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Abstract: Factorization reduces computational complexity, and is therefore an important tool in
statistical machine learning of high dimensional systems. Conventional molecular modeling, including
molecular dynamics and Monte Carlo simulations of molecular systems, is a large research field based
on approximate factorization of molecular interactions. Recently, the local distribution theory was
proposed to factorize joint distribution of a given molecular system into trainable local distributions.
Belief propagation algorithms are a family of exact factorization algorithms for (junction) trees, and
are extended to approximate loopy belief propagation algorithms for graphs with loops. Despite the
fact that factorization of probability distribution is the common foundation, computational research in
molecular systems and machine learning studies utilizing belief propagation algorithms have been
carried out independently with respective track of algorithm development. The connection and
differences among these factorization algorithms are briefly presented in this perspective, with the
hope to intrigue further development of factorization algorithms for physical modeling of complex
molecular systems.

Keywords: molecular simulation; repetitive local sampling; neural network; local distribution theory;
belief propagation; repetitive message passing; loopy belief propagation; gaussian belief propagation

1. Introduction

It is well acknowledged that high dimensional problems are difficult to analyze and predict.
Multimedia data (e.g., pictures, videos) and molecular systems (e.g., biomolecules, materials,
nano-systems) are typical examples. Since analytical solutions are either extremely challenging to
achieve or non-existant for accurate and detailed description of probability distributions in high
dimensional spaces, various numerical approximations are essential. The two most important and
distinct paths are direct utility of dimensionality reduction algorithms [1–6] and factorizations [7–9],
and both are extensive fields. The former path is to transform a n-dimensional probability distribution
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Pn(x1, x2, . . . , xn), usually approximately, into a m-dimensional Pm(x1, x2, . . . , xm) with n ≫ m, while
the latter path is to factorize Pn(x1, x2, . . . , xn), either exactly or approximately, into a product of K
low dimensional terms

∏K
i=1 Pmi(xi1, xi2, . . . , ximi), with the union of variables in all K terms being

(x1, x2, . . . , xn). In this perspective, we focus on different factorizations utilized in molecular
simulations and belief propagation algorithms, and hope to intrigue interests in development of more
accurate and efficient approximations in relevant applications. In a probabilistic description of
multivariate systems, there are three important types of problems. The first type is to find the most
probable (set of) configuration(s) at a given resolution of representation, and more generally the
global landscape of wells with significant probability weights, which is termed free energy landscapes
in molecular systems [10–12] and multimodal learning in AI [13]. A highly related type of problems
are to locate transition paths connecting various wells on the global landscape. Understanding such
transition paths is of critical importance in accelerating sampling of other wells when starting from an
arbitrary well of a landscape. Significant efforts have been invested in finding transition paths in
molecular simulations [14–16]. The second type is to focus only on a subset of variables (or a single
one in the extreme case), and the process of computing distributions of a subset of variables from the
global joint distribution is termed marginalization. For example, marginalizing a two dimensional
distribution P2(x, y) with both x, y ∈ (0, 1) to the variable x is accomplished by the following two
summations: P1(x = 0) = P2(x = 0, y = 0) + P2(x = 0, y = 1) and
P1(x = 1) = P2(x = 1, y = 0) + P2(x = 1, y = 1). There are 22 terms to be calculated, and for a joint
distribution with n variables each has |X| discrete values, |X|n terms need to be calculated, indicating
the exponential computational complexity of marginalization. The third type is the parameterization
of model parameters, including parameterizing force fields for molecular modeling and factor/node
potentials for belief propagation. After introduction of typical factorization schemes in molecular
modeling and belief propagation, we discuss strengths of different factorization in various type of
problems. The organization of this perspective is summarized below. Following this introduction,
Section 2 gives a brief introduction to exact belief propagation algorithms. Section 3 is on junction
trees and approximate loopy belief propagations. Sections 4 and 5 describe factorization in regular
molecular simulations and the local distribution theory. Section 6 provides discussions on the
potential synergy and distinctions among these factorizations, and deep learning. Finally conclusions
are presented.

