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Abstract: Most of the research on disease recognition in chest X-rays is limited to segmentation
and classification, but the problem of inaccurate recognition in edges and small parts makes doctors
spend more time making judgments. In this paper, we propose a lesion detection method based on
a scalable attention residual CNN (SAR-CNN), which uses target detection to identify and locate
diseases in chest X-rays and greatly improves work efficiency. We designed a multi-convolution feature
fusion block (MFFB), tree-structured aggregation module (TSAM), and scalable channel and spatial
attention (SCSA), which can effectively alleviate the difficulties in chest X-ray recognition caused by
single resolution, weak communication of features of different layers, and lack of attention fusion,
respectively. These three modules are embeddable and can be easily combined with other networks.
Through a large number of experiments on the largest public lung chest radiograph detection dataset,
VinDr-CXR, the mean average precision (mAP) of the proposed method was improved from 12.83%
to 15.75% in the case of the PASCAL VOC 2010 standard, with IoU >0.4, which exceeds the existing
mainstream deep learning model. In addition, the proposed model has a lower complexity and faster
reasoning speed, which is conducive to the implementation of computer-aided systems and provides
referential solutions for relevant communities.
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1. Introduction

The COVID-19 outbreak, which began in 2019, is a viral disease caused by severe acute respiratory
syndrome coronavirus type 2 (SARS-COV-2) [1-4]. Most COVID-19 patients have pneumonia, and
computed tomography (CT) scans are often used to help doctors diagnose pneumonia in the early stages
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of COVID-19 outbreaks [5—7]. Compared with CT, chest X-ray (CXR) is more widely used in clinical
practice because it is easier, faster, and less expensive to perform. However, the sheer volume of CXR
data and limited number of physicians cannot ensure that the system operates with maximum efficiency
to save more patients [8—12]. A computer-aided system can play a certain auxiliary role [13,14], but its
efficiency and accuracy cannot meet the requirements. Improving the accuracy of CXR image lesion
identification is still a key issue that urgently needs to be solved.

Traditional methods usually use the mathematical calculation of regions and feature extraction to
recognize and classify CXR images. Jaeger et al. [15] proposed an automated method for tuberculosis
detection on posterior-anterior chest radiographs. Lung segmentation was modeled as an optimization
problem, integrating lung boundaries, regions, shapes, and other attributes with tight segmentation
contours and leakage in some areas. Hogeweg et al. [16] combined a texture anomaly detection
system running at the pixel level with the clavicle detection system to suppress false-positive
reactions, and the pathological structure changed after segmentation, which was detrimental to the
judgment of pathology. Candemir et al. [17] proposed a robust lung segmentation method driven by
nonrigid registration using a patient-specific adaptive lung model based on image retrieval to detect
lung boundaries, achieving an average accuracy of 95.4% on the public JSRT database. However,
opacity caused by fluid in the lung space prevents correct detection of lung boundaries. Although
regional segmentation has been valued, there is a lack of corresponding supervision mechanisms. To
train classifiers that can effectively monitor, Livieris et al. [18] proposed an SSL algorithm for
tuberculosis CXR classification, which combines the individual predictions of three commonly used
SSL algorithms applying the CST-voting integration principle and voting method. Statistical accuracy
was relatively objective, but the process was too tedious. Faced with the problems of complex
mathematical principles and low model robustness existing in traditional methods, more cost-effective
methods are required in the CXR recognition field.

