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Abstract: The evaporation process is vital in alumina production, with mother liquor concentration
serving as a critical control parameter. To address the challenge of online detection, we propose
the introduction of a soft measurement strategy. First, due to the significant fluctuations in the
production process variables and inter-variable coupling, comprehensive grey correlation analysis and
kernel principal component analysis are employed to reduce the input dimension and computational
complexity of the data, enhancing the efficiency of the soft sensing model. The reduced robust least-
squares support-vector machine (LSSVM), with its commendable predictive performance, is used
for modeling and predicting the principal components. Concurrently, an improved Pattern Search-
Differential Evolution (PS-DE) algorithm is proposed for optimizing the pivotal parameters of the
LSSVM network. Lastly, on-site industrial data validation indicates that the new model offers superior
tracking capabilities and heightened accuracy. It is deemed aptly suitable for the online detection of
mother liquor concentration.

Keywords: grey relational analysis (GRA); evaporation process; least squares support vector
machine (LSSVM); PS-DE algorithm; soft sensor

1. Introduction

Alumina, serving as a vital intermediary in aluminum production, underpins numerous industries,
from aerospace to consumer electronics, with global demand surpassing 120 million tonnes
annually [1, 2]. Within the complex alumina multi-effect evaporation process, a major procedure in
alumina production, the precise assessment of mother liquor concentration is paramount, dictating
both product quality and operational efficiency [3]. Directly gauging this concentration is fraught with
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obstacles, notably the extreme processing conditions such as elevated temperatures and corrosiveness.
In response, soft measurement methodologies have gained prominence, harnessing readily available
process data to estimate this crucial parameter [4, 5]. These techniques, offering real-time
concentration insights, not only facilitate rapid process adjustments but also serve as a cornerstone for
implementing advanced control strategies, thereby optimizing the entire production process.

Traditional methods for measuring mother liquor concentration often grapple with inherent
challenges. On-site mother liquor concentration detection uses manual periodic sampling and
laboratory analysis, with feedback to the production site several hours later [6]. This is offline analysis
and cannot meet the real-time requirements of control. Simultaneously, the evaporation process
exhibits strong correlation coupling [7], encounters uncertain external environmental factors and
displays non-linearity [8]. These issues often compromise accuracy and reliability, prompting a
search for alternative approaches. Enter the least-squares support-vector machine (LSSVM) [9–11]: a
machine learning technique that stands out for its robustness against non-linearities and noise. In the
realm of soft measurement applications, LSSVM not only demonstrates improved predictive accuracy
but also stands out for its adaptability, rendering it an appealing choice for the dynamic context of
alumina production.

In order to achieve online real-time detection of mother liquor concentration at the outlet, we
established a soft measurement model for outlet mother liquor concentration. It consists of the
following contributions:

• We adopt a combination of comprehensive grey relational analysis and kernel principal
component analysis to reduce the input dimensionality and computational complexity of the
data.
• A predictive performance-oriented, reduced-robust LSSVM is employed for modeling and

forecasting the principal components.
• An improved PS-DE algorithm is proposed to optimize the key parameters of the LSSVM

network.

The remainder of this article is organized as follows: Section 2 delves into the fundamentals of
soft-sensing modeling and the application of LSSVM in soft measurement. The alumina evaporation
process is clarified in Section 3. Section 4 elucidates the combination of comprehensive grey
relational analysis and kernel principal component analysis. In Section 5, we introduce the reduced
robust LSSVM and its significance in modeling and forecasting. The innovative Pattern
Search-Differential Evolution (PS-DE) algorithm for optimizing the LSSVM network is elaborated in
Section 6. Finally, Section 7 concludes the article, highlighting the key findings.

2. Literature review

2.1. Soft measurement for mother liquor concentration

Soft sensing, also known as soft sensors, primarily involves estimating hard-to-measure or
costly-to-measure variables using variables that are easily measurable (like temperature, pressure,
etc.) [12]. Soft sensing techniques utilize mathematical models, statistical methods and data-driven
approaches to establish these connections [13]. Taking the mother liquor concentration as an example:
In certain chemical or bioprocesses, directly measuring the concentration of the mother liquor might
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require complex, expensive or real-time analytical methods. Soft sensing can utilize data from other
measurable process variables, such as temperature, flow rate, conductivity and more, to estimate or
predict the concentration of the mother liquor using a pre-established model [14–16].