2. Exact belief propagation algorithms for trees

As mentioned in the introduction, marginalization of high dimensional joint distributions is difficult,
and in many cases intractable. Fortunately, factorization significantly reduces this cost whenever it
is possible to be performed exactly, or approximately with sufficient accuracy. A n-variable system
x = (x1, x2, . . . , xn) forms an undirected graph with each variable being a node and an edge between
all pairs of interacting variables. In graph theory [17], a clique is a set of nodes with an edge between
each pair of nodes in this set, and a maximal clique is one that will be destroyed by an addition of a
new node into this set. For a graph G with a set of maximal cliques C [17]:

p(x) =
1
Z

∏
c∈C

f (xc) (2.1)
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with f (xc) being the potential over the variable set c and Z being the partition function
∑

x
∏

c∈C f (xc),
which is summation of the product of all clique potentials over all possible configurations. In a tree,
the maximal clique set is the edge set E. For the specific example with 6 nodes shown in Figure 1,
Eq (2.1) may be written as the following:

p(x) ∝ f1,2(x1, x2) f1,3(x1, x3) f2,4(x2, x4) f2,5(x2, x5) f3,6(x3, x6). (2.2)

(a) (b) (c)

Figure 1. A schematic illustration of the marginalization in Eqs (2.3), (2.5) and (2.8). Blue
arrows indicate direction of message passing, and corresponding messages are shown beside
each arrow. (a) Illustration of the process presented in Eq (2.3) for the marginal p1(x1); (b)
Illustration of the process presented in Eq (2.5) for the marginal p3(x3) and (c) illustration of
the belief propagation presented in Eq (2.8).

Given this factorization, the computational cost bound of marginalization goes from |x|6 to 5 × |x|2.
Specifically, the marginal probability p1(x1) may be calculated in the marginalization process shown
below (and is illustrated in Figure 1(a)) :

p1(x1) ∝
∑

x2,x3,x4,x5,x6

f1,2(x1, x2) f1,3(x1, x3) f2,4(x2, x4) f2,5(x2, x5) f3,6(x3, x6)

=
∑

x2,x3,x4,x5

f1,2(x1, x2) f1,3(x1, x3) f2,4(x2, x4) f2,5(x2, x5)
∑

x6

f3,6(x3, x6)︸           ︷︷           ︸
≜m6→3(x3)

=
∑

x2,x3,x4

f1,2(x1, x2) f1,3(x1, x3) f2,4(x2, x4)m6→3(x3)
∑

x5

f2,5(x2, x5)︸           ︷︷           ︸
≜m5→2(x2)

=
∑
x2,x3

f1,2(x1, x2) f1,3(x1, x3)m6→3(x3)m5→2(x2)
∑

x4

f2,4(x2, x4)︸           ︷︷           ︸
≜m4→2(x2)

=
∑

x2

f1,2(x1, x2)m4→2(x2)m5→2(x2)
∑

x3

f1,3(x1, x3)m6→3(x3)︸                        ︷︷                        ︸
≜m3→1(x1)

= m3→1(x1)
∑

x2

f1,2(x1, x2)m4→2(x2)m5→2(x2)︸                                    ︷︷                                    ︸
≜m2→1(x1)

= m3→1(x1)m2→1(x1), (2.3)
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and p1(x1) may be subsequently obtained with the normalization shown below:

p1(x1) =
m2→1(x1)m3→1(x1)∑

x′∈Xm2→1(x′)m3→1(x′)
(2.4)

Similarly, the marginal probability p3(x3) may be obtained as shown below and is illustrated in
Figure 1(b):

p1(x3) ∝
∑

x1,x2,x4,x5,x6

f1,2(x1, x2) f1,3(x1, x3) f2,4(x2, x4) f2,5(x2, x5) f3,6(x3, x6)

=
∑

x1,x2,x4,x5

f1,2(x1, x2) f1,3(x1, x3) f2,4(x2, x4) f2,5(x2, x5)
∑

x6

f3,6(x3, x6)︸           ︷︷           ︸
≜m6→3(x3)

