c, c(G)
〉

if b < 0, c > 0,〈
RKA1

a,b(G)
〉
≥ 2b−c

〈
RKA1

ab/c, c(G)
〉

if b > 0, c < 0.

Moreover, from Theorem 8 we make the following conjecture:

Conjecture 14. If {G} is an ensemble of graphs, with average maximum degree ⟨∆⟩, average minimum
degree ⟨δ⟩, average number of edges ⟨m⟩, and α ∈ R \ {0}, then

2(⟨∆⟩ + ⟨δ⟩) ⟨m⟩ − 21−1/α
〈
RKA1

α, 1/α(G)
〉
≤ ⟨M1(G)⟩

< 2(⟨∆⟩ + ⟨δ⟩) ⟨m⟩ −
〈
RKA1

α, 1/α(G)
〉

if α > 1,

2(⟨∆⟩ + ⟨δ⟩) ⟨m⟩ −
〈
RKA1

α, 1/α(G)
〉
< ⟨M1(G)⟩

≤ 2(⟨∆⟩ + ⟨δ⟩) ⟨m⟩ − 21−1/α
〈
RKA1

α, 1/α(G)
〉

if 0 < α < 1,

⟨M1(G)⟩ ≤ 2(⟨∆⟩ + ⟨δ⟩) ⟨m⟩ − 21−1/α
〈
RKA1

α, 1/α(G)
〉

if α < 0.

Now, to validate Conjecture 14 we split and write the second inequality, with α = 1/2, as

0 < ⟨M1(G)⟩ − 2 (⟨∆⟩ + ⟨δ⟩) ⟨m⟩ +
〈
RKA1

1/2,2(G)
〉

(3.9)

and
0 ≤ 2 (⟨∆⟩ + ⟨δ⟩) ⟨m⟩ − 2−1

〈
RKA1

1/2,2(G)
〉
− ⟨M1(G)⟩ . (3.10)

Then, in Figure 3 [in Figure 4] we plot the right hand side of Eqs (3.9) and (3.10) as a function of
the probability p [the connection radius r] of ER [RG] graphs of size n. The averages are computed
over ensembles of 106 random graphs. As can be clearly observed in these figures, the right hand side
of Eqs (3.9) and (3.10) is larger than zero for all the combinations of n and p [r] used in this work;
thus we validate Conjecture 14 on both ER and RG graphs. In Figure 3(c),(d) we compute ⟨m⟩ as
⟨m⟩ = n(n−1)p/2, while in Figure 4(c),(d) we use ⟨m⟩ = n(n−1) f (r)/2 with f (r) = r2(π−8r/3+r2/2).

Also, from Figure 3(a) [from Figure 4(a)] we observe that the right hand side of Eq (3.9) is close to
zero for n → 0 and p → 0 [r → 0], then grows with p [r] approaching their maximum value at p = 1
[r =

√
2]. While from Figure 3(b) [from Figure 4(b)] we note that the right hand side of Eq (3.10) is

close to zero for n → 0 and p → 0 [r → 0], then grows with p [r], approaches a maximum value at
p ≈ 0.5 [r ≈ 0.64], and finally decrease abruptly and become zero at p = 1 [r =

√
2].

By the use of the same approximations that allowed us to get Eqs (3.7) and (3.8) in the previous
subsection, we can also estimate the right hand side of Eq (3.9) for both ER and RG graphs in the dilute
limit. This results in

⟨M1(G)⟩ − 2 (⟨∆⟩ + ⟨δ⟩) ⟨m⟩ +
〈
RKA1

1/2,2(G)
〉
≈ n ⟨dG⟩

2 . (3.11)

Therefore, in Figure 3(a) [from Figure 4(a)] we plot Eq (3.11), as dashed lines, and observe good
correspondence with the computational data.
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Figure 3. Right hand side of (a) Eq (3.9) and (b) Eq (3.10) as a function of the probability p
of Erdős-Rényi graphs GER(n, p) of size n. Each data value was computed by averaging over
106 random graphs GER(n, p). Dashed lines in (a) are Eq (3.11) with ⟨dG⟩ = (n − 1)p. The
dashed vertical line in (b) marks the maximum of the curves which occur at p ≈ 0.5.
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Figure 4. Right hand side of (a) Eq (3.9) and (b) Eq (3.10) as a function of the connection
radius r of random geometric graphs GRG(n, r) of size n. Each data value was computed by
averaging over 106 random graphs GRG(n, r). Dashed lines in (a) are Eq (3.11) with ⟨dG⟩ =

(n − 1)r2(π − 8r/3 + r2/2). The dashed vertical line in (b) marks the maximum of the curves
which occur at r ≈ 0.64.
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4. Conclusions

In this work, we study the recently introduced Revan Sombor index and the first and second Revan
(a, b)-KA indices. First, we present new relations to provide bounds on these Revan indices of the
Sombor family which also serve to relate them with other Revan indices (such as R1,2, which are Revan
versions of the first and second Zagreb indices) and with standard degree-based indices (such as the
Sombor index, the first and second (a, b)-KA indices, the first Zagreb index and the Harmonic index).
We also quantify our relations on two models of random graphs: Erdös-Rényi graphs and random
geometric graphs. Then, motivated by the growing interest in the application of topological indices in
the analysis of random graphs, we extend some of our relations to index average values, so they can be
effectively used for the statistical study of ensembles of random graphs. It is important to stress that
our results on index average values are essentially obtained by averaging over the graph ensemble in
the statistical sense rather than in the rigorous probabilistic sense, which is a topic we plan to explore
in the near future.

We hope our results may motivate further analytical as well as computational studies of Revan
Sombor indices. Indeed, since the average Sombor indices have shown to work as complexity measures
of random graphs and networks (equivalent to random matrix theory measures) [32], we plan to explore
wether Revan Sombor indices could also be used in this direction.
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