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Abstract: In this paper, we investigate the dynamical properties of a stochastic predator-prey model
with a fear effect. We also introduce infectious disease factors into prey populations and distinguish
prey populations into susceptible prey and infected prey populations. Then, we discuss the effect of
Lévy noise on the population considering extreme environmental situations. First of all, we prove the
existence of a unique global positive solution for this system. Second, we demonstrate the conditions
for the extinction of three populations. Under the conditions that infectious diseases are effectively
prevented, the conditions for the existence and extinction of susceptible prey populations and predator
populations are explored. Third, the stochastic ultimate boundedness of system and the ergodic sta-
tionary distribution without Lévy noise are also demonstrated. Finally, we use numerical simulations
to verify the conclusions obtained and summarize the work of the paper.
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1. Introduction

In the field of biomathematics, the predator-prey model has been studied by many scholars. They
explored the dynamical behavior among biological populations by establishing differential equations
[1–4]. In 1925, the Lotka-Volterra model described the variation in population size between predator
and prey in [5,6]. This model describes that population size changes are interacting. After that, in order
to study the situation that predator populations have other food sources besides prey population, Leslie
and Gower [7, 8] proposed a Leslie-Gower type predator-prey model. This model mainly explores
the fact that when the preferred food decreases, the number of predators also decreases. Then Aziz-
Alaoui and Okiye added a constant to the denominator of the Leslie-Gower type functional response
function in [9], calling it the modified Leslie-Gower type. This type limits the growth of predators due
to severe shortages of preferred foods, despite the predators having other food sources. Besides, the

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023080


1751

impact of infectious diseases on populations in nature is also important. In order to study the dynamical
behavior of populations in more complex situations, some factors influencing population size changes
have been added to the Leslie-Gower type model. The authors of [10] describe the mechanism of
disease transmission by using the Holling type II. Some scholars have included disease factors in their
studies of fractional differential equations as well, e.g., [11–14].

However, in nature, biological populations are inevitably impacted by environment noise more or
less. During the past decades, many investigators have focused on the study of stochastic biological
models [15, 16]. Among them, a predator-prey-parasite model with stochastic perturbations has been
studied by Majumder et al. [17]. Parasitic infections divide prey populations into susceptible and
infected populations, and infected populations lose fertility and do not heal again. Both susceptible
and infected prey populations are preyed upon by predators, and the predators will not be infected by
the disease. They constructed the following model:



dx(t) =

[
ax(t) − bx2(t) − λx(t)y(t) −

cx(t)z(t)
m1 + x(t) + y(t)

]
dt + σ1x(t)dB1(t),

dy(t) =

[
λx(t)y(t) − my2(t) −

ey(t)z(t)
m1 + x(t) + y(t)

− γy(t)
]

dt + σ2y(t)dB2(t),

dz(t) =

[
rz(t) −

f z2(t)
m2 + x(t) + y(t)

]
dt + σ3z(t)dB3(t),

where x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.
In addition, the fear of predators can also influence the birth rates and offspring survival of prey

populations. Zanette et al. [18] verified this idea through experiments. It is noted in [19] that the
mental state of juvenile prey can be mediated by predator-induced fear and this fear may have an impact
on their survival rates as adults. Thus, many scholars have realized that the fear costs of predators
can directly or indirectly affect the prey population. So it should be included in the predator-prey
system. Based on this view, scholars have studied the fear effect of biological populations [20,21]. Qi
and Meng [22] used

(
θ +

K(1−θ)
K+z(t)

)
to represent the fear function to measure the cost of fear. θ ∈ [0, 1]

represents the cost of minimum fear and K represents the level of prey fear of predator populations. Let
κ(θ,K, z) = θ +

K(1−θ)
K+z ; we have ∂κ(θ,K,z)

∂z < 0. From this, it is clear that the larger the predator population,
the stronger the inhibitory effect on the growth of the prey population. Therefore, introducing a fear
factor into the prey-predator system can help us to explore the variation of populations in different
situations better.

In addition, natural species may be subjected to unexpected environmental disruptions such as
epidemics, hurricanes, earthquakes and so on. Random perturbations described by Brownian can
only characterize the continuous influence, but it does not describe sudden and drastic environmen-
tal changes very well. To explain this occurrence, Bao et al. included Lévy jumps into population
models in [23, 24]. Wu and Wang [25] considered the population dynamical behaviors of stochastic
system with jumps. So we also want to introduce Lévy jumps into a stochastic predator-prey model.

Inspired by the articles above, we consider adding a fear factor to susceptible prey populations
and considered more complex diseases, using the Holling type II function to represent the spread of
disease. Finally, we use Lévy noise to describe the situation when the population is subjected to drastic
changes from the outside. We consider the following stochastic disease including predator-prey model
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with Lévy noise and fear effects:

dx(t) =x(t)
[
r
(
θ +

K(1 − θ)
K + z(t)

)
− bx(t) −

az(t)
1 + b1(x(t) + y(t)) + b2z(t)

−
ηy(t)

b3 + x(t)

]
dt

+ σ1x(t)dB1(t) +

∫
Γ

x(t−)γ1(u)Ñ(du, dt),

dy(t) =y(t)
[
ηx(t)

b3 + x(t)
− cy(t) −

dz(t)
1 + b1(x(t) + y(t)) + b2z(t)

− γ

]
dt

+ σ2y(t)dB2(t) +

∫
Γ

y(t−)γ2(u)Ñ(du, dt),

dz(t) =z(t)
[
β −

gz(t)
m + x(t) + y(t)

]
dt + σ3z(t)dB3(t) +

∫
Γ

z(t−)γ3(u)Ñ(du, dt),

(1.1)

with initial values x(0) = x0, y(0) = y0 and z(0) = z0. In this model, x(t), y(t) and z(t) denote the
population densities of the susceptible prey, infected prey and predator population at time t respectively.
And the per capita maximum fertility rates of the prey and predator populations are written as r and
β respectively; the intensity of interspecific competition in prey populations is denoted by b and c; η
represents the disease transmission rate and ηx(t)y(t)

b3+x(t) describes the spread of the disease; a and d are the
consumption rates and γ is the death rate of the infected prey population. g represents the interspecific
competition of predators and m is the half-saturation constant of predators. b1 and b2 represent the prey
saturation constants and predator disturbance respectively. There are no negative constants among any
of the parameter values.

