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Abstract: Chikungunya is a vector-borne viral disease transmitted by Aedes aegypti and Aedes albopic-
tus mosquitoes. It does not have any specific treatment, and there is no vaccine. Recent epidemiological
data have indicated that a relapse of the infection can occur within three months of the initial infec-
tion; however, until now, mathematical models for the spread of the disease have not considered this
factor. We propose a mathematical model for the transmission of the Chikungunya virus that considers
relapse. We calculated the basic reproductive number (R0) of the disease by using the next-generation
operator method. We proved the existence of a forward bifurcation. We determined the existence and
the global stability of the equilibrium points by using the Lyapunov function method. We fitted the
model to data from an outbreak in 2015 in Acapulco, Mexico to estimate the model parameters and R0

with the Bayesian approach via a Hamiltonian Monte Carlo method. In the local sensitivity analysis,
we found that the fraction of infected individuals who become asymptomatic has a strong impact on
the basic reproductive number and makes some control measures insufficient. The impact of the frac-
tion of infected individuals who become asymptomatic should be considered in Chikungunya control
strategies.
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1. Introduction

Chikungunya fever is a viral disease caused by an arboviral alphavirus transmitted to humans by
Aedes mosquitoes, mainly Aedes aegypti and Aedes albopictus mosquitoes. These vectors are widely
distributed in the Americas. In 1952, this virus was first isolated and described in humans in Tanzania;
it was identified in the Americas in 2013, and in Mexico one year later [1].

Once an infected mosquito bites a person, the disease has an incubation period between 3 and 7
days. The symptoms are severe joint pain (arthralgia) and high fever (above 39◦C); they also include
occasional nausea, myalgia (muscle pain), vomiting and rash [2]. This joint pain is usually debilitating,
affecting the quality of life of the patient, but the persistence of the symptoms has not been thoroughly
studied.

In 2008, Dumont et al. proposed a host-vector model that considers the aquatic phase of the
mosquito for Chikungunya disease; they also studied the local and global stability of the equilib-
rium points, fitted the model to epidemiological data from four cities in France and estimated the
basic reproductive numbers of the outbreak [3]. Subsequently, Dumont et al developed a model that
incorporates a combination of the early use of massive fumigation and mechanical control (such as
the destruction of breeding sites) and concluded that it can be effective in stopping or containing the
spread of Chikungunya infections with minimal environmental impact [4]. In 2012, Ruiz-Moreno et
al. developed a climate-based stochastic model of mosquito population dynamics with an epidemio-
logical model to identify temporal windows that carry epidemic risk they found that, in places with a
marked seasonal variation in temperature, there was also an epidemic risk season that coincided with
the period of the year in which mosquito populations survive and grow [5]. In 2019, González-Parra
et al. analyzed an SEIRC-SEI model with intrinsic and extrinsic incubation periods for the dynamics
of the transmission of Chikungunya that considers a constant human population and vectors. They
studied the global stability of the disease-free and endemic equilibriums by using the second method
of Lyapunov and they used bootstrapping and Markov chain Monte Carlo techniques to estimate some
model parameters and the basic reproductive number for an outbreak in Colombia [6]. Abboubakar et
al. included density-dependent rates and some control mechanisms in existing Chikungunya models.
Their model presents a backward bifurcation, and the least squares method was used to estimate the
basic reproductive number of an outbreak that occurred in Chad and Cameroon [7].

The phenomenon of relapse has been reported for Chikungunya infections [8–12]. Relapse is de-
fined as the reappearance of arthralgia due to virus’ persistence in the cells of the musculoskeletal
tissue after a symptom-free period of at least one week [8], or after one month [12]. A cohort study
based on data from a laboratory-based surveillance system in France was performed; the initial infec-
tion was confirmed via an antibody or polymerase chain reaction (PCR) testing. In this study, relapses
of arthralgia were reported in 72% of patients; the mean number of relapses was four and the mean
time between two relapses was 8 weeks [8]. On the other hand, a cross-sectional study of Acapulco in
southern Mexico in December 2015 was performed; 66% of the population (3531 out of 5870 people)
self-reported that they had been infected; 31.1% of those who suffered from Chikungunya (1098 out
of 3531 people) reported at least one relapse at least 1 month after they recovered from the disease,
13% reported exactly one relapse, 12% reported two relapses, 4% reported three relapses and just 2%
reported more than four relapses [12].

The relapse phenomenon has not been incorporated into the host-vector models for Chikungunya

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18123–18145.



18125

infections in the mathematical epidemiology literature. For this reason, the objectives of our study were
to incorporate relapses into the standard model for Chikungunya, and to study the effect of the relapse
rate on Chikungunya outbreaks. Finally, using the data collected in [12] that consisted of self-reported
Chikungunya cases per month in Acapulco, Mexico, we have estimated several model parameters and
the basic reproductive number of the infection.

In the present paper we address a Chikungunya model with relapse. We have made the following
contributions:

• We extended the standard host-vector model of Chikungunya to incorporate the relapse phe-
nomenon.
• The global stability of the disease-free equilibrium and the endemic equilibrium has been ana-

lyzed using the method of Lyapunov functions.
• We performed Bayesian estimates of the model parameters and the basic reproductive number of

a Chikungunya outbreak in Acapulco, Mexico.
• Local sensitivity analysis was performed to measure the relative change of basic reproductive

number for each parameter.

