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Abstract: Within the framework of physical and ecological integrated control of cyanobacteria bloom,
because the outbreak of cyanobacteria bloom can form cyanobacteria clustering phenomenon, so a new
aquatic ecological model with clustering behavior is proposed to describe the dynamic relationship
between cyanobacteria and potential grazers. The biggest advantage of the model is that it depicts
physical spraying treatment technology into the existence pattern of cyanobacteria, then integrates the
physical and ecological integrated control with the aggregation of cyanobacteria. Mathematical theory
works mainly investigate some key threshold conditions to induce Transcritical bifurcation and Hopf
bifurcation of the model (2.1), which can force cyanobacteria and potential grazers to form steady-
state coexistence mode and periodic oscillation coexistence mode respectively. Numerical simulation
works not only explore the influence of clustering on the dynamic relationship between cyanobacteria
and potential grazers, but also dynamically show the evolution process of Transcritical bifurcation
and Hopf bifurcation, which can be clearly seen that the density of cyanobacteria decreases gradually
with the evolution of bifurcation dynamics. Furthermore, it should be worth explaining that the most
important role of physical spraying treatment technology can break up clumps of cyanobacteria in the
process of controlling cyanobacteria bloom, but cannot change the dynamic essential characteristics of
cyanobacteria and potential grazers represented by the model (2.1), this result implies that the physical
spraying treatment technology cannot fundamentally eliminate cyanobacteria bloom. In a word, it is
hoped that the results of this paper can provide some theoretical support for the physical and ecological
integrated control of cyanobacteria bloom.
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1. Introduction

In eutrophic lakes, cyanobacterial Microcystis colonies usually aggregate and float upwards to
form nuisance mucilaginous Microcystis blooms, the development of mucilaginous cyanobacterial
Microcystis blooms is a serious environmental and ecological problem, and information on the
bloom-formation mechanism has been lacking until now [1]. Based on their long-term research work
on cyanobacteria bloom in Taihu Lake, Qin et al. [2] believed that the outbreak of cyanobacteria
bloom actually experienced four stages: 1) cyanobacteria cell proliferation stage; 2) cyanobacteria
cell groups formation stage; 3) cyanobacteria cell groups floating stage; 4) cyanobacteria bloom
outbreak stage. At the same time, they also deemed that in the process of cyanobacteria cell
aggregation, the collision probability of cell groups could increase, and smaller cell masses were
easier to bond, which could form larger groups and accelerate the emergence of cyanobacteria bloom.
Furthermore, Chen et al. [3] pointed out that the aggregation and migration of Microcystis had many
ecological advantages, which could promote the formation of Microcystis bloom. Kong et al. [4]
proposed that the most direct reason for the formation of cyanobacteria bloom was the massive
aggregation, growth, migration and floating to the water surface stage of Microcystis. Obviously, the
formation of cyanobacteria cell aggregation is one of the keys to the outbreak of cyanobacteria bloom.
Therefore, how to prevent and disperse cyanobacteria cell groups is one of the key control measures
to prevent cyanobacteria bloom.

Cyanobacterial blooms are commonly referred to as harmful algal blooms (HABs) due to their
vast ecological impacts and ability to generate metabolites and taste, a variety of in-lake/reservoir
control measures are implemented to reduce the abundance of nuisance cyanobacteria biomass [5].
Kibuye [5,6] gave a critical review on operation and performance of source water control strategies for
cyanobacterial bloom: chemical control methods, mechanical/physical control methods and biological
control methods. And they pointed out that each control method had site-specific strengths, limitations,
and ecological impacts, which should hint that none of the reviewed control strategies can provide
a comprehensive solution to cyanobacterial blooms. In view of the cyanobacteria blooms in Taihu
Lake, the competent authorities mainly adopt the comprehensive method of combining mechanical
control method and biological control method, this is because that Taihu Lake is a drinking water
source. Although most mechanical and biological control strategies can offer long-term control, their
application can be cost-prohibitive and treatment efficacy is influenced by source water geometry and
continual nutrient inputs from external sources [6]. Therefore, how to coordinate mechanical control
methods with biological control methods is very important, and it is also one of the problems worthy
of our in-depth study.