Bi(t) (i = 1, 2, 3) represents Brownian motion, and each value is independent of each other. In
addition, there is a complete probability space (Ω,F , {Ft}t≥0, P) with a filtration {Ft}t≥0 that meets the
normal requirements, and Bi(t) (i = 1, 2, 3) is defined on this probability space. σ2

i (i = 1, 2, 3)
represents the noise’s level of intensity. The left limits of x(t), y(t) and z(t) are represented by x(t−),
y(t−) and z(t−) respectively. N(dt, du) is a Poisson counting measure which is defined on λ(du). The
characteristic measure λ on the measure subset Γ of [0,+∞] such that λ(Γ) < ∞. N(dt, du) is defined on
R+ × (R− {0}), R+ := (0,∞). Besides, Ñ(dt, du) = N(dt, du)− λ(du)dt is the corresponding martingale
measure. γi(u) (i = 1, 2, 3) measures the effect of a Lévy jump on prey and predator populations,
γi(u) > −1 (i = 1, 2, 3) for u ∈ Γ. In addition, it is important to note that Lévy jumps have a facilitating
effect on the ecosystem when γi > 0 (i = 1, 2, 3), such as an ocean red tide. When γi < 0 (i = 1, 2, 3),
Lévy jumps have a negative effect on the ecosystem, such as tsunamis and earthquakes. See [26, 27]
for specific examples.

In this article, we need to assume that the coefficients satisfy the following assumption:

Assumption 1. There exists a positive constant K which gives:∫
Γ

[ln(1 + γi(u))]2λ(du) < K,
∫

Γ

γ2
i (u)λ(du) < K, i = 1, 2, 3.

It means that the intensity of Lévy noise is not very large. Here are some inequalities we will
frequently use:

ln p ≤ p − 1, p > 0; pr ≤ 1 + r(p − 1), p ≥ 0, 1 ≥ r ≥ 0.
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Lemma 1. ( [28]) Denote by Σ(t) a local martingle vanishing at t = 0. Define

Σ(t) =

∫ t

0

d〈Σ〉(s)
(1 + s)2 dt, t ≥ 0,

where 〈Σ〉(t) = 〈Σ,Σ〉(t) stands for the Meyer’s angle bracket process. If lim sup
t→+∞

Σ(t) < +∞, then

lim
t→+∞

t−1Σ(t) = 0, a.s.

The rest of the research for this paper is as follows. In Section 2, we present the existence and
uniqueness of the positive solution of System (1.1). In Section 3, we first studied the conditions for
population extinction. Then we considered the existence and extinction of susceptible prey populations
and predator populations under conditions where the disease is effectively prevented and infected prey
populations are extinct. In Section 4, it proves the stochastic ultimate boundedness of System (1.1)
and the existence of ergodic stationary distribution of the System (1.1) when Lévy noise does not exist.
In Section 5, we select suitable parameters and use numerical simulations to prove our conclusions.
Lastly, we briefly summarize the work of article.

2. Existence and uniqueness of a global positive solution

In order to study the dynamical behavior of the system, we first verify that there is a globally unique
positive solution for System (1.1). First, we give Lemma 2 to show that the positive solution of the
system exists locally and uniquely, and then prove that the solution exists globally with Theorem 1.

Lemma 2. For any given initial value (x0, y0, z0) ∈ R3
+, there exists a unique local positive solution

(x(t), y(t), z(t)) to System (1.1), as defined on the interval t ∈ [0, τe), where τe is the explosion time.

Proof. Consider the equation

dN1(t) = d ln x(t) =

[
r
(
θ +

K(1 − θ)
K + eN3(t)

)
− beN1(t) −

aeN3(t)

1 + b1(eN1(t) + eN2(t)) + b2eN3
−

ηeN2(t)

b3 + eN1(t)

−
σ2

1

2
+

∫
Γ

[ln(1 + γ1(u)) − γ1(u)]λ(du)
]

dt + σ1dB1(t) +

∫
Γ

ln(1 + γ1(u))Ñ(dt, du),

dN2(t) = d ln y(t) =

[
ηeN1(t)

b3 + eN1(t) − ceN2(t) −
deN3(t)

1 + b1(eN1(t) + eN2(t)) + b2eN3(t) − γ

−
σ2

2

2
+

∫
Γ

[ln(1 + γ2(u)) − γ2(u)]λ(du)
]

dt + σ2dB2(t) +

∫
Γ

ln(1 + γ2(u))Ñ(dt, du),

dN3(t) = d ln z(t) =

[
β −

geN3(t)

m + eN1(t) + eN2(t) −
σ2

3

2
+

∫
Γ

[ln(1 + γ3(u)) − γ3(u)]λ(du)
]

dt

+ σ3dB3(t) +

∫
Γ

ln(1 + γ3(u))Ñ(dt, du),

with initial values N1(0) = ln x0, N2(0) = ln y0 and N3(0) = ln z0 on t ≥ 0. It is easy to see that the above
equation satisfies the local Lipschitz condition. Therefore, System (1.1) has a unique local solution
(N1(t),N2(t),N3(t)) for t ∈ [0, τe), and τe is the explosion time. Because x(t) = eN1(t), y(t) = eN2(t) and
z(t) = eN3(t), by Itô’s formula, we get that (x(t), y(t), z(t)) is the unique local positive solution to System
(1.1) with the initial value (x0, y0, z0).
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Theorem 1. For any given initial value (x0, y0, z0) ∈ R3
+, a unique global positive solution

(x(t), y(t), z(t)) exists in System (1.1) for ∀t ∈ [0,+∞).

Proof. In order to prove that the solution is global, we need to prove τe = ∞ a.s. Let m0 > 0 be
sufficiently large to make x0, y0, z0 ∈ [ 1

m0
,m0] for each integer m ≥ m0; then, define the stopping time

τm = inf
{

t ∈ [0, τe) : min{x(t), y(t), z(t)} ≤
1
m

or max{x(t), y(t), z(t)} ≥ m
}
.

Let inf ∅ = ∞ (∅ refers to the empty set). Obviously, as m tends to infinity, τm is increasing. Let
τ∞ = lim

m→∞
τm and τ∞ ≤ τe, a.s. If we can prove τ∞ = ∞ a.s. then we have τe = ∞ a.s., for all t ≥ 0.

We can proof by contradiction. If not, there exists a pair constants T ≥ 0 and ε ∈ (0, 1) such that
P(τ∞ ≤ T ) > ε. Thus ∃ m1 ≥ m0, we have

P(τm ≤ T ) ≥ ε f or all m ≥ m1.

Define a C2-function V: R3
+ → R+

V(x, y, z) = (x − 1 − ln x) + (y − 1 − ln y) + (z − 1 − ln z).