This paper is organized as follows: In Section 2, we will propose a Chikungunya model with relapse.
In Section 3, we will compute the equilibria and basic reproductive number, and we will analyze the
bifurcation that occurs at the disease-free equilibrium point as well as the global stability of the disease-
free and endemic equilibrium points. In Section 4, we will fit the model to data from an outbreak in
2015 in Acapulco, Mexico to estimate model parameters and the basic reproductive number (R0) with
the Bayesian approach by using the Hamiltonian Monte Carlo method. In Section 5, we will present the
results of a local sensitivity analysis to describe the impact of the parameters on the R0 value. Finally,
Section 6 contains the concluding remarks.

2. Mathematical model

Let Nh and Nv be the total number of humans (hosts) and the total number of mosquitoes (vectors),
respectively. Both populations are divided into mutually exclusive compartments that are dependent
on each individual’s epidemiological state. Humans are classified into four compartments:

1. Susceptible humans (S h): We assume that all humans are born susceptible to the virus; then, the
population in this compartment increases according to a constant rate µh and decreases due to
natural death at the same rate. Additionally, the size of the susceptible population decreases when
a susceptible human becomes an infected human after an infected mosquito bite (βhb

Nh
S hIv); thus,

the number of new infections depends on the number of susceptible humans who are bitten by
a mosquito per time unit b and the probability of an effective transmission from a vector to a
human βh. Consequently, the dynamics of the compartment of susceptible humans are given by
the following equation:

S ′h = µhNh −
βhb
Nh

S hIv − µhS h.

2. Infected humans (Ih): The number of infected humans increases when a mosquito bite effectively
transmits the virus to a susceptible human according to the mechanism described above, and also
when symptoms return after a symptom-free period, that is, the relapse period 1/δh. The number
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of individuals in this compartment decreases when the symptomatology disappears (recovery rate
γ) and due to natural death (µh). The number of infected humans is determined by the following
equation:

I′h =
βhb
Nh

S hIv − (µh + γ)Ih + δhAh.

3. Asymptomatic humans (Ah): A fraction p of infected individuals are assumed to undergo an
asymptomatic period since a significant percentage of patients have relapsed after the initial in-
fection. The number of asymptomatic humans increases at a rate pγ and decreases due to natural
death (µh) and when symptoms occur again at a rate δh. The reappearance of symptoms is due
to the persistence of the virus in musculoskeletal tissue cells after a symptom-free period (1/δh).
This mechanism is suggested in [12]. As a result, the dynamics of the asymptomatic humans are
described by

A′h = pγIh − (µh + δh)Ah.

4. Recovered humans (Rh): A fraction (1 − p) of infected individuals are assumed to undergo a full
recovery with permanent immunity. The number of recovered humans increases at a rate (1− p)γ
and decreases due to natural death (µh). This translates into the following equation:

R′h = (1 − p)γIh − µhRh.

Mosquitoes are classified into two compartments:

1. Susceptible vectors (S v): Because vertical transmission has not been reported, we assume that
all mosquitoes are born without the virus. Additionally, we assume that the birth and death rates
are the same (µv), and that consequently, the vector population is constant (S v + Iv = Nv). As a
susceptible mosquito can become infected only if it comes into contact with an individual who
has the virus, it is supposed to become infected after biting an infected or asymptomatic human,
because hosts in the second compartment still have a viral load in the cells of the musculoskeletal
tissue. Therefore, analogous to transmission in humans, the rate of infection in vectors depends on
the bites b and the transmission probability from humans to vectors βv; under the hypothesis that
there is less transmission by the asymptomatic humans than by infected humans, we introduce the
non-negative parameter κ to moderate the fraction of transmission from asymptomatic humans to
vectors. These assumptions give rise to the following equation:

S ′v = µvNv −
βvb
Nh

S vIh −
κβvb
Nh

S vAh − µvS v.

2. Infected vectors (Iv): The number of infected mosquitoes increases according to the transmission
mechanism described above and it decreases when infected mosquitoes die, since a mosquito
never recovers and its life expectancy is not modified. Therefore, the number of infected
mosquitoes is subject to the following equation:

I′v =
βvb
Nh

S vIh +
κβvb
Nh

S vAh − µvIv.
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Figure 1. Schematic diagram of Chikungunya transmission model with relapse.

In summary, the dynamics between the hosts and vectors that determine the spread of Chikungunya
(see Figure 1), including relapse, translate into the following system of ordinary differential equations:

S ′h = µhNh −
βhb
Nh

S hIv − µhS h,

I′h =
βhb
Nh

S hIv − (µh + γ)Ih + δhAh,

A′h = pγIh − (µh + δh)Ah,

R′h = (1 − p)γIh − µhRh,

S ′v = µvNv −
βvb
Nh

S vIh −
κβvb
Nh

S vAh − µvS v,

I′v =
βvb
Nh

S vIh +
κβvb
Nh

S vAh − µvIv.

(2.1)

Here, both total populations are considered constant, so Nh = S h + Ih + Ah + Rh y Nv = S v + Iv.
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Under these conditions, system (2.1) can be written as follows:

S ′h = µhNh −
βhb
Nh

S hIv − µhS h,

I′h =
βhb
Nh

S hIv − (µh + γ)Ih + δhAh,

A′h = pγIh − (µh + δh)Ah,

I′v =
βvb
Nh

(Nv − Iv)(Ih + κAh) − µvIv.

(2.2)

3. Equilibria, basic reproductive number, bifurcation analysis, and global stability properties

We analyze the model given in (2.2) in the following epidemiologically feasible region:

∆ =
{
(S h, Ih, Ah, Iv) ∈ R4

+ : S h + Ih + Ah ≤ Nh, Iv ≤ Nv

}
.