In order to curb the scale of cyanobacteria bloom in Taihu Lake, the management department of
Taihu Lake should realize the transformation from focusing on source control and pollution
interception to paying equal attention to source control, pollution interception and ecological
regulation [7]. At the same time, there are many kinds of cyanobacteria in Taihu Lake, usually
Microcystis [8], and allowing cyanobacteria cells to aggregate is one of the necessary conditions for
cyanobacteria bloom [9]. Furthermore, once the cyanobacteria bloom breaks out, the regeneration
from cell turnover and nutrient recycling by closely associated heterotrophic bacteria and
microzooplankton grazers can help sustain bloom biomass, so the key biological factors to control
cyanobacteria bloom must include grazing of zooplankton (possibly benthos and fish) [10]. However,
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some literatures have studied the dynamic relationship between cyanobacteria cell aggregation and
zooplankton/fish grazing. Yang et al. [11] investigated the effect of grazing by different sorts of
zooplankton on the induction of defensive morphology in the cyanobacterium Microcystis aeruginosa,
and pointed out that cyanobacterium Microcystis aggregation could effectively block zooplankton
predation and thus increase the survival of Microcystis aeruginosa. Burkert et al. [12] inquired into
the interactions between the cyanobacteria and the potential grazer, pointed out that the predator came
in direct contact with Microcystis, aggregates were formed. Chow-Fraser et al. [13] had evidence that
grazers in oligotrophic lakes exert a greater impact on algae than those in eutrophic lakes. To
summarise, cyanobacteria species can also benefit by their tendencies to congregate as large
filamentous and colonial colonies, which reduces zooplankton predation.

At present, the cyanobacteria bloom research team of Wenzhou University is trying to use a novel
comprehensive method to deal with the problem of cyanobacteria bloom in Taihu Lake, which is a
combination of mechanical control method and biological control method. Firstly, in the initial stage
of cyanobacteria bloom, a part of cyanobacteria agglomerates were broken by physical jet treatment
device (a cyanobacteria bloom treatment ship is developed by Wenzhou University), its purpose is to
destroy the aggregation stage of cyanobacteria cells and improve the chance of individual
cyanobacteria cells being grazed. Secondly, some streamline ecosystems and food web structures will
be reconstructed to create unfavorable conditions for cyanobacteria, some filter-feeding organisms
(such as zooplankton, mussels, bivalves and fish) can be added to feed on cyanobacteria [14–16].
Finally, with the help of the internal operation characteristics of aquatic ecosystem, we expect that
aquatic ecosystem can quickly change from algae bloom ecosystem to algae-zooplankton-fish cycle
ecosystem. However, whether or not cyanobacterial bloom can be successfully controlled, the novel
comprehensive method can influence changes in competition, predation, and behavioral response to
predation and competition in the restored habitat. Therefore, after the cyanobacteria bloom is treated
by physical jet technology, the restoration and increase of zooplankton and filter-feeding fish how to
affect the self purification ability and balance of aquatic ecosystem are worthy of our further study,
whether algal population can coexist with zooplankton or filter-feeding fish in the range of relatively
low algal population is also worth exploring.

With the rapid development of numerical analysis and simulation technology, dynamic models
have gradually become one of the powerful tools for studying natural science phenomena and
problems, which can promote the relevant scientific problems to obtain some excellent research
results, such as relevant literatures [17–27]. In references [17–19] applied reaction-diffusion equation
to examine the calcium diffusion in the cells, investigated some nonlinear dynamics problems and got
some interesting results. In reference [20] explored some dynamical behaviors of forced KdV
equation to describe the free surface critical flow over a hole, and some meaningful results were
given. In reference [21] inquired into chaotic dynamics of a fractional order HIV-1 model involving
AIDS-related cancer cells, some meaningful results showed that order of the fractional derivative had
a significant effect on the dynamics process. The paper [22] studied the dynamics of infectious
diseases within a human host and in the population, and gave some meaningful theoretical and
numerical simulation results. In reference [23] gave some good results to verify the effectiveness of
linear feedback control for chaos. In reference [24] investigated a newly developed model for
Hepatitis-B infection in sense of the Atangana-Baleanu Caputo fractional-order derivative, and
obtained some good research conclusions. In references [25–27] looked into multiple bifurcations of
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discrete-time dynamic model, and some important theoretical and numerical results are obtained. In a
word, the research on dynamic models has been developed rapidly, and a large number of excellent
research results have emerged.