To tackle the challenge of monitoring alkaline solution concentration in the alumina production’s
evaporation process, a soft sensor model was developed employing a recursive partial least squares
approach incorporating a forgetting factor, as detailed in Wang’s study [14]. By utilizing historical
data from the initial stages, the model effectively handles the periodicity and slow dynamic nature of
the process. Distributed by Damour et al. [4], a model-based soft sensor was tailored for the final
stage of industrial sugar crystallization, obviating the necessity for population balance computations.
The soft-sensor’s effectiveness is confirmed by employing real plant data derived from an industrial
crystallization process. Meng et al. [5] devised a data-driven soft sensor model based on twin support
vector regression. The model chooses seven easily measurable variables as inputs to estimate the
challenging-to-measure variables of mother liquor purity and supersaturation. More recently, an
innovative first-principles model-based soft sensor approach was introduced, which integrates two
distinct models: a supersaturation model and a simplified last-stage crystallization model [17]. This
study addresses the challenge of monitoring and controlling the degree of supersaturation in the
ultimate step of industrial sugar crystallization. However, a persistent challenge lies in effectively
managing nonlinearity, high-dimensionality and noise, which frequently results in overfitting or
limited generalization in real-world scenarios.

2.2. LSSVM in soft measurement

The LSSVM is an offshoot of the standard Support Vector Machine (SVM), distinguished by its
use of a squared loss function instead of the hinge loss, rendering the optimization problem
linear [18, 19]. This unique adaptation ensures computational efficiency while preserving the model’s
robustness against non-linearities. LSSVM functions by identifying the optimal hyperplane within a
higher-dimensional space to separate data points into distinct classes, a process aided by the
utilization of kernel functions [20, 21]. Its resilience against overfitting, capability to handle large
feature spaces, and adaptability make it particularly suitable for soft measurement.

In 2017, based on the rough set’s theory reduction capability and the nonlinear adaptive prowess of
SVM, Wang and Chen [22] proposed an RS-LSSVM-based soft sensor model for accurately
determining the burning zone temperature in rotary kilns. Through global discretization and attribute
reduction, coupled with immune evolutionary algorithm optimization, the resulting model surpasses
traditional LSSVM in accuracy and resilience against interference. Moreover, Zheng et al. [23]
tackled the constraints of static soft measurement models in capturing dynamic information while
monitoring temperature in the firing zone of cement rotary kilns. By integrating the LSSVM with the
autoregressive moving average model (ARMA), and using cross-validation and grid search for
optimization, a more dynamic and responsive model was developed. In 2022, the ILGSSA-LSSVM
model was developed, leveraging the Improved Logistic Chaos Mapping and Golden Sine Algorithm
to predict the surface temperature of continuous casting billets [24]. When compared to traditional
methods like Gray Wolf optimized LSSVM and Backpropagation (BP) neural network, the proposed
model exhibited superior accuracy with an average error of 0.05805 °C. In [25], Liu et al. applied
LSSVM to model and predict effluent COD (chemical oxygen demand) levels in an anaerobic
wastewater treatment system. While the steady-state LSSVM model demonstrated satisfactory results
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in predicting effluent COD, the dynamic-state models excelled under various shock load scenarios,
especially under the absence of a bicarbaonate buffer.

3. Alumina evaporation process

In the Bayer process of alumina production, the evaporation step is used to evaporate the excess
water from the seed mother liquor and washing filtrate, ensuring that the alkali concentration in the
outlet mother liquor meets the requirements for the dissolution process. This promotes the recycling
of the alkali solution and reduces its discharge.

In the actual alumina evaporation process, if single-effect evaporation is used, there are problems
such as low evaporation capacity, high fresh steam consumption and low secondary steam utilization
rate. Simultaneously, the original evaporation solution contains plenty of impurity salts and has high
viscosity. As the concentration of the original evaporation solution increases, impurities tend to
crystallize. If the crystallized salt cannot be discharged from the equipment in time, it will cause
blockages. Hence, in practical production, enhancing salt solubility, minimizing precipitation in
equipment or pipelines, and achieving improved evaporation outcomes are achieved through the
adoption of a two-stage evaporation process, combining multi-effect flash evaporation with
counter-current operation. In the multi-effect counter-current evaporation process, the order in which
materials and steam enter each device is opposite. This article studies the four-effect three-flash
falling film evaporation process of an alumina plant’s evaporation workshop, with the specific process
flow shown in Figure 1.

Figure 1. Process flow diagram of the four-effect triple flash evaporation in alumina
production.

The four-effect three-flash evaporation process of alumina mainly includes four evaporators, three
preheaters, three flash evaporators, and some condensate water tanks. According to the process flow
shown in Figure 1, the original evaporation solution first enters the third-effect evaporator and the
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fourth-effect evaporator. The solution flows from the fourth-effect evaporator to the third-effect
preheater, raising the solution temperature through the preheater. When the solution temperature
approaches the boiling point temperature of the third-effect evaporator, the solution is sent from the
preheater to the third-effect evaporator. Following this pattern, the solution successively flows through
the third-effect, second-effect and first-effect evaporators, with its temperature and concentration
continuously increasing. After exiting the first-effect evaporator, the evaporated mother liquor flows
through the three flash evaporators in sequence, and the concentrated mother liquor is pumped to the
blending tank through the evaporation process outlet pump.