System (2.2) contains two epidemiologically feasible equilibrium points in the non-negative orthant
R4

+ according to direct calculation: the disease-free equilibrium P0 = (Nh, 0, 0, 0) and a unique endemic
equilibrium P∗ = (S ∗h, I

∗
h, A

∗
h, I
∗
v ), with

S ∗h =
Nh(NhN−1

v µhR̂0 + βhb)

R̂0(NhN−1
v µh + βhb)

,

I∗h =

(
µhNh(µh + δh)βhb

(µh + γ)(µh + δh) − δh pγ

) (
R̂0 − 1

R̂0(NhN−1
v µh + βhb)

)
,

A∗h =

(
µhNhβhbpγ

(µh + γ)(µh + δh) − δh pγ

) (
R̂0 − 1

R̂0(NhN−1
v µh + βhb)

)
,

I∗v =
µhNh(R̂0 − 1)

NhN−1
v µhR̂0 + βhb

,

(3.1)

where

R̂0 =
βhβvb2Nv(κpγ + µh + δh)

Nhµv[(µh + γ)(µh + δh) − δh pγ]
. (3.2)

For the computation of the basic reproductive number, we use the next-generation operator method
introduced in [13]. The notation is as follows: F is a non-negative matrix of the new transmission
terms, and V is an M-matrix of the transition terms for individuals between compartments. For system
(2.2), the matrices F and V are, respectively,

F =


0 0 βhb
0 0 0

βvbNv
Nh

κβvbNv
Nh

0

 and V =


µh + γ −δh 0
−pγ µh + δh 0

0 0 µv

 .
It follows that the basic reproductive number, denoted by R0 = ρ(FV−1), where ρ is the spectral

radius, is given by

R0 =

√
R̂0. (3.3)
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In the following subsections, without loss of generality, we present the bifurcation and global sta-
bility results in terms of the threshold quantity R̂0.

3.1. Forward bifurcation

It is easy to prove that the disease-free equilibrium P0 is non-hyperbolic when R̂0 = 1 since one of
its eigenvalues vanishes; consequently, in this case, a bifurcation could occur. This subsection shows
that this is indeed the case. For this purpose, Theorem 4.1 of [14] will be used.

First, the abbreviated set of equations in (2.2) is rewritten in the following form:

dx1

dt
= µhNh −

βhb
Nh

x1x4 − µhx1,

dx2

dt
=

βhb
Nh

x1x4 − (µh + γ) x2 + δhx3,

dx3

dt
= pγx2 − (µh + δh) x3, (3.4)

dx4

dt
=

βvb
Nh

(Nv − x4) (x2 + κx3) − µvx4,

to which the following new variables have been introduced:

x1 ≡ S h, x2 ≡ Ih, x3 ≡ Ah, x4 ≡ Iv.

If we assume that βv = ξβh and φ ≡ βhb is the bifurcation parameter, system (3.4) can take the following
form:

dx1

dt
= µhNh −

φ

Nh
x1x4 − µhx1 ≡ f1,

dx2

dt
=

φ

Nh
x1x4 − α1x2 + δhx3 ≡ f2,

dx3

dt
= pγx2 − α2x3 ≡ f3, (3.5)

dx4

dt
=

ξφ

Nh
(Nv − x4) (x2 + κx3) − µvx4 ≡ f4,

where we have made the following identifications:

α1 ≡ µh + γ and α2 ≡ µh + δh, (3.6)

and the components of the vector field of (3.5) have been denoted by fi, with i = 1, ..., 4. When R̂0 = 1,
we write φ = φ∗, which, according to (3.2), satisfies the following relationship:

1 =
ξ (φ∗)2 Nv (κpγ + µh + δh)

Nhµv
[
(µh + γ) (µh + δh) − δh pγ

] . (3.7)

The Jacobian matrix of system (3.5), evaluated at the equilibrium point P0 when φ = φ∗, is given as

J(P0) =


−µh 0 0 −φ∗

0 −α1 δh φ∗

0 pγ −α2 0
0 ξφ∗ Nv

Nh
κξφ∗ Nv

Nh
−µv

 . (3.8)
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It can easily be shown that this matrix has a zero eigenvalue.
According to the procedure described in [14], the eigenvector corresponding to this zero eigenvalue

is

w =
1

α1 + α2 +
ξ(φ∗)2Nv(κpγ+α2−µv)

Nhµ
2
v


−
φ∗

µh
φ∗α2

α1α2−δh pγ
pγφ∗

α1α2−δh pγ

1

 , (3.9)

while the left eigenvector corresponding to the same eigenvalue of the transpose of the matrix in (3.8)
is

v =
α1α2 − δh pγ

φ∗


0
1

1
pγ

[
α1 −

ξ(φ∗)2Nv
µvNh

]
φ∗

µv

 . (3.10)

Both vectors satisfy the condition that w · v = 1. The nonzero second partial derivatives of the compo-
nents fi are given by

∂2 f2 (P0)
∂x1∂x4

=
∂2 f2 (P0)
∂x4∂x1

=
φ

Nh
,

∂2 f4 (P0)
∂x2∂x4

=
∂2 f4 (P0)
∂x4∂x2

= −
ξφ

Nh
,

∂2 f4 (P0)
∂x3∂x4

=
∂2 f4 (P0)
∂x4∂x3

= −
κξφ

Nh
(3.11)

and
∂2 f2 (P0)
∂x4∂φ

= 1,
∂2 f4 (P0)
∂x2∂φ

=
ξNv

Nh
,

∂2 f4 (P0)
∂x3∂φ

=
κξNv

Nh
. (3.12)

Thus, the quantities a and b as indicated in Theorem 4.1 of [14] and written in terms of the previous
derivatives, are, respectively,

a = 2v2w1w4
φ

Nh
− 2v4w4 (w2 + κw3)

ξφ

Nh
(3.13)

and
b = v2w4 + v4 (w2 + κw3)

ξNv

Nh
, (3.14)

where w1, w2, w3 and w4 are the first, second, third and fourth components of the eigenvector in (3.9);
meanwhile, v2 and v4 are the first and fourth components of the left eigenvector given in (3.10).