In recent years, deep learning models such as convolutional neural networks (CNN) [19-26] have
been rapidly developed, and they have become the preferred technical means in the field of computer
vision. Experts in the medical imaging field have also noted the rapid growth and impact of CNNs.
For example, Irfan et al. [27] developed a hybrid deep neural network (HDNN) that uses computed
tomography (CT) and X-ray imaging to predict risks. The classification accuracy reached a very high
level by training with a dataset on the web along with a regular dataset. The CoVIRNet method
proposed by Almalki et al. [28] can automatically diagnose COVID-19 patient images using chest
radiographs and alleviate the overfitting problem owing to the small size of the COVID-19 dataset.
Most CXR disease recognition methods based on deep-learning technology can be divided into two
types. The first type uses a CNN for image segmentation and classification. Shen et al. [26] extracted
the symptom part of an image as a block and inputted several different CNNs, and the features obtained
were spliced into vectors as the final result. Discriminant features were extracted from alternately
stacked layers to capture the heterogeneity of pulmonary nodules; however, the location of the disease
could not be directly represented. Rajpurkar et al. [29] developed a 121-layer CNN named CheXNet,
which was tested on the ChestX-Ray14 large pneumonia data set containing 14 diseases and achieved
an accuracy of more than 0.7 in the classification of diseases. However, the network stacking method
is excessively simple, and the image texture is not used more thoroughly. The second type of methods
denoise the data to enhance the recognition effect of the other algorithms. Ucar and Korkmaz [30]
proposed an architecture based on SqueezeNet to fine-tune COVID-19 diagnosis through raw data
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enhancement, Bayes optimization, and validation to achieve high accuracy in categorizing COVID-19,
pneumonia, and normality. Jiang et al. [31] proposed a residual CNN for denoising COVID-19 images.
The residual connection and attention mechanism were used to make the network pay more attention to
the texture details of the CXR images, and the effect of the denoised images was significantly improved
in the COVID-19 recognition task.

Waheed et al. [32] used an adversarial network model to synthesize CXR images, which allowed
the model to rely on external information to improve the sample quality, thus increasing the number
of images of COVID-19 symptoms. However, the recognition task was limited to classification, and
the location of the symptoms was not accurately obtained. In a more specialized work, Jaiswal et
al. [33] applied the target detection algorithm to the RSNA pneumonia data set, and obtained an optimal
accuracy by fusing the prediction boundary boxes of multiple models. Because of its large memory
occupation and use of a single category of dataset, the detection results of diversified diseases cannot
be determined. This provides the motivation and references for our work.

Although the accuracy of the above methods continues to improve, there are still some obvious
shortcomings: 1) most of them are classification and segmentation methods, and lack intuitive target
boxes to directly indicate the location of symptoms, so the evaluation efficiency needs to be improved.
2) The ideal accuracy usually requires the fusion of the detection effects of multiple models, which
occupies a large memory and is not realistic in practical applications. 3) The CXR data volume of
COVID-19 is small, and it is a single category, so generalization results cannot be obtained. To solve
the above problems, a lesion detection method based on a scalable attention residual CNN is proposed
in this paper. A variety of convolution kernel sizes are used to obtain a variety of resolutions, and
adaptive global attention is used to extract the spatial features of each resolution and connect them. A
feature fusion method with different tree-structure depths is designed. Finally, the attention mechanism
is used to fuse the spatial and channel information. All the effects were tested in a single model using
the VinDr-CXR dataset. The main contributions of this study are summarized as follows:

e To improve the ability of the deep learning model in CXR target detection, we propose a CNN
model and construct a structure based on the model that can effectively improve the accuracy of
CXR location detection and improve the sensitivity of the model to CXR features from the aspects
of attention and feature fusion.

e We use zero-based training to customize our CNN model for the data set, and the training effect
of a single model can outperform most of the classical deep learning models. The development
of CXR data sets containing target location information became the focus, proving the necessity
and advance of our work and providing the corresponding references for future work.

e The three modules designed in this study, multi-convolution feature fusion block (MFFB), tree-
structured aggregation module (TSAM), and scalable channel and spatial attention (SCSA), can
effectively improve the detection effect of the deep learning model in CXR, and the accuracy
increases from 12.83 to 15.75% after the addition of the modules, higher than that obtained by
the existing mainstream target detection model.