=
∑

x1,x2,x4

f1,2(x1, x2) f1,3(x1, x3) f2,4(x2, x4)m6→3(x3)
∑

x5

f2,5(x2, x5)︸           ︷︷           ︸
≜m5→2(x2)

=
∑
x1,x2

f1,2(x1, x2) f1,3(x1, x3)m6→3(x3)m5→2(x2)
∑

x4

f2,4(x2, x4)︸           ︷︷           ︸
≜m4→2(x2)

=
∑

x1

f1,3(x1, x3)m6→3(x3)
∑

x2

f1,2(x1, x2)m4→2(x2)m5→2(x2)︸                                    ︷︷                                    ︸
≜m2→1(x1)

= m6→3(x3)
∑

x1

f1,3(x1, x3)m2→1(x1)︸                        ︷︷                        ︸
≜m1→3(x3)

= m1→3(x3)m6→3(x3), (2.5)

and p1(x3) may be subsequently obtained with the normalization shown below:

p1(x3) =
m1→3(x3)m6→3(x3)∑

x′∈Xm1→3(x′)m1→3(x′)
(2.6)

In the calculation of both marginals p1(x1) and p1(x3), the following messages are computed:

m6→3(x3) =
∑

x6

f3,6(x3, x6),

m5→2(x2) =
∑

x5

f2,5(x2, x5),

m4→2(x2) =
∑

x4

f2,4(x2, x4),

m2→1(x1) =
∑

x2

f1,2(x1, x2)m4→2(x2)m5→2(x2). (2.7)

Computing the marginal for each node in a tree takes n − 1 messages, and consequently n(n −
1) messages are necessary for n nodes when computed respectively (see Figure 1(a),(b)). However,
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instead of computing marginals for each variable separately, 2(n − 1) messages over n − 1 edges of
an n-node tree maybe computed, such that all marginals maybe obtained without repetitive message
calculation as illustrated in Figure 1(c) and demonstrated in the equation below.

This message passing is the sum-product, or the belief propagation algorithm for a general tree
structure with pair potentials [7–9].

mi→ j(x j) =
∑

xi

fi, j(xi, x j)
∏

k∈N(i)\ j

mk→i(xi) (2.8)

the message from i to j (mi→ j) is sent once i receives messages from all of its neighbors N(i) except the
node j. After two sweeps of message passing, the marginal for variable i is obtained by:

pi(xi) ∝
∏
j∈N(i)

m j→i(xi). (2.9)

When a unary potential is included for each node, we have:

mi→ j(x j) =
∑

xi

gi(xi) fi, j(xi, x j)
∏

k∈N(i)\ j

mk→i(xi), (2.10)

pi(xi) ∝ gi(xi)
∏
j∈N(i)

m j→i(xi). (2.11)

One may easily compute the maximum probability configuration x∗ by replacing the sum operations
in the Eq (2.8) or (2.10) with max operations, and by bookkeeping the corresponding state of each
variable in each maximum operation for backtracking. This results in the max-product algorithm for
calculating the maximum probability configuration.

3. Junction tree algorithm, loopy and gaussian belief propagation

In graphs where one or more loop(s) exist(s), the belief propagation algorithm ensures neither
convergence nor correct calculation of marginals, and the same is true regarding the max product
algorithm. Exact belief propagation maybe achieved for a general graph by constructing a chordal
graph through triangulation [9], which involves adding edges to a graph such that no chordless loop of
the length greater than 4 exists (see Figure 2 for a schematic illustration).

Figure 2. A graph with a five-edge loop (left) is triangulated with addition of two edges
(dashed blue lines) and become chordal (right).
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Maximal cliques in a triangulated graph can be joined to form a junction tree. The most important
property of such a tree is the junction tree property, which ensures that if a node xi is in two maximal
cliques c j and ck, then it must be a member of every maximal clique that is on the path from c j to
ck [18,19]. The computational complexity of a junction tree is determined by the maximum tree width,
which is the size of the largest maximal clique. Many different chordal graphs with different tree widths
may be generated from a given graph with loops, and a number of algorithms are available to perform
triangulation and construct chordal graphs [20–23]. However, no existing algorithm is available to
ensure finding the best triangulation scheme, which is expected to generate one or more chordal graphs
with the smallest possible tree width.