It can be shown that, according to the Routh-Hurwitz stability criterion, to guarantee the local
asymptotic stability of P0 when R̂0 < 1, the following relations must be satisfied:

α1α2 − δh pγ > 0 (3.15)

and

α1 + α2 −
R̂0 (α1α2 − δh pγ)

κpγ + α2
> 0. (3.16)

Based on relations (3.7), (3.15) and (3.16), it can be shown that w1 < 0, w2 > 0, w3 > 0 and w4 > 0,
while v1 > 0, v2 > 0 and v4 > 0. Thus, according to (3.13) and (3.14), we have that a < 0 and b > 0.
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Therefore, since a < 0 and b > 0, part iv of Theorem 4.1 in [14] must hold. Alternatively, this result
can be formulated as follows.

Theorem 3.1. The disease-free equilibrium point P0 = (Nh, 0, 0, 0), when R̂0 = 1, presents a forward
bifurcation.

As a consequence of this result, when R̂0 > 1, there is a family of asymptotically stable infected
equilibrium points, which we will denote as P∗ =

(
S ∗h, I

∗
h, A

∗
h, I
∗
v

)
, constituting the upper branch of these

types of bifurcations.

3.2. Global stability of the disease-free equilibrium

We obtained some conditions on the global stability of the disease-free equilibrium of system (2.2)
by using the method of Lyapunov functions. The usual process to construct a Lyapunov function for
a disease-free equilibrium in epidemic or intra-host viral infection models is to introduce the Volterra-
type function to the susceptible compartment and linear functions to the other compartments, and to
determine the constants to guarantee the negativity of the derivative of the Lyapunov function along
trajectories.

Theorem 3.2. If R̂0 ≤ 1, then the disease-free equilibrium P0 = (Nh, 0, 0, 0) of system (2.2) is globally
asymptotically stable in ∆.

Proof. We construct the following Lyapunov function for system (2.2):

V(S h, Ih, Ah, Iv) =

(
S h − Nh − Nh ln

S h

Nh

)
+ Ih +

1
µh + δh

(
δh +

βhβvb2

Nhµv
κNv

)
Ah +

βhb
µv

Iv. (3.17)

The function V(t) is defined, continuous and positive definite for all S h, Ih, Ah, Iv ≥ 0. Additionally,
the global minimum V(S h, Ih, Ah, Iv) = 0 occurs at P0 = (Nh, 0, 0, 0), and, therefore, V is a Lyapunov
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function. By calculating its derivative along the solution of (2.2), we obtain

d
dt

V(S h, Ih, Ah, Av) =

(
1 −

Nh

S h

)
dS h

dt
+

dIh

dt
+

1
µh + δh

(
δh +

βhβvb2

Nhµv
κNv

)
dAh

dt
+
βhb
µv

dIv

dt

=

(
S h − Nh

S h

) (
µhNh −

βhb
Nh

S hIv − µhS h

)
+

(
βhb
Nh

S hIv − (µh + γ)Ih + δhAh

)
+

1
µh + δh

(
δh +

βhβvb2

Nhµv
κNv

)
(pγIh − (µh + δh)Ah)

+
βhb
µv

(
βvb
Nh

(Nv − Iv)(Ih + κAh) − µvIv

)
= −µh

(S h − Nh)2

S h

+

[
pγ

µh + δh

(
δh +

βhβvb2

Nhµv
κNv

)
+
βhβvb2

Nhµv
− (µh + γ)

]
Ih

−
βhβvb2

Nhµv
(Ih + κAh)Iv,

= −µh
(S h − Nh)2

S h
−

[
(µh + γ)(µh + δh) − δh pγ

µh + δh

] (
1 − R̂0

)
Ih −

βhβvb2

Nhµv
(Ih + κAh)Iv.

If R̂0 ≤ 1, then dV/dt ≤ 0. Note that dV/dt = 0 if and only if S h = Nh, Ih = 0 and Iv = 0 or if R̂0 = 1,
S h = Nh and Iv = 0. Therefore, the largest compact invariant set in {(S h, Ih, Ah, Iv) : dV/dt = 0} is
the singleton {P0}. By the classical LaSalle invariance principle (Theorem 5.3 of [15]), P0 is globally
asymptotically stable in ∆ if R̂0 ≤ 1. �

3.3. Global stability of the endemic equilibrium point

We consider the global asymptotic stability of a unique endemic equilibrium P∗ by using linear
combinations of Volterra-type functions. The usual process to construct a Lyapunov function for a
positive equilibrium in epidemic [16–19] or intra-host viral infection [20] models is to propose the
use of the Volterra-type function, and to determine the constants to guarantee the negativity of the
derivative of the Lyapunov function along trajectories.

Theorem 3.3. If R̂0 > 1, then the endemic equilibrium P∗ =
(
S ∗h, I

∗
h, A

∗
h, I
∗
v

)
of system (2.2) is globally

asymptotically stable in int(∆).