2. Materials and methods

We summarized our research into three parts: encoder, multiple feature blocks, and decoder,
simplifying the complex model structure. The encoder in Figure 1 represents the scalable attention
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residual CNN (SAR-CNN), whereas the decoder is a simple convolutional layer. As many as four
feature blocks, from Features 1-4, are input into the decoder in the form of pyramids, and finally, the
positioning of the detection frame and judgment of the lesion category are performed. In the
following sections, we introduce the proposed CXR target detection network, SAR-CNN, in detail,
including the MFFB, TSAM and SCSA modules. These modules are independent and embeddable
and can be migrated to common convolutional networks. The MFFB is designed to interpret CXR
image information from a multi-resolution perspective, whereas the TSAM utilizes the characteristics
of the tree structure to perform left-right branch and multi-level feature fusion, and finally the SCSA
is used for spatial and channel attention integration. Residual modules [34] are used in the rest of the
network to improve its learnability. Details of the SAR-CNN training are covered in the next section.

—> [Feature 1 —

Image — Encoder Decoder— Image

Feature 4 —

Figure 1. Diagram of the proposed research.
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Figure 2. Architecture structure of scalable attention residual CNN (SAR-CNN).

2.1. Network architecture

The proposed SAR-CNN network structure composed of MFFB, TSAM and SCSA is shown in
Figure 2. The VGG [35] straight-cylinder module stacking method was adopted to improve the
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embeddability of modules. The predictive image (input) was input to the CNN in 512 x 512 size.
Four feature graphs are output and sent for feature post-processing through the modules mentioned in
the following sections. It can be observed from the CAM graph that the four feature maps have
different degrees of performance in characterization feature fitting. The neck and head parts in
RefineDet [36] have both first-stage and second-stage advantages, so we replace the backbone
network of RefineDet with SAR-CNN and finally obtain the final detection result (output) of our
predicted image. Such a framework will not only help improve the localization performance, but also,
by means of attention, provide a way to explain visually the model decisions, both of which are
important for the clinical deployment of deep learning models.

2.2. Multi-convolution features fusion block

As shown in Figure 3, we propose an MFBB that is different from the simple connection and fusion
of existing algorithms. M;, M, and M3 were obtained by 3 X 3, 5 X 5 and 7 X 7 convolution kernel
extractions of M;, € ROV where M, € R“"™W was extracted using the same mode convolution. We
used ECA-Net [37], which is a simple and effective attention processing method. The difference is that
we used the convolution of more receptive fields to extract richer feature scales and used global average
pooling (GAP) to extract features along channel dimensions from M, and M3 with different resolutions.
Next, 1D convolution was used for adaptive feature extraction. After the sigmoid, channel attention
S, € R™1*C and S5 € R™!XC were obtained, and the fusion function F(.) defined in Formula (2.1) is
adopted. The final output feature of the module M,,, € RO™W was obtained.
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Figure 3. Structure of the multi-convolution feature fusion block.

Mout = F(Ml ®S2®S3)
= O'( BatchNorm (Conv P(M,®8S, ®S3))) ,

where F(.) represents a combination of three layers: the same mode 3 X 3 convolution layer, the
BatchNorm layer [38], and the nonlinear activation function ReLU [39]. ® is the element-wise

2.1)
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multiplication, o represents the ReLU layer, and Conv* is the same-mode convolution layer of 3 x 3
size. The convolution layer is used to fuse feature graphs and channel attention of two different
resolutions to avoid the feature mismatch of related images caused by simple multiplication.
BatchNorm is a normalization method that solves the phenomenon of inconsistent distribution of
input data, highlights the relative difference in distribution between them, and speeds up training. The
ReLU layer adds a nonlinear relationship to the feature layer to avoid gradient disappearance and
over-fitting, which ensures that our neural network can complete complex tasks.

2.3. Tree structured aggregation module

We designed the TSAM by summarizing the feature fusion methods of DenseNet [40] and FPN [41]
and drawing inspiration from the DLA structure [42], as shown in Figure 4.