The primary heat source for the evaporation process comes from the fresh steam of the thermal
power plant. The fresh steam first enters the first-effect evaporator, indirectly heating the solution
outside the heating tube, simultaneously producing first-stage steam condensate. Subsequently, the
secondary steam produced by the first-effect evaporator enters the second-effect evaporator, the
secondary steam from the second-effect evaporator enters the third-effect evaporator and the
secondary steam from the third-effect evaporator enters the fourth-effect evaporator. Finally, the
secondary steam produced by the fourth-effect evaporator enters the water cooler to ensure smooth
steam discharge from the evaporation system.

4. Selection of auxiliary variables and data dimensionality reduction

The evaporation process is a nonlinear, uncertain, time-varying, highly coupled and lengthy
production process. There are many input parameters affecting the mother liquor concentration, and
directly constructing a soft measurement model with these input-output parameters will inevitably
impact modeling accuracy. It’s imperative to understand that while having an abundance of data might
seem advantageous, not all of it adds value. Redundant and collinear data can distort the model’s
predictive power, leading to inefficiencies and inaccuracies. By simplifying the model and focusing
on significant variables, we can achieve more accurate predictions with faster computation. Therefore,
this paper first performs data dimensionality reduction on production data samples based on transfer
entropy-based grey relational (GRA) analysis and kernel principal component analysis (KPCA).

4.1. Variable selection based on transfer entropy grey relational analysis

GRA [26,27] is a relative ranking analysis aiming to quantitatively measure the level of connection
between different factors in a system. Its primary objective is to evaluate the significance of factors
impacting the concentration in the evaporation process, serving as a foundational step towards
simplifying our model. The fundamental idea behind GRA, as introduced by Ozgur [28], centers on
evaluating the degree of association by comparing sequences of geometric shapes within a spatial
context. This process entails the identification of both the output sequence reflecting system behavior
characteristics and the input sequence influencing system behavior, followed by a subsequent
standardization step. Let ξio(k) and rio be the correlation coefficient and the number of correlation
degrees of the input sequence {Xi(k)} and output sequence Y0(k) at time t = k, respectively. We have:

ξio(k) =
∆max+∆min
∆io(k) + λ∆max,

(4.1)
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rio =
1
L

L∑
k=1

ξio(k). (4.2)

Where λ is the resolution coefficient, 0 < λ < 1; ∆min and ∆max, respectively, represent the
minimum and maximum absolute differences of the comparison sequence at each moment. ∆min is
the absolute difference between each point on the input sequence {Xi(k)} curve and each point on the
output sequence Yo(k) curve, and L represents the sampling moment.

The classic GRA overlooks the direct influence degree of different factors in different output
sequences, i.e., the weight size. Sometimes all correlation degrees are very close and the distribution
interval is small, making it hard to discern the similarity between the standard sequence and the
sequence to be tested, and it’s challenging to evaluate objectively and accurately. Therefore, through
the integration of subjective weighting using the Analytic Hierarchy Process (AHP) [29] and
objective weighting employing the transfer entropy method, the GRA comprehensively addresses the
differences in importance among various evaluation indicators. This ensures that the determined
weight coefficients have both subjective and objective information. The specific calculation steps are
as follows:

1) First, use the Analytic Hierarchy Process to determine the weight of each evaluation indicator
S k;

2) Then, use the transfer entropy method according to formula (4.3) to calculate the objective weight
Ok;

Ok =
∑

yn,ỹ
(l)
n−1,x̃

(k)
n−1

p
(
yn, ỹ

(l)
n−1, x̃

(k)
n−1

)
log2

p
(
yn, ỹ

(l)
n−1, x̃

(k)
n−1

)
p
(
yn, ỹ

(l)
n−1

) . (4.3)

Here, Qik represents the standardization of the evaluation matrix.
3) Finally, apply AHP to provide subjective weighting for each indicator and combine it with the

objective weight of the entropy method to ultimately determine the weight of each indicator. To
amplify the importance of the differences between the indicators, a multiplication synthesis method is
used to combine weights for the evaluation indicators. This means multiplying the weight coefficients
determined by both subjective and objective weighting methods and then normalizing the product
results. The comprehensive weight coefficient is shown in formula (4.4).

wk =
S kOk∑L

k=1 S kOk
. (4.4)

By combining AHP and entropy weighting with the grey relational analysis method, the improved
grey relational degree is obtained, as shown in formula (4.5).

r′io =
1
L

L∑
k=1

wk • ξio(k). (4.5)

4) The calculated correlation degrees are then sorted in descending order.
Taking the four-effect countercurrent falling film evaporation process of an alumina plant as an

example, numerous factors influence the outlet mother liquor concentration. Only relying on the
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qualitative analysis of the on-site operator’s experience and mechanism analysis results to determine
the main influencing factors is not highly credible. Therefore, based on the mechanism analysis and
the on-site operator’s qualitative analysis experience, we use the comprehensive grey relational
analysis method to determine the impact degree of each factor on the soft measurement model from a
quantitative analysis perspective. The analysis yielded the new steam temperature T X, new steam
flow rate LX, original liquid temperature TY , original liquid flow rate LY , original liquid
concentration CY , and the liquid temperatures from I effect to IV effect as T I, T II, T III, T IV ,
respectively, and the vapor pressures from I effect to IV effect as PI, PII, PIII, PIv, and the heat
transfer coefficient C2 as input sequences {Xi(k)}. The output concentration C0 is the output sequence
{Xo(k)}. Selecting 500 sets from the production data as samples and using the mean method to process
the samples to eliminate the impact of dimensions, we calculated the results using the proposed
transfer entropy-based grey correlation method.