Proof. Define L : int(R4
+)→ R+:

L(S h, Ih, Ah, Iv) =
(
I∗h + κA∗h

) (
S h − S ∗h − S ∗h ln

S h

S ∗h

)
+

(
I∗h + κA∗h

) (
Ih − I∗h − I∗h ln

Ih

I∗h

)
+

1
pγI∗h

(
δhA∗h

(
I∗h + κA∗h

)
+
κβhb
Nh

S ∗hI∗v A∗h

) (
Ah − A∗h − A∗h ln

Ah

A∗h

)
Mathematical Biosciences and Engineering Volume 20, Issue 10, 18123–18145.
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+
βhS ∗hI∗v

βv
(
Nv − I∗v

) (
Iv − I∗v − I∗v ln

Iv

I∗v

)
.

The function L(t) is defined, continuous and positive definite for all S h, Ih, Ah, Iv ≥ 0. Additionally,
the global minimum L(S h, Ih, Ah, Iv) = 0 occurs at P∗ = (S ∗h, I

∗
h, A

∗
h, I
∗
v ), and, therefore, L is a Lyapunov

function. We calculate the time derivative of L(t):

dL(t)
dt

=
(
I∗h + κA∗h

) (
1 −

S ∗h
S h

) [
µhNh −

βhb
Nh

S hIv − µhS h

]
+

(
I∗h + κA∗h

) (
1 −

I∗h
Ih

) [
βhb
Nh

S hIv − (µh + γ)Ih + δhAh

]
+

1
pγI∗h

(
δhA∗h

(
I∗h + κA∗h

)
+
κβhb
Nh

S ∗hI∗v A∗h

) (
1 −

A∗h
Ah

) [
pγIh − (µh + δh)Ah

]
+

βhS ∗hI∗v
βv

(
Nv − I∗v

) (
1 −

I∗v
Iv

) (
βvb
Nh

(Nv − I∗v )I∗h
Ih

I∗h
+ κ

βvb
Nh

(Nv − I∗v )A∗h
Ah

A∗h
− µvI∗v

Iv

I∗v

)
+

βhS ∗hI∗v
βv

(
Nv − I∗v

) βvb
Nh

I∗v

(
2 −

I∗v
Iv
−

Iv

I∗v

)
(Ih + κAh).

The coordinates S ∗h,I∗h, A∗h and I∗v of the endemic equilibrium (3.1) satisfy the following equations:

µhNh =
βhb
Nh

S ∗hI∗v + µhS ∗h,

µh + γ =
βhb
Nh

S ∗h
I∗v
I∗h

+ δh
A∗h
I∗h
,

µh + δh = pγ
I∗h
A∗h
,

µvI∗v =
βvb
Nh

(Nv − I∗v )(I∗h + κA∗h).

(3.18)

Using the identities given in (3.18), we have

dL(t)
dt

=
(
I∗h + κA∗h

) [
µhS ∗h

(
2 −

S ∗h
S h
−

S h

S ∗h

)
+
βhb
Nh

S ∗hI∗v

(
1 −

S ∗h
S h
−

S hIv

S ∗hI∗v
+

Iv

I∗v

)]
+

(
I∗h + κA∗h

) [βhb
Nh

S ∗hI∗v

(
1 +

S hIv

S ∗hI∗v
−

Ih

I∗h
−

I∗h
Ih

S hIv

S ∗hI∗v

)
+ δhA∗h

(
1 +

Ah

A∗h
−

Ih

I∗h
−

Ah

A∗h

I∗h
Ih

)]
+

1
pγI∗h

(
δhA∗h

(
I∗h + κA∗h

)
+
κβhb
Nh

S ∗hI∗v A∗h

) [
pγI∗h

(
1 +

Ih

I∗h
−

Ah

A∗h
−

A∗h
Ah

Ih

I∗h

)]
+

βhS ∗hI∗v
βv

(
Nv − I∗v

) [
βvb
Nh

(Nv − I∗v )I∗h

(
1 −

I∗v Ih

IvI∗h
+

Ih

I∗h
−

Iv

I∗v

)
+ κ

βvb
Nh

(Nv − I∗v )A∗h

(
1 −

I∗v Ah

IvA∗h
+

Ah

A∗h
−

Iv

I∗v

)]
+

βhS ∗hI∗v
βv

(
Nv − I∗v

) βvb
Nh

I∗v

(
2 −

I∗v
Iv
−

Iv

I∗v

)
(Ih + κAh).

After several calculations, we have
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dL(t)
dt

=
(
I∗h + κA∗h

)
µhS ∗h

(
2 −

S ∗h
S h
−

S h

S ∗h

)
+

(
I∗h + κA∗h

) βhb
Nh

S ∗hI∗v

(
2 −

S ∗h
S h
−

Ih

I∗h
−

I∗hS hIv

IhS ∗hI∗v
+

Iv

I∗v

)
+ δhA∗h

(
I∗h + κA∗h

) (
1 +

Ah

A∗h
−

Ih

I∗h
−

Ah

A∗h

I∗h
Ih

)
+

(
δhA∗h

(
I∗h + κA∗h

)
+
κβhb
Nh

S ∗hI∗v A∗h

) (
1 +

Ih

I∗h
−

Ah

A∗h
−

A∗h
Ah

Ih

I∗h

)
+

bβhS ∗hI∗v I∗h
Nh

(
1 −

I∗v Ih

IvI∗h
+

Ih

I∗h
−

Iv

I∗v

)
+
κbβhS ∗hI∗v A∗h

Nh

(
1 −

I∗v Ah

IvA∗h
+

Ah

A∗h
−

Iv

I∗v

)
+

bβhS ∗h(I∗v )2(
Nv − I∗v

)
Nh

(
2 −

I∗v
Iv
−

Iv

I∗v

)
(Ih + κAh).