(b)Dense Connections

[ _! Aggregation Node

1

1 1

' :

1 memem————

i 7 T~ i i | Tree Cell Aggregation
1 1

:l Blockl | | Block2 |: I:I Structural Unit

—_

Features Transmission

(a)Tree structured aggregation module (c)Feature Pyramids

Figure 4. The internal relationship between TSAM, dense connections and feature pyramids:
(a) structure of the TSAM. (b) Dense connections. (c) feature pyramids. The proposed
module (a) has the advantages of both (b) and (c), but avoids the problems of (b) over-
intensive fusion resulting in excessive use of memory and (c) over-simple fusion.

In contrast to DLA, we adopt a fixed number of layers and use feature layers with more details
to avoid the overfitting problems caused by excessively deep iterative networks. Each structural unit
corresponds to a residual module. For simplicity and resource saving, this residual module contains
only two 3 X 3 convolution and BatchNorm layers. Each aggregation node adopts a 3 X 3 convolution,
BatchNorm layer, and RelLU, and the features of the left and right branches are fused to obtain the
feature graph:

A (x1, x0) = o (BatchNorm (W x; + Waxy + b))

2.2
= o (BatchNorm (Wix; + Wo (Wox; + by) + b)), 2:2)

where x; and x, represent the left- and right-branch features of the binary tree before fusion,
respectively. o represents a nonlinear ReLU. W and b respectively represent the weights and offsets
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of convolution, and x, is obtained by x; through a structural unit. The TSAM combines layers of
different depths to learn richer combinations that span more feature layers.

2.4. Scalable channel and spatial attention (SCSA)

This module utilizes both the channel and spatial dimensions of attention, and we use SCSA as a
transitional stage between the two modules, as shown in Figure 5. In the channel dimension module,
My is input into two paths to obtain My € R"™WY and Mc € RO respectively, and Mscsa €
ROV ig obtained by combining them. Then, residual fusion is performed between M;,,,, € RV
Mg s 4, respectively.

Moutput = Minput + Minput ® Mscsa

(2.3)
= Minpur t+ Minput Qo (Ms +Mc),

where o is the sigmoid function and ® is element-wise multiplication. In the channel attention module,
the channel information encoded in two different ways is obtained through global average pooling and
global maximum pooling. In addition, a full-connection layer is set as Share FC to interact with the
information of the two channels, and the feature size obtained is RE/™!*!. After the BatchNorm layer,
the two are added.

Mc = BN( ShareFC ( GAP (Miypy ))) + BN( ShareFC ( GMP (Miypy ))), (2.4)

where BN is the batch normalization layer. The spatial-dimension module compresses My, ., € ROHXW
to RE/™H*W through a layer of 1 X 1 convolution. A layer of 3 x 3 dilated convolution is set to expand
the receptive field to utilize more contextual information, and then a layer of the spatial attention map
M;s € RP™W ig obtained through a layer of 1 X 1 convolution. Finally, a batch normalization layer is
used to adjust the search space:

Mg = BN (ConV1X1 (Conv3><3 (Conv1X1 (Minput )))), (2.5)

where BN is the batch normalization layer, Conv is the convolution layer, and the superscript is the size
of the convolution kernel. In addition, the SCSA module is followed by MaxPooling of a layer with a
size of 2 X 2 and a stride of 2 as the lower sampling layer. SCSA has a working principle similar to
that of BAM [43], but it uses the different global pooling features of GAP and GMP to extract channel
attention and has more types of channel feature maps. Compared to CBAM [44], the original features
were added after the fusion of the channel and spatial attention, rather than in sequence. SCSA prefers
to combine the advantages of BAM and CBAM, and discard unnecessary parts.