Because s − 1 − ln s > 0, for all s > 0, we have V(x, y, z) > 0. Applying Itô’s formula, the following
equation yields

dV(x, y, z) =LV(x, y, z)dt + σ1(x − 1)dB1(t) + σ2(y − 1)dB2(t) + σ3(z − 1)dB3(t)

+

∫
Γ

[x(t−)γ1(u) − ln(1 + γ1(u))]Ñ(dt, du)

+

∫
Γ

[y(t−)γ2(u) − ln(1 + γ2(u))]Ñ(dt, du)

+

∫
Γ

[z(t−)γ3(u) − ln(1 + γ3(u))]Ñ(dt, du);

(2.1)

LV : R3
+ → R+ is given as follows and using Assumption 1, we obtain

LV(x, y, z) =rx
(
θ +

K(1 − θ)
K + z

)
− bx2 −

axz
1 + b1(x + y) + b2z

−
ηxy

b3 + x

− r
(
θ +

K(1 − θ)
K + z

)
+ bx +

az
1 + b1(x + y) + b2z

+
ηy

b3 + x
+
σ2

1 + σ2
2 + σ2

3

2

+
ηxy

b3 + x
− cy2 −

dyz
1 + b1(x + y) + b2z

− γy −
ηx

b3 + x
+ cy +

dz
1 + b1(x + y) + b2z

+ γ

+ βz −
gz2

m + x + y
− β +

gz
m + x + y

+

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)

+

∫
Γ

[γ2(u) − ln(1 + γ2(u))]λ(du) +

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)

≤rx − bx2 + bx +
a
b2

+ ηy − cy2 + cy +
d
b2

+ γ + βz + gz

≤M + (β + g)z,
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where

M = sup
{
−bx2 + (r + b)x +

a
b2
− cy2 + (η + c)y +

d
b2

+ γ +
σ2

1 + σ2
2 + σ3

1

2

+

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du) +

∫
Γ

[γ2(u) − ln(1 + γ2(u))]λ(du)

+

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
} (2.2)

is a positive constant.
We have that z ≤ 2(z − 1 − ln z) + ln 4 ≤ 2V(x, y, z) + ln 4. We can write:

LV(x, y, z) ≤ M + (β + g) ln 4 + 2 (β + g) V(x, y, z)
≤ M1(1 + V(x, y, z)),

(2.3)

where M1 = max {M + (β + g) ln 4, 2(β + g)}.
Combining (2.1) and (2.3), we can obtain that

dV(x, y, z) ≤M1(1 + V(x, y))dt + σ1(x − 1)dB1(t) + σ2(y − 1)dB2(t) + σ3(z − 1)dB3(t)

+

∫
Γ

[x(t−)γ1(u) − ln(1 + γ1(u))]Ñ(dt, du)

+

∫
Γ

[y(t−)γ2(u) − ln(1 + γ2(u))]Ñ(dt, du)

+

∫
Γ

[z(t−)γ3(u) − ln(1 + γ3(u))]Ñ(dt, du).

(2.4)

The integration is taken at both ends of the inequality (2.4) from 0 to τm ∧ T , followed by the expecta-
tion, yielding

EV(x(τm ∧ T ), y(τm ∧ T )), z(τm ∧ T )) ≤ V(x0, y0, z0) + M1E
∫ τm∧T

0
(1 + V(x, y, z))dt

≤ V(x0, y0, z0) + M1E
∫ T

0
V(x(t), y(t), z(t))dt + M1T

≤ V(x0, y0, z0) + G1

∫ T

0
EV(x(t), y(t), z(t))dt + M1T .

By Gronwall’s inequality, we can get

EV(x(τm ∧ T ), y(τm ∧ T ), z(τm ∧ T )) ≤ (V(x0, y0, z0) + M1T )eM1T .

Let Ωm = τm ≤ T ; we have P(Ωm) ≥ ε. So for ∀ω ∈ Ωm, at least one value of x(τm, ω), y(τm, ω) or
z(τm, ω) equals either m or 1

m . Note that V(x(τm), y(τm), z(τm)) is no less than (m−1−ln m)∧( 1
m−1−ln 1

m ).
Consequently,

(V(x0, y0, z0) + M1T )eM1T ≥ E(1Ωm(ω),V(x(τm), y(τm), z(τm))) ≥ ε(m − 1 − ln m) ∧
(

1
m
− 1 − ln

1
m

)
,
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where 1Ωm(ω) is the indicator function of ωm. Then, let m→ ∞; we deduce that

ε(m − 1 − ln m) ∧
(

1
m
− 1 − ln

1
m

)
→ +∞;

this is contradictory. Hence, we can get τ∞ = ∞.
The result is confirmed.

3. Long time behavior of System (1.1)

In this section, we consider the long time behavior of System (1.1). The conditions when the
susceptible prey population, the infected prey population and the predator population are all extinct
are first considered. Then we explore the existence and extinction of susceptible prey populations and
predator populations in the context of the effective prevention of infectious disease.

3.1. Extinction

Theorem 2. For any given initial value (x0, y0, z0) ∈ R3
+ , the solution (x(t), y(t), z(t)) of system (1.1)

has the following properties if Assumption 1 holds:

r(θ + K(1 − θ)) −
σ2

1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du) < 0,

η −
σ2

2

2
−

∫
Γ

[γ2(u) − ln(1 + γ2(u))]λ(du) < 0,

β −
σ2

3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du) < 0;

then the predator and prey populations will be extinctive almost surely, that is

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0, lim
t→∞

z(t) = 0. (3.1)

Proof. First of all, we consider the prey population. We have d{et ln x(t)} = etd ln x(t) + et ln x(t) and
the fundamental inequality ln x ≤ x − 1 for all x > 0. Calculating by Itô’s formula, we get

d ln x(t) =

[
r
(
θ +

K(1 − θ)
K + z

)
− bx −

az
1 + b1(x + y) + b2z

−
ηy

b3 + x
−
σ2

1

2

−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
]

dt + σ1dB1(t) +

∫
Γ

ln(1 + γ1(u))Ñ(du, dt)

≤

[
r(θ + K(1 − θ)) −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
]

dt

+ σ1dB1(t) +

∫
Γ

ln(1 + γ1(u))Ñ(du, dt).
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Integrating both sides of the above inequality simultaneously, we have

ln x(t) ≤ ln x0 +

∫ t

0

[
r(θ + K(1 − θ)) −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
]

ds

+

∫ t

0
σ1dB(s) +

∫ t

0

∫
Γ

ln(1 + γ1(u))Ñ(du, ds).

Then, we have

ln x(t)
t
≤

[
r(θ + K(1 − θ)) −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
]

+

∫ t

0
σ1dB1(s)

t
+

Σ1(t)
t

+
ln z0

t
.