Even without assurance that exact marginals would be obtained by the belief propagation algorithm
for graphs with loops, we may carry out such message passing computations anyway, and the algorithm
is accordingly termed loopy belief propagation (LBP). Turbo code [24] is an outstanding example of
utilizing LBP for telecommunication coding. From the parallel version [25] of the belief propagation
algorithm (see Eq (3.1)) shown below:

mt+1
i→ j ∝

∑
xi

gi(xi) fi, j(xi, x j)
∏

k∈N(i)\ j

mt
k→i(xi). (3.1)

Messages are usually initialized to be 1 and normalized at each time step. If a loopy belief
propagation did converge, then Eq (3.1) suggests that the converged message would be a fixed point
of the messaging updating function. For a general graph with pair potentials, the fixed point of belief
propagation message updates are some local extrema of the Bethe variational problem [26]. The
details of both the Bethe approximation and other treatments of loopy belief propagation are well
beyond the scope this perspective, and interested readers are encouraged to find relevant information
elsewhere [27, 28].

Belief propagation was initially developed for discrete variables [7]. The summation in message
computation becomes integration for continuous variables. Such integration is usually intractable for
arbitrary distributions. Fortunately, gaussian distributions may be both analytically integrated and
resulting in gaussians. This property may be utilized in belief propagation to treat continuous variables
as gaussians. In cases where such direct approximation with gaussians is not sufficient, linearization
with the first order Taylor expansion may be utilized to improve the accuracy [29].

4. Factorization in conventional molecular modeling

Conventional molecular simulation is a mature methodology with a wide variety of tools. These
methods are routinely utilized in many research fields, including but not limited to chemistry, biology
and materials science with more than 30,000 relevant publications each year [30]. An essential
component of the foundation for molecular simulation is a parameter set termed force fields, which
represents interaction energies between/among various molecular degrees of freedom as a function of
relevant coordinates. Conventional molecular simulation is deemed by many of its practitioners as an
independent research field from, while being in fact a well defined form of, statistical machine
learning. The force fields parameterization is the learning stage and the simulation and sampling
constitute the inference process.

The total energy of a given molecular configuration x = (x1, x2, . . . , xn) for a simple Lennard-Jones
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(LJ) system is defined as [31]:

Etotal(x) =
∑

i− j, ri j≤rcut

4ϵ
((ri j

σ

)12
−

(ri j

σ

)6
)
. (4.1)

Such LJ terms are usually utilized to describe various Van de Waals interactions between neutral
atoms/particles with respective parameters ϵ and σ. Apparently, this equation is essentially a
factorization:

p(x) ∝ Exp(−Etotal) =
∏

i− j, ri j≤rcut

Exp
(
− fi− j, ri j≤rcut(ri j(xi, x j))

)
,

fi− j = 4ϵ
((ri j

σ

)12
−

(ri j

σ

)6
)
. (4.2)

with x representing the set of coordinates for all comprising atoms/particles of a specific configuration.
Let us denote each particle as a node, and the corresponding interaction between a pair of particles as
an edge. Each factor represents an interacting pair of particles. This factorization has a very similar
form as that in the belief propagation in a tree (Eq (2.1)). However, there are three major differences.
Firstly, in Eq (2.1), the graph is static with fixed number of edges. However, for a graph formed
by LJ particles, edges are dynamic in two aspects. One is that as the system propagates with time,
edges break as some pairs of particles drift from within to beyond cutoff and new ones form as others
drift from beyond to within. The other is that for pairs within cutoff, their interactions change as a
function of distance. Secondly, nodes in Eq (2.1) have discrete states, while properties of LJ particles
(e.g., position and momentum) are continuous. Thirdly, in Eq (2.1), each factor is over a maximal
clique comprising a pair of connected nodes. For LJ particles, when the cutoff for direct interaction is
taken as 3σ, all particles within a sphere with the cutoff as its diameter are certainly within a single
clique (since they all interacts) as shown in Figure 3(a). The number of particles ranges from a few to
more than a dozen. LJ potential is factorized over pairs of particles instead of maximal cliques. Such
factorization is apparently an approximation, and the resulting error is not easy to quantify for arbitrary
LJ interactions. Apparently, the exact number of particles in each maximal clique can be different as
local packing of LJ particles continuously changes over space and time. In a graph, two maximal
cliques share one or more nodes are effectively connected. For densely packed molecular systems that
may be represented as LJ particles, each maximal clique usually overlaps with multiple neighboring
maximal cliques. Therefore, it is essentially a sure thing that most maximal cliques participate in loops.
Constructing junction trees on such systems certainly results in huge tree width. Exact inference is
consequently prohibitive, and the utility of LBP is necessary.
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(a) (b)