2.5. Other modules

We observed that the residual structure plays a key role in medical image detection tasks. Therefore,
in addition to the three modules proposed in this study, residual modules were used in the rest of the
network to sort out the features obtained by fitting the above three modules and further improve the
robustness of the network. The residual module is derived from ResNet, which adds jump connections
to the convolutional module to solve the problems of gradient disappearance and gradient explosion
during the training of deep neural networks, as shown in Figure 6. In addition, we observed that
the residual module could correlate features of different scales. In special cases, the disease regions
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in CXR will cross and even overlap, and the use of a residual module can help correlate features of
overlapping target regions.
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Figure 5. The schematic diagram of SCSA.
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Figure 6. Resblock structure diagram.

3. Experiments and results

3.1. Dataset

As the COVID-19 dataset is not publicly available on a large scale, it is too small and of poor
quality, even if it is partially curated and annotated. For the above reasons, we selected the common
CXR dataset that meets the requirements, that is, the VinDr-CXR dataset. VinDr-CXR is a chest
radiography dataset published by the Vingroup Big Data Institute (VinBigdata) [45] and is currently
the largest public CXR dataset with radiologist-generated annotations in both the training and test sets.
Collected from the Hospital 108 (H108) and the Hanoi Medical University Hospital (HMUH), 18000
CXR data were manually annotated by 17 professional radiologists. Furthermore, the VinDr-CXR
dataset was divided into a 15,000 image training set and a 3000 image test set. The training set was
independently annotated by three doctors and the test set was jointly annotated by five doctors. Because
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of the low number of images in eight of the 22 categories containing local location information, we
incorporated these eight minor categories into the other lesions, and thus our task was defined as the
target detection problem of 14 lesions. The names and quantity statistics of the different categories in
the VinDr-CXR dataset are shown in Figure 7.

Number of positive images

Pulmonary fibrosis
Pneumothorax
Pleural thickening
Pleural effusion
Other lesion
Nodule/Mass

Lung opacity

Name

Infiltration

Interstitial lung disease (ILD)
Consolidation

Cardiomegaly

Calcification

Atelectasis

Aortic enlargement

0 500 1000 1500 2000 2500

Count

Figure 7. Quantity statistics of different categories in VinDr-CXR dataset.

3.2. Implementation details

The proposed method was trained and tested on the Pytorch framework [46], and the relative
hyperparameters of the network were based on ScratchDet [47], with a learning rate of 0.05, using
SGD with 0.0005 weight decay and 0.9 momentum. The batch size was set to eight, and the training
wheel number adaptive adjustment mechanism was adopted. The experiment was interrupted when
the accuracy of more than 150 epochs did not exceed the highest accuracy for five consecutive epochs.
The number of decreased rounds was 50, 100 and 150, respectively, and the reduction at each time
was 1/10. The resolution of the image input was 512 X 512, and the SSD was used for data
enhancement (random expansion, clipping, inversion, random photometric distortion, etc.). All the
convolution layers were initialized using the Xavier uniform method. The comparative experimental
algorithms were tested using pre-training weights in the Pytorch framework, and the number of
training rounds was uniformly set to 300. The first 20 rounds frozen the trunk network. In addition,
each round was verified and the weight was saved. Every 50 rounds, a weight was selected for the
accuracy test, and the highest accuracy was used as the comparative experimental data.
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3.3. Loss function

Network training involves loss functions and optimizers using RefineDet parameter requirements.
To imitate the prediction process of the two-stage target detection algorithm, the loss function Lgag
consists of L, and Lg, where L, corresponds to the stage of the position and size of the target in the
returned image and Lp determines the category of the target according to the returned target. Nagy and
Nopu in the formula are the numbers of positive anchors in ARM and ODM, respectively. In particular,
i is the index of each anchor box and the smooth L/ loss is used as Lg, and s; is used to judge whether
the predicted category is consistent with the ground truth label; the match is 1; otherwise, it is 0, and
the ground truth is represented by g*i.

In Formula (3.1), p; and x; are the probability and corresponding position coordinates of the target in
ARM anchor boxes i, respectively, and L, uses the cross-entropy loss over two classes as a dichotomous
loss function.