(3.2)

Denote Σ1(t) =
∫ t

0

∫
Γ

ln(1 + γ1(u))Ñ(ds, du); in light of Assumption 1,

〈Σ1,Σ1〉(t) = t
∫

Γ

[ln(1 + α(x))]2 λ(du) < Ft,

where F is a positive number. So we have
∫ t

0
F

(1+s)2 ds = t
t+1 < ∞; then, it follows from Lemma 2 that

lim
t→∞

t−1Σ1(t) = 0, a.s. (3.3)

Taking the limit on both sides of the inequality (3.2) and bringing in (3.3), we get

lim sup
t→∞

ln x(t)
t
≤ lim

t→∞

[
r(θ + K(1 − θ)) −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)

+

∫ t

0
σ1dB1(s)

t
+

Σ1(t)
t

+
ln z0

t


=r(θ + K(1 − θ)) −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du).

When r(θ + K(1− θ))− σ2
1

2 −
∫

Γ
[γ1(u)− ln(1 + γ1(u))]λ(du) < 0, the susceptible prey population will

be extinct.
Similarly, for the infected prey and predator populations, we have

lim sup
t→∞

ln y(t)
t
≤ η −

σ2
2

2
−

∫
Γ

[γ2(u) − ln(1 + γ2(u))]λ(du),

lim sup
t→∞

ln z(t)
t
≤ β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du).

When η − σ2
2

2 −
∫

Γ
[γ2(u) − ln(1 + γ2(u))]λ(du) < 0 and β − σ2

3
2 −

∫
Γ
[γ3(u) − ln(1 + γ3(u))]λ(du) < 0,

the infected prey and predator population will be extinct.
The result is confirmed.
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3.2. Behavior of System (1.1) when y(t) is extinct

In this section, we expect that infectious diseases transmitted among prey populations will be effec-
tively prevented, susceptible prey populations will no longer be infected and infected prey populations
will gradually die out. Considering the extinction of the infected population under the condition that
η−

σ2
2

2 −
∫

Γ
[γ2(u)−ln(1+γ2(u))]λ(du) < 0, i.e., after the infectious disease is cured, we have lim

t→∞
y(t) = 0.

For ∀ε > 0, there exist t1 and a set Ωε such that P(Ωε) ≥ 1 − ε and ηx(t)y(t)
b3+x(t) < ε; for t1 ≤ t and ω ∈ Ωε.

Therefore, we next focused on the changes in susceptible and predator populations when infected prey
populations perished.

Definition 1. ( [29]) The susceptible prey populations and predator populations are said to be persis-
tent in mean if

lim inf
t→∞

1
t

∫ t

0
x(s)ds > 0 a.s., lim inf

t→∞

1
t

∫ t

0
y(s)ds > 0 a.s.

Lemma 3. ( [30]) Let b(t) ∈ C(Ω × [0,+∞),R+)
1) If there exist two positive constants T and v0 such that ln b(t) ≤ vt − v0

∫ t

0
b(s)ds + σB(t) for

∀t ≥ T, where σ > 0, then 
lim sup

t→∞

1
t

∫ t

0
b(s)ds ≤

v
v0
, i f v ≥ 0,

lim
t→∞

b(t) = 0, i f v < 0.

2) If there exist two positive constants T and v0 such that ln b(t) ≥ vt − v0

∫ t

0
b(s)ds + σB(t) for

∀t ≥ T, where σ > 0, then

lim inf
t→∞

1
t

∫ t

0
b(s)ds ≥

v
v0
.

Theorem 3. Suppose that (x(t), y(t), z(t)) denotes the positive solution to System (1.1) with the initial
positive value (x0, y0, z0) > 0; when infected prey populations tend to become extinct, that is, lim

t→∞
y(t) =

0, we have the following

(A1). If r < σ2
1

2 −
∫

Γ
[γ1(u) − ln(1 + γ1(u))]λ(du), β > σ2

3
2 −

∫
Γ
[γ3(u) − ln(1 + γ3(u))]λ(du), then the

predator is persistent in mean and the susceptible prey is extinct, that is

lim
t→∞

x(t) = 0 and

lim
t→∞

t−1
∫ t

0
z(s)ds =

m
g

(
β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)
.

(A2). If 1
b

(
rθ
2 −

a
b2
−

σ2
1

2 −
∫

Γ
[γ1(u) − ln(1 + γ1(u))]λ(du)

)
> 0 and β <

σ2
3

2 −
∫

Γ
[γ3(u) − ln(1 +

γ3(u))]λ(du), then the susceptible prey is persistent in mean and the predator is extinct, that is

lim
t→∞

z(t) = 0 and

lim inf
t→∞

t−1
∫ t

0
x(s)ds ≥

1
b

(
rθ
2
−

a
b2
−
σ2

1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
)
> 0.
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(A3). If 1
b

(
rθ
2 −

a
b2
−

σ2
1

2 −
∫

Γ
[γ1(u) − ln(1 + γ1(u))]λ(du)

)
> 0 and β >

σ2
3

2 −
∫

Γ
[γ3(u) − ln(1 +

γ3(u))]λ(du), then both the susceptible prey and predator are persistent in mean, that is

lim inf
t→∞

t−1
∫ t

0
x(s)ds ≥

1
b

(
rθ
2
−

a
b2
−
σ2

1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
)
> 0 and

lim inf
t→∞

t−1
∫ t

0
z(s)ds ≥

m
g

(
β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)
> 0.

Proof. According to Theorem 2, when η − σ2
2

2 −
∫

Γ
[γ2(u) − ln(1 + γ2(u))]λ(du) < 0, lim

t→+∞
y(t) = 0. So

we know that ∃ε2 > 0 for ∀T2 > 0 when t > T2 such that 0 < y(t) ≤ ε2.
(A1) Similarly, when lim

t→+∞
x(t) = 0, we know that ∃ε1 > 0 for ∀T1 > 0 when t > T1 such that

0 < x(t) ≤ ε1. We obtain

d ln z(t) ≤
(
β −

σ2
3

2
−

gz(t)
m + ε1 + ε2

−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)

dt

+ σ3B3(t) +

∫
Γ

ln(1 + γ3(u))Ñ(du, dt).

Integrating both sides of the above formula, we have

ln z(t) − ln z(0) ≤
(
β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)

t −
g

m + ε1 + ε2

∫ t

0
z(s)ds

+

∫ t

0
σ3B3(t) +

∫ t

0

∫
Γ

ln(1 + γ3(u))Ñ(du, ds).
(3.4)

Similarly, we have

ln z(t) − ln z(0) ≥
(
β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)

t −
g
m

∫ t

0
z(s)ds

+

∫ t

0
σ3B3(s) +

∫ t

0

∫
Γ

ln(1 + γ3(u))Ñ(du, ds).
(3.5)

Applying Lemma 3 and Assumption 1 to (3.4) and (3.5) respectively, we have

0 <
m
g

(
β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)
≤ lim inf

t→∞
t−1

∫ t

0
z(s)ds

≤ lim sup
t→∞

t−1
∫ t

0
z(s)ds ≤

(m + ε1 + ε2)
g

(
β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)
.