Figure 3. (a) An example of 13 Lennard-Jones particles of diameter σ enclosed within
a sphere of diameter 3σ (rcuto f f ). Three particles partially covered by other particles are
shown with dashed circles. These 13 particles form a clique with 78 edges, all should be
represented by a single factor/potential for exact inference while in conventional molecular
simulation, 78 edges correspond to 78 factors. (b) A schematic illustration of LDT theory
in which each spherical space of radius rcuto f f is represented as a single factor, a central
particle experiences mediated interactions from particles beyond rcuto f f but within 2rcuto f f ,
only interactions further than 2rcuto f f are treated as long-range interactions.

Figure 4. Schematic representation of bonded interactions. Left: A bond between the atom
1 and the atom 2, Center: A bend formed by the bond 1 − −2 and the bond 2 − −3, Right: A
dihedral formed by the plane 1 − −2 − −3 and the plane 2 − −3 − −4.

For more general molecular systems, energy contributions are more diverse [32–34] with addition
of various bonded (including bonds, bends and dihedrals) (see Figure 4) and electrostatic interaction
terms between ions or partially charged polar atoms, and are usually calculated as shown below:

Etotal = Ebond + Ebend + Edihedral + EVdW + EElectro (4.3)

=
∑
bondi

Ebondi +
∑
bend j

Ebend j +
∑

dihedralk

Edihedralk +
∑
VdW l

EVdW l +
∑
ES esi

EES esi . (4.4)
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Here i, j, k, l and esi are indices for bonds, bends, dihedrals, Van de Waals and electrostatic interactions
respectively. Taking exponentiation of this equation results in:

Exp(−Etotal) =
∏
bondi

Exp(−Ebondi)
∏
bend j

Exp(−Ebend j)

×
∏

dihedralk

Exp(−Edihedralk)
∏
VdW l

Exp(−EVdW l)
∏
ES esi

Exp(−EES esi) (4.5)

Bonded terms are fundamentally local in space. Van der Waals interactions are usually modeled
by LJ potentials. Similar to simple LJ systems, interactions in maximal cliques are approximately
represented by assuming independent local interactions involving single (VdW and bonds), double
(bends) or triple (dihedrals) edge(s). There is also challenge of addressing continuous variables with
non-gaussian distributions and dynamic edges. More importantly, electrostatic interactions are long-
range. Should such interactions to be treated exactly, then factorization is not possible and a molecular
system needs to be treated as one single maximal clique. The exponential complexity with respect to
the size of the maximal clique renders exact treatment intractable in many realistic molecular systems,
so treating long range interactions as being independent from both local ones and each other is an
essential approximation in computational molecular science. In Eq (4.5), all interaction terms are
treated as being independent regardless of interaction range in space. Fortunately, such approximations
have been widely tested in molecular simulations with great successes [35]. In reality, naive pairwise
calculation of electrostatic interaction diverges and usually some form of Ewald summation is utilized
to ensure convergence [36, 37].

5. Factorization in the local distribution theory

Just like the repetitive local computation in the calculation of marginals as demonstrated in
Eqs (2.3), (2.5) and (2.7), ubiquitous repetitive local sampling (RLS) exists in molecular
simulations [30, 38, 39]. From a graph perspective, such RLS is fundamentally associated with the
intrinsic dynamic property of graphs describing molecular systems. The local distribution theory
(LDT) was developed to address RLS and tremendously increases computational efficiency without
reducing accuracy/resolution [30, 39]. As shown in Eq (5.1), LDT is another approximate
factorization scheme for facilitating statistical machine learning of dynamic graphs in high
dimensional space.