(O Lo S+ D siLs(xin8"). (3.1)

N ARM

In Formula (3.2), ¢; and ¢; are the categories of the ODM anchor boxes i and the corresponding
coordinates of the bounding box, respectively, whereas /; is the ground truth class label of the anchor.
L, uses the softmax loss over multiple class confidences as a multiclass classification loss.

(O Ln(ent)+ ) SiLy (i g"). (3.2)

"N opM

The final value of the entire loss function can be obtained by adding the values of the two
aforementioned loss functions.

Loar =Ly + Lp. (33)

3.4. Ablation study
3.4.1. Backbone architecture

To prove the validity of the trunk network we designed, we performed several comparative
experiments on the trunk network: 1) VGG-16 in RefineDet source code; 2) on the basis of 1), a BN
layer was added to each convolutional layer as a combination; and 3) the original VGG-16 was
replaced with other common backbone networks. The experimental results are listed in Table 1. The
precision of the trunk network designed by us was higher than that of other experiments. Although the
number of parameters was reduced after the replacement of some trunk networks, the corresponding
precision was too low and did not have the functional effect required by the task. After the analysis,
we believe that although VGG, ResNet, DLA, and other trunk networks are frequently used as a
means to improve the task effect, they are essentially designed for classification, which is different
from our CXR target detection task, resulting in poor performance. The trunk network we designed
increased the number of parameters within the allowed range, thus obtaining a 15.75% mAP, which is
higher than the accuracy of the other versions, proving the effectiveness of our network in handling
this task.
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Table 1. Performance comparison of different backbone networks.

Backbone mAP@0.5(%) Inference speed (fps) Params (M)
VGG-16 12.83 9.96 34.27
VGG-16+BN 13.67 8.50 34.28
ResNet-18 8.05 4.62 22.75
ResNet-34 8.25 3.32 32.85
DLA-60 8.54 7.98 33.90
DLA-102 9.00 5.86 45.30
SAR-CNN (Ours) 15.75 2.60 56.48

3.4.2. Module contribution

According to the modules proposed in Section 2, we conducted the corresponding combined
experiments to show the contribution and role of each module to the whole. A tick indicates that the
network applies to the module. The experimental results are listed in Table 2. For single-module
embedding, two-module combination, or three-module embedding, the accuracy can be further
improved. To fit the information of the finishing module, ResBlock was added, and the accuracy of
the network was finally improved to 15.75%. We believe that the three specially designed modules
improve the robustness of the overall network for the following reasons: First, features of multiple
resolutions are conducive to the formation of relatively rich image information, especially for sites
with subtle lesions. Second, a simple and effective topological structure is needed to fuse medical
image features with insufficient information. Third, medical images require the network to apply
attention mechanisms from different angles.

Table 2. Impact of the different components.

Component SAR-CNN

MFFB v v v v v

TSAM v v v v v

SCSA v v v v v
ResBlock v

mAP@0.5(%) 15.75 1420 13.18 1349 13.15 13.11 13.12 13.08 12.83

3.5. Model comparisons

To prove the superiority of our method, we used the PASCAL VOC 2010 standard [48] and ToU
>0.4 (0.5, 0.6, 0.7 and 0.8), and compared the mAP index with the mainstream target detection
model. The experimental results are presented in Table 3. In CenterNet, owing to the special setting
of non-maximum suppression (NMS), the value of IoU does not affect the accuracy of the algorithm;
therefore, it is uniformly 0.5. It can be observed that the performance of mainstream target detection
algorithms on CXR image datasets is not significant, with most attaining approximately 11% and
EfficientDet even less than 8%. The special design of RefineDet allows it to perform better than most
models, 12.83%. Yolov3 also shows excellent detection ability in this task, but it is still lower than
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that of our algorithm under different IoU standards. The accuracy of SAR-CNN is improved by
2.92% compared with the RefineDet benchmark, which exceeds most mainstream algorithms and is
crucial for assisting physicians in detection, proving the effectiveness of our module in the field of
medical image target detection.