QI(0, 1) = 0.8281, QI(0, 2) = 0.8364
QI(0, 3) = 0.9647, QI(0, 4) = 0.8213
QI(0, 5) = 0.8296, QI(0, 6) = 0.4614
QI(0, 7) = 0.8196, QI(0, 8) = 0.8327
QI(0, 9) = 0.8218, QI(0, 10) = 0.4014
QI(0, 11) = 0.8453, QI(0, 12) = 0.9342
QI(0, 13) = 0.5993, QI(0, 14) = 0.4905

The correlations are arranged from highest to lowest as follows:
TY > PIII > C2 > PII > LX > T III > T X > T IV > CY > LY > T II > PIV > T I > PI
We can see from the results that if we choose a correlation degree greater than 0.85 or 0.9, we

would exclude the new steam flow rate LX and the original liquid flow rate LY , which are two crucial
control variables. Therefore, combining the actual operating experience of the alumina evaporation
process and the results of mechanism modeling, we selected 10 variables with a correlation degree
greater than 0.81 as influencing factors. We then used the kernel principal component analysis to
extract features from these 10 selected variables.

4.2. Kernel principal component analysis

KPCA [30, 31] employs a nonlinear kernel function to map sample data from the original space
to a linear high-dimensional feature space. In essence, KPCA aids in distilling the essence of our
data, focusing on principal components that significantly contribute to the model’s predictive power.
Through nonlinear mapping, samples formed from the 10 variables selected via gray relational analysis
constitute an input space Xi(i = 1, 2, · · · ,m) ∈ RM and are subsequently mapped to a high-dimensional
feature space F. Samples in F are denoted as ϕ (xi). The covariance matrix in the high-dimensional
feature space is calculated as per Eq (4.6).

C =
1
m

m∑
i=1

ϕ (xi) ϕ (xi)T . (4.6)

The covariance matrix C undergoes eigenvalue decomposition as shown in Eq (7),
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λv = CV, (4.7)

where λ represents the eigenvalues of the covariance matrix C and v corresponds to the eigenvectors.
Multiplying both sides of Eq (4.7) by the kernel sample ϕ (xk) results in:

λϕ (xk) · v = ϕ (xk) ·CV, k = 1, 2, · · · ,m. (4.8)

For all eigenvectors v of λ , 0, there exists a relation described by αi(i = 1, · · · ,m):

v =
m∑

i=1

αiϕ (xi) . (4.9)

Introducing the kernel function Ki j, we get:

Ki j = K
(
xi, x j

)
= ϕ (xi) ϕ

(
x j

)
. (4.10)

The eigenvectors and eigenvalues of the kernel function matrix K are given by:

mλα = Kα, (4.11)

where α represents the eigenvector of matrix K, and m denotes the total number of samples. For any
vector x, its projection on the principal component direction ϕ(x) in the feature space is:

v · ϕ(x) =
m∑

i=1

αiϕ (xi) ϕ(x) =
m∑

i=1

αiK (xi, x) . (4.12)

The radial basis function (RBF) kernel is chosen as: K (xi, x) = exp
(
−
∥xi−x∥2

2σ2

)
.

The number of principal components s is typically selected based on the following rule: s∑
i=1

λi/

m∑
i=1

λi

 > E. (4.13)

The value of E is usually greater than 85%.
To compare the data dimensionality reduction effects, KPCA is applied to both the 14 variables

before gray relational analysis and the 10 variables after. The results are shown in Tables 1 and 2.
Based on the KPCA results from Tables 1 and 2, principal components with cumulative contribution

rates greater than 95% are chosen. After gray relational analysis, the 6 principal components, compared
to the 8 before the analysis, streamline the data dimensionality. This reduction not only accelerates
model training time but also hones the model’s focus on the most impactful variables, amplifying its
predictive capabilities.

5. Reduced robust LSSVM modeling based on PS-DE

As mentioned earlier, due to characteristics such as nonlinearity, uncertainty, time variability and
strong coupling, it’s challenging to accurately model the evaporation process using conventional
mathematical methods. Mechanism-based soft measurement modeling methods often fall short of the

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19941–19962.



19949

Table 1. Fourteen variable kernel principal component analysis results before gray relational
analysis.