(3.6)

For ∀ε1, ε2, we can obtain

lim
t→∞

t−1
∫ t

0
z(s)ds =

m
g

(
β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)
. (3.7)
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(A2) When β − σ2
3

2 −
∫

Γ
[γ3(u) − ln(1 + γ3(u))]λ(du) < 0, z(t) comes to extinct, lim

t→∞
z(t) = 0. By Itô’s

formula, we have

d ln x(t) ≤
[
r(θ + K(1 − θ)) − bx −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
]

dt

+ σ1dB1(t) +

∫
Γ

ln(1 + γ1(u))Ñ(du, dt)
(3.8)

and

d ln x(t) ≥
[
rθ − bx −

a
b2
− ηε2 −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
]

dt

+ σ1dB1(t) +

∫
Γ

ln(1 + γ1(u))Ñ(du, dt).
(3.9)

Integrating both sides of (3.8) and (3.9) from 0 to t and letting ηε2 = rθ
2 , we obtain

ln x(t) − ln x(0) ≤
[
r(θ + K(1 − θ)) −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
]

t − b
∫ t

0
x(s)ds

+

∫ t

0
σ1dB1(s) +

∫ t

0

∫
Γ

ln(1 + γ1(u))Ñ(du, ds)

and

ln x(t) − ln x(0) ≥
[
rθ −

a
b2
−

rθ
2
−
σ2

1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
]

t − b
∫ t

0
x(s)ds

+

∫ t

0
σ1dB1(s) +

∫ t

0

∫
Γ

ln(1 + γ1(u))Ñ(du, ds).

Similar to (A1), by Lemma 3 and Assumption 1, we can get

1
b

(
rθ
2
−

a
b2
−
σ2

1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
)
≤ lim inf

t→∞
t−1

∫ t

0
x(s)ds

≤ lim sup
t→∞

t−1
∫ t

0
x(s)ds ≤

1
b

(
r(θ + K(1 − θ)) −

σ2
1

2
−

∫
Γ

[γ1(u) − ln(1 + γ1(u))]λ(du)
)
.

(A3) From (3.5), we can deduce that

lim inf
t→∞

t−1
∫ t

0
z(s)ds ≥

m
g

(
β −

σ2
3

2
−

∫
Γ

[γ3(u) − ln(1 + γ3(u))]λ(du)
)
> 0.

The conclusion is confirmed.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1750–1773.



1761

4. Stochastic ultimate boundedness and stationary distribution without Lévy noise

Moreover, when γi(u) = 0 (i = 1, 2, 3), this means that the population will not suffer drastic
environmental changes. So, System (1.1) produces the following system:

dx(t) =

[
rx(t)

(
θ +

K(1 − θ)
K + z(t)

)
− bx2(t) −

ax(t)z(t)
1 + b1(x(t) + y(t)) + b2z(t)

−
ηx(t)y(t)
b3 + x(t)

]
dt + σ1x(t)dB1(t),

dy(t) =

[
ηx(t)y(t)
b3 + x(t)

− cy2(t) −
dy(t)z(t)

1 + b1(x(t) + y(t)) + b2z(t)
− γy(t)

]
dt + σ2y(t)dB2(t),

dz(t) =

[
βz(t) −

gz2(t)
m + x(t) + y(t)

]
dt + σ3z(t)dB3(t).

(4.1)

4.1. Stochastic ultimate boundedness

In this part, we solve the stochastically ultimately bounded problem for the system solution. Before
the proof we need preparation.

Definition 2. ( [31]) The solution of System (1.1) is called stochastically ultimately bounded, for any
ε ∈ (0, 1) if there exists a constant H = H(ε) such that for any initial value W0 = (x0, y0, z0) in R3

+ ,
the solution W(t) = (x(t), y(t), z(t)) of System (1.1) has the property that

lim sup
t→∞

P{|W(t)| > H} < ε.

Theorem 4. The solution of System (1.1) is stochastically ultimately bounded for any initial value
W0 = (x0, y0, z0) in R3

+.

Proof. First, define a function V : R3
+ → R+

V21(x, y, z) = x2 + y2 + z2 + (m + x + y)z2

, V1(x, y, z) + V2(x, y, z).

By Itô’s formula, we can get

dV21(x(t), y(t), z(t)) =LV21(x(t), y(t), z(t))dt +
[
σ1x(t)dB1(t) + σ2y(t)dB2(t)

]
z2

+ (m + x + y)
[
2z2σ3dB3(t)

]
+ 2σ1x2dB1(t) + 2σ2y2dB2(t) + 2σ3z2dB3(t).

So we have

LV1(x, y, z) ≤ 2x(rx − bx2) + σ2
1x2 + 2y(ηy − cy2) + σ2

3y2 + 2βz2 + σ2
2z2 (4.2)

and

LV2(x, y, z) =

[
m + rx

(
θ +

K(1 − θ)
K + z

)
− bx2 −

ax(t)z(t)
1 + b1(x(t) + y(t)) + b2z(t)

−
ηx(t)y(t)
b3 + x(t)

+
ηx(t)y(t)
b3 + x(t)

− cy2(t) −
dy(t)z(t)

1 + b1(x(t) + y(t)) + b2z(t)
− γy(t)

]
z2

+ 2(m + x + y)z2
(
β −

gz
m + x + y

)
+ σ2

3(m + x + y)z2.

(4.3)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1750–1773.



1762

Rectifying (4.2) and (4.3) yields

LV21(x, y, z) ≤
[
m + rx − bx2 − cy2 − γy

]
z2 + 2(m + x + y)βz2 − 2gz3 + σ2

3(m + x + y)z2

+ (2r + σ2
1)x2 − 2bx3 + (2η + σ2

2)y2 − 2cy3 + (2β + σ2
3)z2

=
[
m + rx − bx2 − cy2 − γy + (2β + σ2

3)(m + x + y)
]

z2 − 2gz3

+ (2r + σ2
1)x2 − 2bx3 + (2η + σ2

2)y2 − 2cy3 + (2β + σ2
3)z2.

(4.4)

Define the function
R(t) = etV21(x, y, z);

we can obtain

LR =et(V21 +LV21)

≤et
{
(m + x + y)z2 +

[
m + rx − bx2 − cy2 − γy + (2β + σ2

3)(m + x + y)
]

z2

−2gz3 + (2r + σ2
1)x2 − 2bx3 + (2η + σ2

2)y2 − 2cy3 + (2β + σ2
3)z2

}
.