P(Φ, x) = Q(Φ,R)

=
Q(Φ,R)∏m
i=1 q(Φ, ri)

m∏
i=1

q(Φ, ri)

≈

m∏
i=1

q(Φ, ri)exp(−
∑

FMED(Φ,R))exp(−
∑

FLR(Φ,R)) (5.1)

Here, Φ = (ϕ1, ϕ2, . . . , ϕk) is relevant thermodynamic and environmental variables, x = (x1, x2, . . . , xn)
are molecular coordinates. R = (r1, r2, . . . , rm) (m ≤ n, m = n is preferred) are dynamic local regions,
each of which represent a dynamic collection of coordinates (ri = (xi1, xi2, . . . , xil)) for molecular
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degrees of freedom. A translation, rotation and permutation invariant coordinate transformation is
necessary to feed ri into neural networks or any other powerful nonlinear fitting machinery for local
free energy computation. Effectively, taking a local region ri and calculating its local free energy
(high dimensional potential of mean force) is similar to taking two particles in conventional molecular
simulation and calculating their two-body potential of mean force.

∏m
i=1 q(Φ, ri) is the product of local

distributions and the global correlation factor Q(Φ,R)∏m
i=1 q(Φ,ri)

is approximately factorized into mediated
(
∑

FMED(Φ,R)) and long range (
∑

FLR(Φ,R)) contributions. The learning stage of LDT is to train
local distributions, which cache statistical significance of various molecular configurations within
local spaces defined by a preset cutoff from the origin of a local coordinates originating from a given
molecular DOF. Such local distributions, defined by trainable neural network parameters with
selected neural network architectures, store both energetic and entropic contributions from extensive
local sampling data of either experimental or computational origin. By caching and repetitively
utilizing such local distributions, LDT eliminates RLS to a great extent, and therefore saves
computational resources in sampling dynamic graphs. In the inference stage, local distributions are
assembled under sampling constraints due to mediated interactions. Direct long range interactions are
treated as independent from local ones (Eq (5.1)), and selection of specific method does not impact
local computation. Searching for the best methodology to match the LDT scheme is an important
issue to be tackled in the future. Hierarchical definition of “local” with different spatial coverage
might be an efficient path to be explored for large systems with hierarchical dynamics spanning
multiple time scales.

In conventional molecular simulations, pairs of interactions (or edges in a graph representing a
molecular system) within cutoff are included as independent factors (Figure 3(a)). As illustrated in
Figure 3(b), both local interactions confined within cutoff spherical space and mediated interactions
are jointly considered in LDT. Independence assumptions are therefore significantly weaker and
accordingly, improvement of accuracy is expected with tremendously increased efficiency due to
substitution of RLS by local distributions. Therefore, LDT has potential to address the tradeoff
dilemma between accuracy and efficiency in molecular simulations. However, this does come with a
significant one-time price to pay for accurate fitting of local distributions, which is fundamentally a
density estimation task in high dimensional system, an open problem with many feasible approaches
and respective limitation [40, 41].