No. Eigenvalue Contribution rate % Accumulating contribution rate %
1 8.7765 51.6263 51.6263
2 2.679 15.759 67.3854
3 1.4299 8.411 75.7964
4 1.0179 5.9876 88.9979
5 0.6486 2.8154 91.8134
6 0.1748 1.0028 95.5196
7 0.1369 0.9054 96.425
8 0.0677 0.8981 97.3231
9 0.0582 0.7424 98.0655

10 0.0383 0.7251 98.7906
11 0.0115 0.6674 99.458
12 0.0005 0.0029 99.9985
13 0.0003 0.0010 99.9995
14 0.0001 0.0005 100

Table 2. Ten variable kernel principal component analysis results after gray relational
analysis.

No. Eigenvalue Contribution rate % Accumulating contribution Rate %
1 6.1527 62.5273 62.5273
2 2.6894 20.6875 73.2487
3 1.3836 13.8676 76.3949
4 1.0585 10.5853 87.9802
5 0.7484 7.4844 95.4646
6 0.3470 2.4700 97.9346
7 0.2180 1.1802 99.1149
8 0.0729 0.7289 99.8437
9 0.0091 0.0915 99.9352

10 0.0044 0.0648 100
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predictive accuracy required for actual industrial production. Therefore, this paper introduces a soft
measurement model based on data transfer entropy, gray relational analysis and KPCA, named the
reduced robust least squares support vector machine (LSSVM). The detailed soft measurement
modeling process is presented in Figure 2.

Figure 2. Modeling process diagram of the reduced robust LSSVM based on PS-DE.

5.1. Reduced robust LSSVM model

Suykens et al. [9, 32] proposed the least squares support vector machine (LSSVM), which
substitutes the squared loss function in place of the “E-insensitive loss function”. This change
replaces the inequality constraints with equality constraints. Solving these problems is equivalent to
solving a set of linear equations in the dual space, thereby reducing computational complexity.
However, this also diminishes the noise resistance of the LSSVM. If the noise distribution doesn’t
follow a Gaussian distribution, the obtained solution might deviate significantly from the actual value.
To enhance the prediction robustness of the LSSVM, a weighting factor µi is introduced into the error
term αi = γiξi of the standard LSSVM. The Lagrange equation becomes:

L(ω, b, ξ, α) =
1
2
ωTω +

C
2

N∑
i=1

µiξ
2
i −

N∑
i=1

αi (ωϕ(x) + b + ξi − yi) . (5.1)

The optimization problem derived from the KKT conditions is:

min
ω,b,ξ

J(ω, ξ) =
1
2
ωTω +

C
2

N∑
i=1

µiξ
2
i . (5.2)

Defining a kernel function K, and eliminating unknown parameters, we get:[
0 1T

µ

1µ K +CU

] [
b
α

]
=

[
0
y

]
. (5.3)

Where K represents the kernel matrix, CU = diag
(

1
Cµ1
, · · · , 1

CµN

)
.
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The weighting factor µi is adaptively determined by the error ξi = αi/C.

µi =


1 if ξi/s′ ≤ c1

c2−ξi/s′

c2−c1
if c1 ≤ ξi/s′ ≤ c2.

10−4 Other
(5.4)

Where S ′ is an estimated value of the standard deviation of the error ξ, and c1 and c2 are constants,
typically set to values such as c1 = 2.5 and c2 = 3. If the error is below a preset threshold, the loss
function of the robust LSSVM can be simplified to the standard LSSVM form. If the error lies within
a predefined range, the penalty function’s weighting factor will adjust adaptively with the error. If
it exceeds a preset upper limit, a small constant is used to suppress it. This enhances the prediction
accuracy and improves the model’s resistance to interference.

Given the multiple factors affecting the outlet mother liquor concentration in the alumina
evaporation process and the numerous input variables in the reduced robust LSSVM model, one of the
flaws of the LSSVM is that its solutions lack sparsity, i.e., each input sample is represented by a
support vector value. To overcome this flaw, [33–35] introduced various methods such as introducing
weighting factors, matrix reduction by extracting feature vectors, introducing insensitive zone
bandwidths, and redundant sample information. These efforts aim to increase the sparsity of the
solutions, accelerate modeling speed, and enhance the model’s robustness. In this section, we employ
the Schmid orthogonalization method [36] to reduce the kernel matrix within the robust LSSVM
model, introducing a degree of sparsity to the solution.

For each training sample xi, its mapping can be represented by φ (xi) (1 ≤ i ≤ N), and all samples
can be mapped to matrix {φ (x1) , · · · , φ (xN)}. If there exists a base matrix {φ (x̃1) , · · · , φ (x̃M)} in this
mapping matrix, then any mapped vector [37] can be represented as:

φ (x1)
...

φ (xN)

 =

α11 · · · a1M

. . .

αN1 · · · αNM



φ (x̃1)
...