Table 3. Detection results of different methods on the VinDr-CXR test set.

Methods Backbone mAP@0.5 (%) mAP@0.6 (%) mAP@0.7 (%) mAP@0.8 (%)
SSD VGG-16 10.01 9.47 8.80 7.66
VGG-16 11.27 10.34 8.74 6.49
Faster RENN o - sNet-50 10.47 9.58 8.10 5.93
EfficientDet  EfficientNet-b5 7.37 7.08 6.57 5.96
RetinaNet ResNet-50 11.24 10.55 9.28 7.16
Yolov3 DarkNet-53 15.21 14.56 13.17 11.25
Hourglass 11.76 - - -
CenterNet  p esNet-50 1138 - - -
RefineDet VGG-16 12.83 12.33 10.66 7.54
Ours SAR-CNN 15.75 15.34 14.57 11.87

3.6. Other comparisons
3.6.1. Resolution differences

As can be observed in Table 4, the SAR-CNN maintains an accuracy of more than 10% for each
size. In images with a resolution of 320, the SAR-CNN is slightly less accurate than the benchmark
algorithm, but the accuracy increases from 448. We believe this is because images with a resolution
that is too low struggle to provide sufficient lesion features for network fitting, which results in weak
performance. The benefit of our approach progressively became apparent as the resolution increased,
peaking at 16.25% when the image resolution was 768 X 768.

Table 4. Comparison of algorithm accuracy for different resolution images.

Resolution Base (RefineDet) SAR-CNN (Ours)
320 x 320 12.02% 11.54%
448 x 448 12.59% 15.12%
512 x 512 12.83% 15.75%
640 x 640 13.87% 15.32%
768 x 768 13.59% 16.25%

3.6.2. Effect of separate categories

We used the PASCAL VOC 2010 dataset to evaluate the criterion, that is, the highest per-category
accuracy (AP value) obtained during training, set the IoU value to 0.4, and compared it with the
benchmark. As listed in Table 5, the benchmark performs slightly higher than our algorithm in
detecting the categories of aortic enlargement, cardiomegaly, pulmonary fibrosis and infiltration, but
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all other categories exceeded the benchmark, and the benchmark value in pneumothorax was —100
(i.e., failed to detect this category). This illustrates the effectiveness of our targeted design network
structure in enhancing the fitting of lung X-ray images.

Table S. AP values for each category under the criteria of using PASCAL VOC 2010.

Aortic ) ) ) . L Pleural

Method Atelectasis  Calcification = Cardiomegaly Consolidation ILD )

Enlargement Effusion
Base 56.56% 10.20% 0.35% 44.18% 15.48% 16.50% 38.72%
SAR-CNN  54.46% 16.20% 9.13% 42.66% 25.97% 24.93% 39.39%

. Lung . Pleural Pulmonary
Method Infiltration Nodule Mass  Other Lesion Pneumothorax
Opacity Thickening Fibrosis

Base 28.21% 17.36% 12.18% 0.24% 16.03% - 24.06%
SAR-CNN 22.92% 22.89% 13.13% 9.63% 19.44% 19.95% 23.32%

3.6.3. Training set performance

We present the performance effects of the benchmark algorithm and SAR-CNN on the training set
in the form of mean AP and loss. The accuracy of the algorithm using the PASCAL VOC 2010 dataset
evaluation criterion was tested every five epochs, the APs of each category were obtained, and the
final mean AP was obtained. Figure 8(a) shows that the overall mAP of our algorithm was higher than
that of the benchmark algorithm during the training process, and the fit of the features was always
better. In Figure 8(b), the loss of the benchmark algorithm decreases slowly at the beginning of the
training phase, and the loss is always higher than that of our algorithm at a later stage of training
(e.g., iteration is in the range of 6500—7000), indicating that our algorithm converges faster than the
benchmark algorithm.