Therefore,

dL(t)
dt

= µhS ∗h
(
I∗h + κA∗h

) (
2 −

S ∗h
S h
−

S h

S ∗h

)
+

bβhS ∗h(I∗v )2(
Nv − I∗v

)
Nh

(
2 −

I∗v
Iv
−

Iv

I∗v

)
(Ih + κAh)

+
bβhS ∗hI∗v I∗h

Nh

(
3 −

S ∗h
S h
−

I∗v Ih

IvI∗h
−

I∗hS hIv

IhS ∗hI∗v

)
+ δhA∗h

(
I∗h + κA∗h

) (
2 −

A∗hIh

AhI∗h
−

AhI∗h
A∗hIh

)
+
κbβhS ∗hI∗v A∗h

Nh

(
4 −

S ∗h
S h
−

I∗v Ah

IvA∗h
−

A∗hIh

AhI∗h
−

I∗hS hIv

IhS ∗hI∗v

)
.

The arithmetic mean is greater than the geometric mean, i.e., the terms
(
2 − S ∗h

S h
−

S h
S ∗h

)
,
(
2 − I∗v

Iv
−

Iv
I∗v

)
,(

3 − S ∗h
S h
−

I∗v Ih

IvI∗h
−

I∗hS hIv

IhS ∗hI∗v

)
,
(
2 − A∗hIh

AhI∗h
−

AhI∗h
A∗hIh

)
and

(
4 − S ∗h

S h
−

I∗v Ah

IvA∗h
−

A∗hIh

AhI∗h
−

I∗hS hIv

IhS ∗hI∗v

)
are negative. Consequently,

dL/dt ≤ 0 for any coordinate values (S h, Ih, Ah, Iv) and dL/dt = 0 if and only if S h = S ∗h, Ih = I∗h,
Ah = A∗h and Iv = I∗v . Therefore, the largest compact invariant set in {(S h, Ih, Ah, Iv) : dL/dt = 0} is
the singleton {P∗}. If R̂0 > 1, by the classical LaSalle invariance principle (Theorem 5.3 of [15]), the
endemic equilibrium P∗ is globally asymptotically stable in int(∆). �

4. Bayesian approach

4.1. Bayesian model

We consider the model
yi = Xθ(ti) + ε(ti), i = 1, . . . , n, (4.1)

where yi is the i-th observation of the data that represents the number of infected humans, θ =

(βh, βv, b, µv, γ, p, δh, κ,Nv) is the unknown vector of parameters of the model in (2.2) to estimate, Xθ
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is the numerical solution of the system (2.2) for the state variable Ih according to the Runge–Kutta
fourth-order method and ε(ti) is the random error. The Bayesian statistical model is used in situations
in which the dynamics of the expected value E(yi) = Xθ(ti) are described by the host-vector model and
there is an error around it, i.e, yi − E(yi) = ε(ti). The errors in each measurement are assumed to be
independent even if the expected values E(yi) follow the host-vector model.

We estimate θ by using Bayesian inference, which allowed us to add previous information from the
literature to the data to generate the distribution for each parameter in θ. According to Bayes’ theorem,

P(θ|y) ∝ P(y|θ)P(θ),

where P(θ) is the prior distribution, P(y|θ) is the likelihood function and P(θ|y) is the posterior dis-
tribution. We assume that ε(ti) ∼ N(0, σ2) and yi ∼ N(Xθ(ti), σ2). The likelihood function is given
by

P(y|θ) =

n∏
i=1

1
√

2πσ2
exp

[
−

1
2σ2

(yi − Xθ(ti))2
]
.

To choose the prior distributions, we conducted a literature review of the parameters βh, βv, b, µv

and γ reported in host-vector models for Chikungunya [3–7], the relapse period 1/δh from the epi-
demiological literature [8,12] and the parameters of the town (Acapulco, Mexico) where the epidemic
outbreak occurred (µh, Nh and Nv) [12,21]. The parameter values are given in the third column of Table
1. We used uniform densities for most of the parameters, whose support includes the values collected
from the literature. We only use beta informative prior distributions for the transmission probability
parameters. The prior distributions are given in the fourth column of Table 1. Cole [22] showed that
the lack of identifiability results in a strong dependence on the prior information, and that, if you use
informative prior information, the estimates will be close to the true parameter values.

To sample from the posterior distributions of nine parameters, we use the No-U-Turn-Sampler algo-
rithm, which is a Hamiltonian Monte Carlo method. The reader is referred to [23] for a description of
the method. Three independent Hamiltonian Monte Carlo chains were initialized with a random initial
value and run with 20,000 iterations. For each parameter, we calculated the potential scale reduction
factor, commonly known as Rhat [24]. Rhat values less than or equal to 1.2 indicate convergence to a
stationary distribution. Furthermore, we verified that the trace plots showed good mixing. The libraries
DifferentialEquations [25] and turing [26] of the Julia software [27] were used.

The Bayesian point estimators were the means of the posterior distributions corresponding to a min-
imization of the expected squared error loss function. The 95% credible interval (CrI) was calculated
by using the 2.5th and 97.5th percentiles.