φ (x̃M)

 . (5.5)

It is evident that the base matrix in the mapping matrix is of paramount importance.
References [38–40] aimed to find a linearly independent vector group in the hyper-space with the
smallest Euclidean distance as the target. Rosipal et al. [41] introduced a technique that utilizes the
Schmid orthogonalization method to reduce the kernel matrix, resulting in a set of linearly
independent vectors that form the basis matrix.

The theoretical foundation of the Schmid orthogonalization method [42] is relatively mature. This
section uses this algorithm to construct the base of the model kernel matrix. Following the principles of
Schmid orthogonalization theory, the orthogonalization of column vector φ (xa) in the mapping matrix
in hyper-space can be expressed as:

φt+1 (xa) = φt (xa) −
(
φt (xa)T vt

)
vt. (5.6)

Where vt =
φt(xi)√
φt(xi)Tφt(xi)

and

φ (xi) (1 ≤ i ≤ N) (5.7)

are the selected vectors.
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For the kernel matrix G(a, b):

G(a, b) = φ (xa)T φ (xb) = K (xa, xb) . (5.8)

From which, the Gram form is:

Gt+1(a, b) = φt+1 (xa)T φt+1 (xb) = Gt(a, b) −
Gt (a, xi) Gt (b, xi)

Gt (xi, xi)
. (5.9)

During the construction of the reduced kernel matrix, a greedy algorithm is used to select vectors
one by one. The magnitude of G(i, i) is used as the basis for selecting vectors, i.e., each time the column
xp where G(i, i) is the largest is selected. The subsequent column vectors in the original data matrix
are then orthogonalized. The algorithm is as follows:

Step 1: Let Ĝ0(p, p) = K
(
xp, xp

)
.

Step 2: for t = 0 : (d − 1), Ĝ0(t, p) = K
(
xt, xp

)
, end.

(Where: d is the rank of the matrix, representing the maximum number of linearly independent
vector groups.)

Step 3: for t = 0 : (d − 1), based on the selection criteria, a vector xi is chosen, denoted as
index(t) = i,

for s = (t + 1) : (d − 1),

Ĝt+1(s, p) = Ĝt(s, p) −
Ĝt(t, p)Gt(index(t), index(s))

Gt(index(t), index(t))
, (5.10)

end

Ĝt+1(p, p) = Ĝt(p, p) −
Ĝt(t, p)Ĝt(t, p)

Gt(index(t), index(t))
, (5.11)

end
(Note: In the algorithm, d can either be the rank of the matrix or can be predetermined.)

5.2. Parameter optimization of reduced LSSVM based on the PS-DE algorithm

The integration of two optimization algorithms, pattern search (PS) and differential evolution (DE),
forms the crux of the PS-DE algorithm. These algorithms, when combined, offer a powerful tool for
optimizing the parameters of our reduced LSSVM model.

The pattern search (PS) algorithm, introduced by Hooke and Jeeves in the early 1960s, is classified
as a direct search algorithm, as outlined in their work [43]. The main idea is to generate an iterative
sequence without relying on any derivative information. During each iteration, if a better optimal
solution can be derived from the iteration point, it is accepted; otherwise, the search continues. The PS
algorithm begins from an initial point and alternates between two search operations: axial search and
pattern search. The axial search method systematically explores along the n coordinate axes, aiming
to identify a new base point by favoring directions that reduce the function’s value. The pattern search
operates along the direction connecting adjacent base points, aiming to accelerate the function value
reduction. The steps of the PS algorithm are as follows:
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Step 1: Set the initial point as x(0) , initial step length as δ, acceleration factor as α, reduction factor
as β ∈ (0, 1), computation precision as ε > 0 and e1, e2, · · · , en as the unit coordinate vector. Let
y(1) = x(0) (initial point), set k = 0, j = 1.

Step 2: If f
(
y( j) + δe j

)
< f
(
y( j)
)
, then the forward probe is successful, let y( j+1) = y( j) + δe j and

move to Step 3; Otherwise, the forward probe is unsuccessful.
If f
(
y( j) − δe j

)
< f
(
y( j)
)
, let y( j+1) = y( j) − δe j, and move to Step 3;

If f
(
y( j) − δe j

)
≥ f
(
y( j)
)
, let y( j+1) = y( j), and move to Step 3.

Step 3: If j < n, then let j = j + 1 and return to Step 2. Otherwise, if j = n and f
(
y(n)
)
< f
(
x(k)
)
,

the probing move is successful, and proceed to Step 4. If not, move to Step 5.
Step 4: Let x(k+1) = y(n), y(1) = x(k+1) + α

(
x(k+1) − x(k)

)
, k = k + 1, j = 1, and return to Step 2.