Compare MeanAP for different models in training Compare loss for different models in training

Base(RefineDet)
0.2 — SAR-CNN(Ours)

01 40

-01
30 8
%—0,2 )
£-03 8 PR A g W WA
0]
2 -04 2
4
-05
-06 6500 6750 7000
-0.7 . 10
Base(RefineDet) A
-08 — SAR-CNN(Ours)
-9t T T " - - - - - r :
0 15 30 45 60 75 90 105 120 135 150 165 180 0 900 1800 2700 3600 4500 5400 6300 7200 8100
epochs iterations
(a) (b)

Figure 8. (a) and (b) represent the comparison of the trend of mean AP and loss when SAR-
CNN is trained with the benchmark algorithm using images with a resolution with 512.
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3.7. Analysis of detection results
3.7.1. Detection box effects

Figure 9 shows a comparison between the detection effect of the benchmark model RefineDet and
that of SAR-CNN (image resolution 512 x 512), where Figure 9(a) is the position of the real frame on
the image in the test set, Figure 9(b) is the performance effect of benchmark model RefineDet in this
task, and Figure 9(c) is the performance effect of our proposed model. It can be accurately observed
that RefineDet is unable to detect the diseased areas at the margins of the lungs in the results from
columns 1, 2 and 5 on the left. RefineDet also has the problem of error verification. For example, the
error results of lung opacity, ILD and calcification were detected in the second and fourth columns on
the left. However, the number, category, and position of the predicted boxes of the SAR-CNN are close
to those of the label, and the confidence of the label box is as high as 0.99. In addition, the SAR-CNN
can still maintain its detection accuracy under the complex intersection and superposition of multiple
lesion areas, such as the detection results from the fourth and sixth columns on the left. In the case of
high confidence, the SAR-CNN labeling frame is even more concise and intuitive than the real frame,
for example, in the detection result from the fifth column on the left.

Figure 9. Comparison of detection effects between RefineDet and SAR-CNN: (a) Ground
truth boxes position of test set, (b) RefineDet post-training testing effect, (c) SAR-CNN post-
training testing effect.

3.7.2. Application of algorithms

As shown in Figure 10, we produced comparative maps of the lesion areas for the four sets of
images based on the labels of the dataset and the recommendations of the physician. The four sets of
images contained the original image, the focus area judged by the doctor, and the algorithm detection
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effect. The area judged by the doctor overlaps to a high degree with the results of our algorithm,
and our detection frame does not obscure the original area, which is conducive to secondary analysis
and examination.

Photo Doctor SAR-CNN

Figure 10. Comparison of the original image with the results of physician detection and
SAR-CNN results.
4. Conclusions

In this paper, we propose a new SAR-CNN algorithm for disease localization detection in CXR
images to improve the efficiency of physicians in diagnosing chest image. Three unique modules were
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proposed to help the CNN improve the sensitivity of the model to CXR features in terms of attention
and feature fusion, and a training strategy from scratch was used to make the network more targeted.
We tested the mAP, AP per category, and loss of the training set for different IoU values, and concluded
that our algorithm is superior to mainstream target detection models. Using target detection technology
to carry out Al medical research on CXR medical images can promote not only the application of deep
learning technology and computer-aided diagnosis systems in the field of imaging examination but also
the innovative intersection of information fields and biomedical research work. More importantly, it
can reduce the workload of doctors and help promote the implementation of a national plan for the
prevention and treatment of COVID-19, which has important theoretical and practical significance.

During our experiments, we found that lung X-ray images of COVID-19 for target detection were
far less mature than those in the large CXR dataset and the corresponding target detection labels had
less content. Most of these labels only indicate that the image has a certain disease classification or
segmentation area. A mapping needs to be established between the CXR dataset from the previous
CXR dataset and the COVID-19 dataset, similar to the approach of pre-training using a specific
algorithm. However, we performed a targeted design in the network structure of feature processing
and combined it with our proposed method for a comprehensive evaluation.
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