(4.5)

From the above equation we can obtain that there exists a positive number G such that LW ≤ Get.
Therefore integrating both sides of (4.5) from 0 to t gives

R(t) ≤R(0) + G(et − 1) +

∫ t

0
et

{
(m + x + y)

[
2z2σ3dB(t)

]
+2σ1x2dB(t) + 2σ2y2dB(t) + 2σ3z2dB(t)

}
ds.

(4.6)

Then, the expectations are taken at both ends of (4.6), so the following results can be obtained

E(et{(m + x + y)z2 + x2 + y2 + z2}) ≤ R(0) + G(et − 1).

Therefore, we have

E|W(t)|2 = E(x2 + y2 + z2) ≤ e−tR(0) + G(1 − e−t) , G1.

Using Chebyshev inequality, we obtain

P {|W(t)| > H} ≤
E|W(t)|2

H2 . (4.7)

Next, taking the upper limit of (4.7) gives

lim sup
t→∞

P {|W(t)| > H} ≤
G1

H2 =
ε

2
< ε, a.s.

where ε ∈ (0, 1) and H =
2
√

2G1
ε

.
The conclusion is confirmed.
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4.2. Existence of ergodic stationary distribution of System (4.1).

Let X(t) be a homogeneous Markov process in Eh (Eh denotes Euclidean h-space) described by the
stochastic equation

dX(t) = g(X)dt +

l∑
ψ=1

σψdBu(t).

The diffusion matrix is given as follows:

Φ(x) = (ai j(x)), ai j(x) =

l∑
ψ=1

σi
ψσ

j
ψ.

If there exists a bounded domain U ⊂ Eh with a regular boundary, then the following lemma holds:

Lemma 4. ( [32]) The Markov process X(t) has a unique stationary distribution ς(·) if it satisfies the
following conditions:

(A.1):Suppose a positive number M makes
∑d

i, j=1 ai j(x)ζiζ j ≥ M|ζ |2, x ∈ U, ξ ∈ Rd.
(A.2):There exists a C2 − f unction such that LV is negative for ∀R3

+ \ U. Then we have

P

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Eh

f (x)µ(dx)
}

= 1

for ∀x ∈ Eh, where f (·) is a function integrable with respect to the measure ς.

To verify the condition (A.2), it is necessary to prove that there exist a neighborhood U and a
nonnegative function V(x, y, z) such that LV is negative for any Eh\U.

Lemma 5. ( [33]) For ∀s > 0, the following inequality holds:

s(1 − s) + 2s ≤ 2
√

s. (4.8)

Theorem 5. According to Lemma 4, for any initial value (x0, y0, z0), there exists an ergodic stationary
distribution for System (4.1) if the following conditions hold.

b2η
(
r − σ2

1
2 −

a
b2

)2

r(b3b + 1)(b + 1)2 − (γ +
d
b2

+
σ2

2

2
) > 0,

2d
b2

+ 2γ + σ2
2 − η < 0,

σ2
3

2
− β < 0,

c2

γ
−
η

2γ

c +
2bη

r(b + 1)

√
Aηr2

b

 > 0, and 3b −
η

2γ

c +
2bη

r(b + 1)

√
Aηr2

b

 > 0.

Proof. Now we prove the condition (A.2). According to the inequality b(x − r
b )2 > 0, we derive

L(x) ≤ rx − bx2 ≤ −r(b3 + x) + rb3 +
r2

b
.

Define V11(x, y) = − ln y + Ax, where A is a positive constant which will be determined later; we
have

LV11(x, y) = −
ηx

b3 + x
+ cy +

dz
1 + b1(x + y) + b2z

+ γ +
σ2

2

2
− Ar(b3 + x) + A(rb3 +

r2

b
)

≤ −2
√
ηAr ·

√
x + γ +

σ2
2

2
+ A(rb3 +

r2

b
) +

d
b2

+ cy.

(4.9)
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Then define V12 = b
2r2 x + b

r(b+1) (− ln x) and use Lemma 5; we can obtain

LV12(x, y) ≤
b

2r2

[
rx(θ +

K(1 − θ)
1 + z

) − bx2
]

+
b
r

x −
b

r(b + 1)
(r −

σ2
1

2
−

a
b2

) +
bηy

r(b + 1)

≤

√
b
r
·
√

x −
b

r(b + 1)
(r −

σ2
1

2
−

a
b2

) +
bηy

r(b + 1)
.

(4.10)

Next, we define V13(x, y) = V11(x, y) + 2
√

Aηr2

b V12(x, y) + 1
γ

(
c + 2bn

r(b+1)

√
Aηr2

b

)
y. Combining (4.9) and

(4.10), we have the following inequality

LV13(x, y) ≤ − 2
√
ηAr ·

√
x + γ +

σ2
2

2
+ A(rb3 +

r
b

) +
d
b2

+ cy

+ 2

√
Aηr2

b


√

b
r
·
√

x −
b

r(b + 1)
(r −

σ2
1

2
−

a
b2

) +
bηy

r(b + 1)


+

(
ηxy

b3 + x
− cy2 − γy

)
1
γ

c +
2bη

r(b + 1)

√
Aηr2

b


≤ −

2b
r(b + 1)

(
r −

σ2
1

2
−

a
b2

) √
Aηr2

b
+ γ +

σ2
2

2
+

d
b2

+ A
(
rb3 +

r
b

)
+
η

γ

c +
2bη

r(b + 1)

√
Aηr2

b

 xy −
c2

γ
y2.

(4.11)

Choose

A =

b3η
(
r − σ2

1
2 −

a
b2

)2

r2(b3b + 1)2(b + 1)2 .

So we have

LV13(x, y) ≤ −
b2η

(
r − σ2

1
2 −

a
b2

)2

r(b3b + 1)(b + 1)2 +
d
b2

+ γ +
σ2

2

2
+
η

γ

c +
2bη

r(b + 1)

√
Aηr2

b

 xy −
c2

γ
y2

, −B +
η

γ

c +
2bη

r(b + 1)

√
Aηr2

b

 xy −
c2

γ
y2

≤ −B +
η

2γ

c +
2bη

r(b + 1)

√
Aηr2

b

 x2 −

c2

γ
−
η

2γ

c +
2bη

r(b + 1)

√
Aηr2

b

 y2,

(4.12)

where B =
b2η

(
r−

σ2
1

2 −
a

b2

)2

r(b3b+1)(b+1)2 − (γ + d
b2

+
σ2

2
2 ) > 0.