Step 5: if δ < ε, take x∗ = x(k), the algorithm terminates. Otherwise, let δ = βδ, y(1) = x(k), x(k+1) =

x(k), k = k + 1, j = 1, and return to Step 2.
The differential evolution (DE) algorithm [44–46] is an intelligent search algorithm for global

optimization proposed by Storn and Price in 1995. It was designed specifically for real-number coded
genetic individuals and uses differential operations to implement crossover and mutation in the
context of the genetic algorithm framework. The core idea of the DE algorithm is to use the
differential quantity from two randomly chosen individual vectors from the population as a
perturbation to a third random base vector, resulting in a mutated vector. This mutated vector then
undergoes crossover operations with the base or target vector to produce a trial vector. Finally, the
base vector and trial vector compete, and the better one is retained in the next generation.

Select NP initial population solutions xG
i (i = 1, 2, · · · ,NP), where i is the population size and G is

the current evolutionary generation. For the Gth individual xG
i , perform mutation according to Eq (5.12)

to obtain a new individual RG+1
i :

RG+1
i = xG

h3 + F ·
(
xG

h1 − xG
h2

)
. (5.12)

Where, xG
h1, xG

h2, xG
h3 are three distinct individuals randomly chosen from generation G, and F is

the mutation rate.
Next, carry out crossover using Eq (5.13) to produce the trial individual S G+1

i :

S G+1
i j =

RG+1
i j , rand( j) ≤ CR or j = randn(i)

xG
i j, rand( j) > CR and j , randn(i)

. (5.13)

In this equation, CR is the crossover probability constant, rand( j) is a random number uniformly
distributed between 0 and 1, and rand(i) is a randomly chosen integer.

Finally, decide whether to retain xG+1
i using Eq (5.14):

xG+1
i =

S G+1
i , f

(
S G+1

i

)
< f
(
xG

i

)
xG

i , f
(
S G+1

i

)
≥ f
(
xG

i

) . (5.14)

Here, f represents the fitness function.
Building upon the PS-DE algorithm and the analysis of the reduced robust LSSVM, the PS-DE

optimization algorithm is applied for parameter tuning of the reduced robust LSSVM. This is a critical
juncture as it amplifies the prediction performance of our model. The PS-DE algorithm optimizes the
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penalty coefficient and kernel width coefficient of the reduced robust LSSVM. Initially, it utilizes the
DE algorithm for global optimization, and subsequently, it employs the PS algorithm for more localized
exploration. The optimization process alternates between these methods, eventually converging to a
global optimum. The detailed steps are as follows:

Step 1: Initialize the population size NP, mutation operator F, crossover factor CR, maximum
iteration for the DE algorithm Gmax, initial step length δ, acceleration factor ∂, reduction rate β ∈ (0, 1)
and precision ε > 0.

Step 2: For the initial population, perform mutation, crossover and selection operations as per
Eq (14)–(16), resulting in new individuals XG+1

i . Update the objective function values f
(
XG+1

i

)
accordingly.

Step 3: Check if the initial step length meets the computational precision. If it does, move to Step 4;
otherwise, return to Step 2.

Step 4: Execute the pattern search algorithm, recording the optimal objective function value
f
(
X̄G+1

i

)
and the corresponding new individual X̄G+1

i .
Step 5: Check the termination criteria. If met, the algorithm terminates and outputs the optimal

parameters (C, σ). Otherwise, return to Step 2.

6. PS-DE used for verification and analysis of the reduced robust LSSVM model

6.1. Verification and analysis of the PS-DE algorithm

To assess the efficacy and practicality of the PS-DE algorithm, we conducted experiments on three
standard function optimization problems (aimed at minimizing the function values). We evaluated the
PS-DE algorithm’s performance and compared it with that of the DE algorithm.

1) Sphere function:

f1(x) =
n∑
i

x2
i . (6.1)

Optimal value: xi = 0, f1(x) = 0, xi ∈ [−100, 100].
2) Rosenbrock function:

f2(x) =
n∑

i=1

(
100 ×

(
xi+1 − x2

i

)2
+ (1 − xi)2

)
, xi ∈ [−30, 30]. (6.2)

Its optimal value and its corresponding optimal state are:
min f (x∗) = f (1, 1, . . . , 1) = 0.
3) Rastrigin function:

f3(x) =
n∑

i=1

(
x2

i − 10 cos (2πxi) + 10
)
, xi ∈ [−5.12, 5.12]. (6.3)

Its optimal value and its corresponding optimal state are: min f (x∗) = f (0, 0, . . . , 0) = 0.
The simulations were run on a platform based on Windows XP and MATLAB 7.0, with a 2.1 GHz

CPU and 1 GB RAM. The simulation was conducted in a 30-dimensional space, with the termination
condition being the maximum number of iterations. Initial parameters were set as: initial step length
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δ = 1.618, acceleration factor α = 0.618, reduction factor β = 0.382, precision ε = 10−5, optimization
count of 50, NP = 100, F = 0.6, CR = 0.9, Gmax = 1000. The simulation results are shown in Figures 3–
5, and Table 3.

Figure 3. Optimization comparison for the Sphere function.

Figure 4. Optimization comparison for the Rosenbrock function.