6. Distinction and potential synergy among different factorization schemes

One fundamental difference between factorization in the belief propagation algorithm and that in
the molecular modeling of physical systems is that the former deals with a static graph (V, E) while
the latter addresses a dynamic one (V, Edynamic). The variation of edges in molecular systems is
continuous, but may be simplified as binary in the case of a protein contact map [42]. Specifically, as
the distance between two atoms/particles changes over time, so the corresponding interaction
potential. In the belief propagation, an isolated maximal clique has a fixed factor potential, the
computation is to figure out how interactions with neighboring cliques influence the distribution of
internal states of nodes. However, we assume that forces exerted on each atom/particle does not
change within a time step of molecular dynamics simulations, we may similarly deem a molecular
system in a sufficiently short time period as a static graph to apply belief propagation algorithms.
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When the exact belief propagation formulation is possible, it provides two great advantages. One is
the rapid determination of the most probable configuration, and the other is the explicit normalization
of local probability distributions, which is a mechanism missing in the molecular modeling
methodology tool box, and is potentially helpful in keeping errors under control if successfully
applied in molecular systems. To realize such a goal, the first step is to define nodes with internal
states. For example, in a full quantum mechanical treatment, one may define each atom as a node with
rich internal electronic states. For proteins, residues may be defined as distinct nodes with internal
rotameric states, which may be approximately represented either discretely or continuously.
Apparently, definition of nodes is flexible for a given type of molecular systems and requires
significant effort to explore. For a given molecular system with specific definition of nodes, we may
perform loopy belief propagation to search for the most probable global configuration (or a number of
configurations with the largest statistical weights) of internal node states, followed by sampling of
different edge configuration with LDT or some other properly selected sampling strategy. Three
important factors for the application of the belief propagation in molecular systems are definition of
nodes, selection/development of approximate loopy belief propagation algorithms and selection of
sampling strategy. It is likely that each may impact and influenced by the other two factors. Exploring
different combinations of these algorithms are likely fertile grounds for developing next generation
molecular modeling methodologies. An additional advantage of formulating a molecular system with
the belief propagation is that marginalization, which is of critical importance in docking and design of
key spots in biomolecular interactions, becomes straight forward.

While exact belief propagation need only one full sweep (to and from each node) of message
passing, LBP requires iteration, and therefore the speed of convergence becomes a practical
challenge. For the first type of problems stated in the introduction (to find maximum probability
configuration in particular and to map out full landscape in general), the process is essentially some
form of walking over the probability landscape and settling down at the most easy-to-reach local well
from a start configuration. To map out the global landscape, one has to design ways to escape from
any given local well and reach other potentially deeper or shallower wells. Unfortunately, no
systematic theory is available for belief propagation algorithms to achieve this goal. The rich history
of enhanced sampling of free energy landscapes [11, 43–48], coarse graining [49, 50] (which is
effectively smoothing of free energy landscape), and transition path sampling [14–16] (which focus
on finding transition paths between/among different free energy wells) in molecular systems may
provide hints to inventing new algorithms for the accelerated convergence of LBP.

Belief propagation algorithms reduces repetitive local computation in the redistribution of marginals
for internal node states by surrounding connected nodes. LDT reduces the repetitive local sampling of
dynamic edges by utilizing pre-trained neural networks which implicitly holds the probability density
of a given configuration. Deep learning has found extensive applications in molecular simulations [51,
52], especially in the construction of deep potentials (parameterization of force fields) [53–56]. It is
likely that there are more potential ways of combining different factorization schemes in molecular
simulations, belief propagation and deep learning to be invented. For example, when compared with
other conventional dimensionality reduction algorithms, deep learning has the advantage of being much
more flexible, and such dimensionality reduction might be combined with molecular simulation and
belief propagation to construct novel approximate multi-scale solutions.

Matrix factorization is widely utilized in transforming input for deep learning [57–59]. It is
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important to note that such factorization is a global behavior in the probability distribution space. This
is in strong contrast to decomposing a global distribution into local ones in the belief propagation and
molecular simulations.

7. Conclusions and prospects

Belief propagation is a family of algorithms in a large class of factorization methodology called
probabilistic graphical models with focus on static graphs. These algorithms are mainly developed
by informational scientists and are applied in coding, communication and machine learning. Variants
of factorization in molecular simulations, including the local distribution theory, are fundamentally
factorization focusing on dynamic graphs representing complex molecular systems, and are mainly
developed by computational chemists and physicists. Both are extensive research fields with very rich
contents and numerous important contributions from many scientists. The most outstanding difference
is that factorization in belief propagation has an exact solutions for simple and junction trees but lacks
methodology development in enhanced sampling, while factorization in molecular simulations has rich
history in accelerating sampling of free energy landscapes but no exact solution. Comprehensive survey
of these two fields is apparently well beyond the scope of present work. This perspective is intended
to emphasize this discipline gap, and intrigue interest for developing next generation algorithms that
assimilates the best of both fields.
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