4.2. Bayesian estimation

In Table 2, we report the point and interval estimations of parameters and the basic reproductive
number. We will discuss the convergence criteria of the Markov chain Monte Carlo method in the
Appendix. The estimated fraction of infected individuals who become asymptomatic, p, was approxi-
mately 0.6536, and with a probability of 0.95, this value is between 0.3916 and 0.8324. The estimated
fraction of transmission from asymptomatic humans to vectors was approximately 0.2558, and with
a probability of 0.95, this value is between 0.0385 and 0.6030. The estimated relapse rate δh was
0.7506 (95% CrI: 0.2914–0.9906). The estimated basic reproductive number R0 was 2.80 (95% CrI:

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18123–18145.



18136

2.65–4.50). In Figure 2, we show the fit of the model to the number of humans infected with Chikun-
gunya and numerical simulations of the susceptible human, infected human, asymptomatic human and
infected vector compartments as performed by using the Bayesian mean estimation of the parameters.

Table 1. A review of the values of the model parameters and the selected prior distributions.
For the beta distributions Beta(α, β), α and β are the shape parameters. For the uniform
distributions U(a, b), a and b are the minimum and maximum values.

Parameter Description Reference
Mean value or
range of values

Prior distribution

βh

Transmission
probability: from
vector to human

[7] 0.9999 [0.6,1]

Beta(5, 2)
[4] 0.375
[3] [0.5, 0.8]
[5] 0.67 [0.26, 1]

βv

Transmission
probability: from
human to vector

[7] 0.6 [0.6,1]
Beta(5, 2)[4] 0.375

[3] 0.37

b Number of bites
[7] 2.4676 [1,3]

U(0, 4)[4] 1
[3] 0.5 or 1

µv

Birth and death rates
of mosquitoes

[month−1]

[4] 2.72
U(2, 4.5)[3] 4.28

[6] 2.143

γ
Recovery rate

[month−1]
[7] [3.7,4.5]

U(2.5, 7.5)
[6] [2,6]

p Fraction of infected
becoming asymptomatic

Supposed
U(0, 1)

δh
Relapse rate
[month−1]

[8] 0.5
U(0, 1)

[12] 0.66

κ

Transmission fraction:
from asymptomatic
humans to vectors

Supposed Beta(2, 5)

Nv Total number of vectors Supposed

2 to 4.5 times
more than the

number of
humans

U(11740, 26415)

µh
Birth and death rates
of humans [month−1]

[21] 1
75×12 ≈ 0.0011 Fixed value

Nh Total number of humans [12] 5870 Fixed value
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Table 2. Results from the Bayesian estimation of the model parameters and basic reproduc-
tive number, including their Rhat values.

Parameter Mean Median 95% Credible interval Rhat
βh 0.7379 0.7531 (0.4377, 0.9574) 1.0001
βv 0.7570 0.7737 (0.4633, 0.9638) 1.0002
b 3.2158 3.2528 (2.2392, 3.9579) 1.0002
µv 3.3510 3.3914 (2.0874, 4.4459) 1.0000
γ 4.5821 4.4888 (2.6747, 7.0150) 1.0002
p 0.6536 0.6710 (0.3916, 0.8324) 1.0001
δh 0.7506 0.7910 (0.2914, 0.9906) 1.0000
κ 0.2558 0.2321 (0.0385 , 0.6030) 1.0001

Nv 19440.1813 19580.1146 (12254.6677, 26040.5418) 1.0001
R0 2.8057 1.8199 (2.6528, 4.5063) *

1 2 3 4 5 6 7 8 9 10 11 12
Month

0

100

200

300

400

500

600

I h

Number of cases

1 2 3 4 5 6 7 8 9 10 11 12
Month

0

1000

2000

3000

4000

5000

6000 Sh

Ih
Ah

Iv

Figure 2. Fitted model: (a) Fit of the model to the number of infected humans with Chikun-
gunya by using means as point estimators; (b) Numerical simulations of the four compart-
ments of humans based on a Bayesian mean estimation of the parameters. The solid dots
represent the epidemiological data obtained from [12].

5. Local sensitivity analysis

We performed a sensitivity analysis to measure the dependency of a variable on the parameters
and thus identify the parameters that have the highest impact. The sensitivity index approximates the
fractional change in a variable X that results from a unit fractional change in a parameter α when the
other parameters are kept constant, and it is given by Eα = α

X
∂X
∂α

[28]. If Eα < 0, the relationship
between the parameter α and X is inversely proportional. Otherwise, if Eα is positive, the relationship
is directly proportional.

Using the basic reproductive number R0, as determined by using (3.3), we calculated the sensitivity
index for each parameter:
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Eµh = −
1
2
µh[(µh + δh)2 + κpγ(2µh + δh + γ) + δh pγ]
(κpγ + µh + δh)[(µh + γ)(µh + δh) − δh pγ]

,

Ep =
1
2

pγ(µh + δh)[(µh + γ)κ + δh]
(κpγ + µh + δh)[(µh + γ)(µh + δh) − δh pγ]

,

Eγ =
1
2

γ(µh + δh)[µh(pκ − 1) + δh(p − 1)]
(κpγ + µh + δh)[(µh + γ)(µh + δh) − δh pγ]

,

Eδh =
1
2

δh pγ[−κ(µh + γ(1 − p)) + µh]
(κpγ + µh + δh)[(µh + γ)(µh + δh) − δh pγ]

,

Eκ =
1
2

κpγ
κpγ + µh + δh

,

Eb = 1,

ENv = Eβh = Eβv =
1
2
,

ENh = Eµv = −
1
2
.