In the next step, we make
V14(x, y, z) =

(
y−i + z−i

)
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and i ∈ (0, 1) is a positive number. By Itô’s formula, we have

LV14 = − iy−i

[
ηx

b3 + x
− cy −

dz
1 + b1(x + y) + b2z

− γ −
(1 + i)σ2

2

2

]
− iz−i

[
β −

gz
m + x + y

−
(1 + i)σ2

3

2

]

≤iy−i
x
(

d
b2

+ γ +
(1+i)σ2

2
2 − η

)
+ b3

(
d
b2

+ γ +
(1+i)σ2

2
2

)
b3 + x

+ iz−i

[
(1 + i)σ2

3

2
− β

]
+ icy1−i + i

g
m

z1−i

≤i
(
2d
b2

+ 2γ + (1 + i)σ2
2 − η

)
y−i + iz−i

[
(1 + i)σ2

3

2
− β

]
+ icy1−i + i

g
m

z1−i.

(4.13)

Let us choose i sufficiently small such that

2d
b2

+ 2γ + (1 + i)σ2
2 − η < 0,

(1 + i)σ2
3

2
− β < 0.

Finally, we define the function V15 = RV13 +V14 +3Rx+ (m+ x+y)z2, where R is a positive constant
satisfying −RB + f u

1 + f u
2 + f u

3 = −2, in which f u
1 , f u

2 and f u
3 are bounded functions on [0,∞) and

f u
i = supt≥0 fi(t) (i = 1, 2, 3); it will be determined later.

According to (4.3), we can obtain

LV15 ≤ − RB + i
(
2d
b2

+ 2γ + (1 + i)σ2
2 − η

)
y−i

− R

c2

γ
−
η

2γ

c +
2bη

r(b + 1)

√
Aηr2

b

 y2 − R

3b −
η

2γ

c +
2bη

r(b + 1)

√
Aηr2

b

 x2

+ iz−i

[
(1 + i)σ2

3

2
− β

]
+ icy1−i + i

g
m

z1−i − 2gz3 + 3Rrx

+
[
m + rx − bx2 + ηy − cy2 + (m + x + y)(σ2

3 + 2β)
]

z2

= f1 + f2 + f3 − RB,

(4.14)

where

f1 = − R

c2

γ
−
η

2γ

c +
2bη

r(b + 1)

√
Aηr2

b

 y2 + i
(
2d
b2

+ 2γ + (1 + i)σ2
2 − η

)
y−i + icy1−i,

f2 = − 2gz3 +
[
m + rx − bx2 + ηy − cy2 + (m + x + y)(σ2

3 + 2β)
]

z2

+ iz−i

[
(1 + i)σ2

3

2
− β

]
+ i

g
m

z1−i,

f3 =3Rrx − R

3b −
η

2γ

c +
2bη

r(b + 1)

√
Aηr2

b

 x2.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1750–1773.



1766

With the condition that c2

γ
−

η

2γ

(
c +

2bη
r(b+1)

√
Aηr2

b

)
> 0, 2b − η

2γ

(
c +

2bη
r(b+1)

√
Aηr2

b

)
> 0. Denote

Σ(x, y, z) = f1 + f2 + f3 − RB.

Then we have

Σ(x, y, z) ≤


Σ(+∞, y, z)→ −∞, as x→ +∞,

Σ(x,+∞, z)→ −∞, as y→ +∞,

Σ(x, y,+∞)→ −∞, as z→ +∞,

− RB + f u
1 + f u

2 + + f u
3 ≤ −2, as x→ 0+, y→ 0+ or z→ 0+.

(4.15)

Therefore, we can deduce that
LV15(x, y, z) ≤ −1 (4.16)

for ∀(x, y, z) ∈ R3
+ \ U, which implies that the condition (A.2) in Lemma 4 is satisfied.

The next step will be to prove the condition (A.1) and the following is the diffusion matrix of the
System (4.1):

Ã(x; y; z) =


σ2

1x2 0 0
0 σ2

2y2 0
0 0 σ2

3z2

 .
Choose M̃ = minx,y,z∈U⊂R+

3
{σ2

1x2, σ2
2y2, σ2

3z2} such that

σ2
1x2ζ2

1 + σ2
2y2ζ2

2 + σ2
3z2ζ2

3 ≥ M̃|ζ2|, f or all (x, y, z) ∈ U, ζ ∈ R3.

Therefore we can conclude that the condition (A.1) in Lemma 4 holds. Further, from Lemma 4, we
can infer that System (4.1) is ergodic and has a unique stationary distribution.

5. Illustrative examples

In this section, to verify the conditions obtained by theorems, we take the determined initial values
x0 = 2.9, y0 = 1.4 and z0 = 0.5 for the numerical simulation of System (1.1). In addition, let σ1 = σ2 =

σ3 = 0.6 and γ1 = γ2 = γ3 = 0.06. The figures for the numerical simulations are as follows, where the
left figure shows the numerical simulation of the stochastic model with white noise and Lévy noise,
and the right figure shows the numerical simulation of the deterministic model.

Example 1.

As shown on the left in Figure 1, in order to verify the case of extinction of both the predator and
prey populations in Theorem 2, we chose the appropriate parameters r = 0.1, θ = 0.09,K = 0.35, b =

0.8, a = 0.27, b1 = 0.16, b2 = 0.5, η = 0.015, b3 = 0.08, c = 0.08, d = 0.004, γ = 0.06, β = 0.013, g =

0.01,m = 0.01, σ1 = σ2 = σ3 = 0.6 and Γ1 = Γ2 = Γ3 = 0.06; then, we have 0.1×(0.09+0.35×0.01)−
0.62

2 −
∫

Γ
[0.06− ln(1+0.06)]λ(du) ≈ −0.172 < 0, 0.015− 0.62

2 −
∫

Γ
[0.06− ln(1+0.06)]λ(du) ≈ −0.003 < 0

and 0.13− 0.62

2 −
∫

Γ
[0.06− ln(1+0.06)]λ(du) ≈ −0.168 < 0. In this case, the populations of x(t), y(t) and

z(t) all tend to become extinct, in accordance with the conclusion obtained in Theorem 2. Compared
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Figure 1. Select the following parameter values: r = 0.1, θ = 0.09,K = 0.35, b = 0.8, a =

0.27, b1 = 0.16, b2 = 0.5, η = 0.015, b3 = 0.08, c = 0.08, d = 0.004, γ = 0.06, β = 0.013, g =

0.01,m = 0.01. Then susceptible prey populations, infected prey populations, and predator
populations tend to become extinct.

to the graph on the right, the curve of the stochastic model converges to zero with sharp fluctuations,
while the curve of the deterministic model is smooth and takes longer to converge to zero. This shows
that random factors accelerate the rate of population extinction when the conditions of Theorem 2 hold.
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Figure 2. Susceptible prey populations and infected prey populations become extinct and
predator populations persist. Select the following parameter values: r = 0.1, θ = 0.09,K =

0.35, b = 0.8, a = 0.27, b1 = 0.16, b2 = 0.5, η = 0.015, b3 = 0.08, c = 0.08, d = 0.004, γ =

0.06, β = 0.38, g = 0.01,m = 0.01.
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Figure 3. Select the following parameter values: r = 21.45, θ = 0.09,K = 0.35, b = 0.8, a =

0.27, b1 = 0.16, b2 = 0.5, η = 0.015, b3 = 0.08, c = 0.08, d = 0.004, γ = 0.06, β = 0.01, g =

0.01,m = 0.01. Then the susceptible prey populations persist and populations of infected
prey and predator populations become extinct.
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Figure 4. Select the following parameter values: r = 21.45, θ = 0.09,K = 0.35, b = 0.8, a =

0.27, b1 = 0.16, b2 = 0.5, η = 0.015, b3 = 0.08, c = 0.08, d = 0.004, γ = 0.06, β = 0.19, g =

0.01,m = 0.01. Then the infected prey populations become extinct, and susceptible prey
populations and predator populations persist.