From Table 3 and Figures 3–5, it can be observed that for the three typical test functions, the PS-DE
algorithm generally outperforms the DE algorithm in terms of optimization results, convergence speed
and success rate. During the experimental testing, the PS-DE algorithm, which incorporates the PS
algorithm with robust local search capabilities into the DE algorithm, effectively preserved the global
search ability of the novel algorithm. By observing the dynamic search graphs of the particles, it was
found that for the three test functions, the PS-DE algorithm could quickly reach the optimal point and
hardly fluctuated around it. In contrast, the DE algorithm reached the optimal point more slowly and
oscillated around it before slowly converging to the global optimum, sometimes even failing to reach
the optimum. Especially in the high-dimensional test experiment for the multi-peak Rastrigin function,
the PS-DE algorithm showed a significant improvement in optimization for the Rastrigin function.
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Figure 5. Optimization comparison for the Rastrigrin function.

Table 3. Optimization comparison between PS-DE algorithm and DE algorithm.

Test function Optimization algorithm Average value Minimum number of iterations Success rate

Sphere
DE 1.56 × 10−5 640 87.30%

PSDE 1.34 × 10−7 550 98.70%

Rosenbrock
DE 6.73 × 10−1 760 80.00%

PSDE 4.22 × 10−11 220 99.60%

Rastrigin
DE 4.11 × 10−1 790 77.60%

PSDE 3.26 × 10−3 186 93.50%
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6.2. Model verification and analysis

We selected 500 sets of industrial field data after conducting steady-state detection and data
coordination. These were employed as training samples, while an additional 200 sets were reserved
for testing. Before training, the data was normalized. During parameter optimization for the reduced
robust LSSVM model, the penalty coefficient C and the kernel function width σ had initial selection
ranges of [0, 1000] and [0, 10], respectively. Algorithm parameters were set as: NP = 100, F = 0.6,
CR = 0.9, Gmax = 1000 and precision ε = 10−5. The PS-DE algorithm was employed to choose the
optimal parameters for the reduced robust LSSVM (denoted as PSDE-RRLSSVM), resulting in
optimal parameter pairs of (158.7, 1.264). The DE algorithm (denoted as DE-RRLSSVM) yielded
optimal parameter pairs of (C, σ) = (158.7, 1.264). Simulation results are shown in Figures 6 and 7,
and error analysis is presented in Table 4.

Figure 6. Soft measurement simulation results of the exit mother liquor concentration based
on PSDE-RRLSSVM.

Table 4. Error result analysis.

Emax% RMSE RRMSE%
PSDE-RRLSSVM 4.7243 0.0061404 7.84

DE-RRLSSVM 9.8798 0.0082234 9.07
Mechanism model 12.0345 0.023653 13.56

Figures 5 and 6, along with the calculations presented in Table 4, reveal that the PSDE-reduced
robust LSSVM integrated model outperforms the DE-reduced robust LSSVM in soft measurement.
The maximum relative error stands at 4.7243%, the root mean square error is 0.0061404, and the root
mean square relative error is 7.84%. These simulation results demonstrate the model’s exceptional
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Figure 7. Soft measurement simulation results of the exit mother liquor concentration based
on DE-RRLSSVM.

accuracy in soft measurement, aligning with the stringent requirements of the production process and
providing a solid foundation for real-time operational optimization in the evaporation process.

7. Conclusions

The concentration of the exit mother liquor is a vital control index in the alumina evaporation
process. Given the multitude of influencing factors and the challenge of online detection, this study
proposes a mother liquor concentration soft measurement model based on the PS-DE reduced robust
least squares support vector machine, integrated with comprehensive grey relation and kernel principal
component analysis. As a result, potential pitfalls such as data redundancy and collinearity, common in
evaporation process data, are effectively circumvented, streamlining the model’s input samples. On one
hand, through grey relation and kernel principal component analysis, auxiliary variables are screened
and sample characteristic information is extracted. This eliminates the redundancy and collinearity of
data samples from the evaporation process, simplifying the model’s input samples. On the other hand,
the introduction of the PS algorithm in the new method addresses both the slow convergence speed and
the tendency of the differential evolution algorithm to become stuck in local optima. It also fine-tunes
the reduced LSSVM parameters, ensuring the algorithm’s convergence speed and precision.

The verification and analysis using actual production data indicate that the proposed method is
effective. The established model for soft measurement of exit mother liquor concentration exhibits
superior learning and generalization capabilities when compared to the DE-LSSVM and LSSVM
models. Given the robustness and adaptability of the proposed method, it has potential applications
beyond the alumina evaporation process. Specifically, industries that involve complex chemical
processes, such as petrochemicals, pharmaceuticals and food processing, could benefit from the soft
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measurement capabilities of this method. Furthermore, processes that require precise concentration
control, like wastewater treatment or fermentation processes, might also find the model advantageous
in ensuring product quality and process efficiency.
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