We have used the fixed values of µh and Nh from Table 1 and the Bayesian mean estimation of the
model parameters from Table 2 to create Figure 3. The sensitivity indices shown in this figure indicate
that the parameters βh, βv, b, p, κ and Nh have direct relationships with R0. This implies that decreasing
the values of these parameters will reduce R0. On the contrary, the parameters µv, γ, δh, µv and Nh have
inverse relationships with R0. This implies that increasing the values of these parameters will decrease
R0. From Figure 3, we observe that the fraction of infected individuals who become asymptomatic, p,
has the greatest (direct or inverse) impact on R0, followed by the number of bites b, the transmission
probability (βh and βv), the total number of vectors Nv and the death rate of mosquitoes µv.

Among the new parameters incorporated into the Chikungunya model, we note that the relapse rate
δh and the fraction of transmission from asymptomatic humans to vectors κ have a weak impact on R0.
We interpret the negative relationship between δh and R0 as increasing the relapse rate, which decreases
R0, that is to say, by decreasing the relapse period (1/δh), R0 is reduced. On the other hand, the fraction
of infected individuals who become asymptomatic, p, has a strong impact on R0.
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Figure 3. Local sensitivity analysis of the basic reproductive number R0 using the Bayesian
mean estimation of the parameters.
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6. Concluding remarks

Mathematical models for Chikungunya have incorporated the aquatic phase of the mosquito [3,29],
control mechanics [4,7] and the incorporation of intrinsic and extrinsic incubation periods [6,29]. The
phenomenon of relapses in Chikungunya virus infections has been reported in many studies [8–12],
but it has not been considered in mathematical models. In this paper, we proposed the first model that
incorporates the recurrence of symptoms into the dynamics of Chikungunya.

First, we carried out a qualitative analysis of the Chikungunya model with relapses. The system has
the classic equilibrium points, namely, disease-free and endemic equilibrium points. We calculated the
basic reproductive number (R0 =

√
R̂0) for the disease by using the next-generation operator method.

We proved that the disease-free equilibrium point P0, when R̂0 = 1, presents a forward bifurcation.
We analyzed the global stability of the equilibrium points by using the Lyapunov function method.
We proved that the disease-free equilibrium is globally asymptotically stable when R̂0 ≤ 1, and that
the endemic equilibrium is globally asymptotically stable when R̂0 > 1 in the interior of the feasible
region.

Second, a Chikungunya outbreak occurred in Acapulco, Mexico, and we used the epidemiological
data of self-reported cases from this outbreak obtained in [12] to fit the state variable Ih of the model.
We used the Bayesian approach to estimate nine model parameters and two fixed parameter values.
For this outbreak, we estimated that the fraction of infected individuals who become asymptomatic, p,
is between 0.3916 and 0.8324. These estimates of the infected people who experience relapses with
rheumatoid symptoms are consistent with those reported in the literature which ranges from approx-
imately 30% [12] to 72% [8]. The relapse period (1/δh) is estimated to be between 1.00 and 3.43.
Infected asymptomatic humans play a relatively small role in the transmission of the infection; the
fraction of transmission from asymptomatic humans to vectors ranged from 0.0385 to 0.6030. We esti-
mated that the basic reproductive number was equal to 2.80 (95% CrI: 2.65–4.50); this value plays an
important role as a bifurcation value and in epidemiological interpretation. Recently, Haider et al. [30]
estimated, using a frequentist meta-analysis, the basic reproductive number for Chikungunya based on
various studies that have estimated this value; they obtained a value of 3.4 (95% confidence interval:
2.4–4.2). Our Bayesian estimate of R0 is very similar to that reported in [30].

Third, we performed a local sensitivity analysis of the basic reproductive number by using the
Bayesian mean estimation of the model parameters. Among the new parameters incorporated into the
Chikungunya model, we found that the fraction of infected individuals who become asymptomatic, p,
has a strong impact on R0. The fraction p and the relapse period 1/δh could be reduced with antiviral
therapies, and, consequently, R0 could be decreased. Conversely, the relapse rate δh has a weak impact
on R0, but it is not insignificant.

Fourth, to assess the efficiency of insecticide control in the presence and absence of relapses, we
varied the mosquito death rate and examined its impact on R0. The results for these two scenarios are
shown in Figure 4. For the case in which the fraction p is considered, we note that we need a higher
mortality rate to ensure that the disease is controlled, with an R0 value below unity. When relapses
are not considered in the modeling, it intuitively follows that less control is needed over the mosquito
population. This demonstrates the importance of incorporating relapse into Chikungunya models for
the estimation of the dynamics of the disease and the study of control measures and protocols.
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Figure 4. Values of the basic reproductive number obtained by varying the death rate of
mosquitoes µv. On the left side, the fraction of infected individuals who become asymp-
tomatic (p) is considered, and, on the right side, the fraction p is not considered.

Finally, this work has some limitations. The occurrence of Chikungunya cases was self-reported
through a designed questionnaire, and the cases were not confirmed by PCR or serological tests. Our
model considers that the relapse rate is constant, but the epidemiological literature reports variability
in the relapse periods that should be considered in future work.
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Appendix

In this Appendix, the convergence criteria of the host-vector model for Chikungunya are discussed.
The chains of model parameters show good mixing, as shown in Figure 5. Table 2 shows the results of
the computation of the Rhat values, thus indicating that both convergence results are consistent.
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Figure 5. On the left, the convergence chains are shown, and, on the right, the posterior distributions
of the parameters of the host-vector model for Chikungunya are shown.
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