Example 2.

When 0.015 − 0.62

2 −
∫

Γ
[0.06 − ln(1 + 0.06)]λ(du) ≈ −0.003 < 0, the infected prey population tends

to become extinct. This is illustrated in Figures 2–4.
In order to verify the conditions of (A1) in Theorem 3, the numerical simulation we made by

Mathematical Biosciences and Engineering Volume 20, Issue 2, 1750–1773.



1769

selecting suitable parameters is shown in Figure 2. Figure 2 shows that when r = 0.1, θ = 0.09,K =

0.35, b = 0.8, a = 0.27, b1 = 0.16, b2 = 0.5, η = 0.015, b3 = 0.08, c = 0.08, d = 0.004, γ = 0.06, β =

0.38, g = 0.01,m = 0.01, σ1 = σ2 = σ3 = 0.6 and Γ1 = Γ2 = Γ3 = 0.06; then, we have 0.1 − 0.62

2 −∫
Γ
[0.06 − ln(1 + 0.06)]λ(du) ≈ −0.08 < 0, 0.015 − 0.62

2 −
∫

Γ
[0.06 − ln(1 + 0.06)]λ(du) ≈ −0.003 < 0

and 0.38 − 0.62

2 −
∫

Γ
[0.06 − ln(1 + 0.06)]λ(du) ≈ 0.199 > 0. At this time, susceptible and infected prey

populations x(t) and y(t) tend to become extinct and predator populations y(t) tend to persist. Compared
to the deterministic model, the left curve with the effect of white noise and Levy noise changes more
dramatically.

In order to verify the conditions of (A2) in Theorem 3, the numerical simulation we made by
selecting suitable parameters is shown in Figure 3. We chose r = 21.45 and β = 0.01 and the other
parameters take the same value. Then we have 21.45 − 0.62

2 −
∫

Γ
[0.06 − ln(1 + 0.06)]λ(du) > 0 and

0.01 − 0.62

2 −
∫

Γ
[0.06 − ln(1 + 0.06)]λ(du) < 0. At this point, as seen in Figure 3, susceptible prey

populations tend to persist and predator populations tend to become extinct. Whereas in the right
picture, x(t) is gradually leveling off and z(t) is not extinct, but slowly rising.

In order to verify the conditions of (A3) in Theorem 3, the numerical simulation we made by
selecting suitable parameters is shown in Figure 4. We set r = 21.45 and β = 0.19 and the other
parameters take the same value. Then we have 21.45 − 0.62

2 −
∫

Γ
[0.06 − ln(1 + 0.06)]λ(du) > 0 and

0.19− 0.62

2 −
∫

Γ
[0.06− ln(1 + 0.06)]λ(du) > 0. From Figure 3, we can see that both the susceptible prey

populations and predator populations tend to be persistent. This satisfies the condition given by (A3)
in Theorem 3. z(t) grows more rapidly in the deterministic model than in the model with white noise
versus Lévy noise.

0
3

100
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200

z(
t)

2

300

y(t)

4

x(t)

400

1
2

0 0

Figure 5. Select the following parameter values: r = 18, θ = 0.09,K = 0.35, b = 0.8, a =

0.27, b1 = 0.16, b2 = 4.6, η = 0.78, b3 = 0.18, c = 0.7, d = 0.004, γ = 0.19, β = 0.65, g =

0.012,m = 0.012. The distribution of the sample path in the phase space.

Example 3.

To verify the condition of Theorem 5 that System (1.1) has an ergodic stationary distribution, we
chose the following parameter values: r = 18, θ = 0.09,K = 0.35, b = 0.8, a = 0.27, b1 = 0.16, b2 =
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4.6, η = 0.78, b3 = 0.18, c = 0.7, d = 0.004, γ = 0.19, β = 0.65, g = 0.012 and m = 0.012. From

the conditions obtained in Theorem 5, it follows that η

2γ

(
c +

2bη
r(b+1)

√
Aηr2

b

)
≈ 1.863 < c2

γ
≈ 2.579,

η

2γ

(
c +

2bη
r(b+1)

√
Aηr2

b

)
≈ 1.863 < 3b = 2.4,

b2η

(
r−

σ2
1

2 −
a

b2

)2

r(b3b+1)(b+1)2 ≈ 2.360 > γ + d
b2

+
σ2

2
2 = 0.37, 2d

b2
+ 2γ + σ2

2 ≈

0.741 < η = 0.78 and σ2
3

2 = 0.18 < 0.65. As shown in Figure 5, the sample paths are concentrated
within regions of circularity or ellipticity, which indicates that the system is stochastically stable.

6. Conclusions

This paper discusses the dynamical properties of predator-prey models with fear effects and disease
transmission in prey population. Meanwhile, susceptible prey populations, infected prey populations
and predator populations are affected by white noise and Lévy noise. By constructing the appropriate
Lyapunov equation, we proved the uniqueness of the global positive solution of System (1.1). From
Theorem 2, it is clear that under certain conditions, Lévy noise can lead to population extinction. Fur-
thermore, the fear effect can also lead to population size change. When the fear effect is too large, it is
more likely to result in population extinction. We also explored the existence and extinction of suscep-
tible prey populations and predator populations under conditions when infectious diseases prevalent
among prey populations are effectively prevented and infected prey populations die out in Theorem
3. Then, we studied the stochastic ultimate boundedness of System (4.1) and the ergodic stationary
distribution under certain conditions without the influence of Lévy noise. Finally, the numerical sim-
ulations were performed at the end to further illustrate the validity of the theoretical results. Adding
the influence of environmental factors to the model made it more consistent with the predator-prey
relationship in the ecosystem. This shows that stochastic factors have an effect on the behavior of
population dynamics and in some cases can accelerate the extinction of populations. The fear effect
also affects the population size change; when the fear effect is stronger, the population is more likely
to become extinct.
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