Now, the disaster of aquatic ecosystem caused by cyanobacteria bloom is one of the hot issues in
the world. After the cyanobacteria bloom is treated by chemical control methods, mechanical control
methods and biological control methods, the essential characteristics of the internal self recovery and
strengthening mechanism of aquatic ecosystem is one of the problems that need to be studied
urgently. Furthermore, the algae bloom research team of Wenzhou University has built a physical
spraying treatment ship, which mainly deals with the algae blooms in subtropical lakes and reservoirs,
and reconstructs the biological food chain for ecological algae control after treatment. Thus, in order
to understand the internal self recovery and strengthening mechanism of aquatic ecosystem, we must
deeply explore the interactions between cyanobacteria (Microcystis aeruginosa) and potential grazer
after cyanobacteria bloom treatment, and make clear the coexistence mode and change trend of
cyanobacteria (Microcystis aeruginosa) and potential grazers based on water ecological model and
dynamic simulation. Therefore, we believe that the originality of this paper is to illustrate the
dynamic evolution relationship between cyanobacteria and potential grazers by means of the
bifurcation dynamic evolution process of the model (2.1), and give the evolutionary characteristics of
the coexistence mode of cyanobacteria and potential grazers.

2. Ecological mathematical modeling

Bertalanffy [28] proposed a method to study the biological system using mathematical model in
1932, this approach is a combination of coordination, order and purpose, which can form three basic
ideas of studying the biological system, namely: trophic-level analysis, system perspective and
dynamic view. Since then, the research on ecological model and its related dynamics has developed
unprecedentedly, and a large number of literature and works have appeared, such as fundamentals of
ecological modelling [29], a nitrogen-phosphorus-blue-green algae model [30], some nitrogen and
phosphorus dose-response models [31], a mathematical model including three types of zooplankton
and two types of fish as well as two types of algae and nutrients [32], an aquatic bacteria-algae
amensalism model [33], an ecological model considering two types of phytoplankton, three types of
zooplankton, planktivorous fish, detritus and dissolved matters [34], an aquatic algae-fish model [35],
one dimensional hydrodynamic-ecological model [36], a two-component model with nutrients and
cyanobacteria [37], a four-component model including nutrient, unicellular algae, colonial algae and
herbivorous zooplankton [38], an algal bloom mathematical model involving
zooplankton-phytoplankton population [39]. Obviously, the ecological model has been developed
rapidly in water eutrophication and algal bloom, and some meaningful theoretical results have been
obtained. Although there is a certain understanding of the mechanism and control effect of
cyanobacteria bloom in recent years, there are still many unsolved mysteries in the outbreak and
control of cyanobacteria bloom.

In order to make clear the coexistence mode and change trend of cyanobacteria (Microcystis
aeruginosa) and potential grazers (mussels, bivalves, and silver carp) after cyanobacteria bloom is
treated by comprehensive control strategy, which can help us explore the interactions between
cyanobacteria and potential grazers, and explicit the effectiveness and feasibility of the comprehensive
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control strategy, we will construct a new aquatic ecological model based on the comprehensive
control strategy and internal operation law of aquatic ecosystem. Therefore, some model assumptions
and cyanobacteria bloom background will be given as follows:

1) The growth environment of cyanobacteria and potential grazers is assumed to be a semi closed
aquatic ecosystem, species biomass is always evenly distributed in space and changed instantaneously
with time t. x(t) and y(t) represent respectively the biomass of total cyanobacteria (unicellular
cyanobacteria and colonial cyanobacteria) and potential grazers. After cyanobacteria bloom is treated
by mechanical control method (physical jet processing device), total cyanobacteria will be divided
into colonial cyanobacteria α1x(t) and unicellular cyanobacteria α2x(t) with α1 + α2 = 1. If α1 = 0
and α2 = 1, this shows that cyanobacteria population mainly exists in the form of unicellular
cyanobacteria, and the cyanobacteria population has no aggregation behavior and can not form a
group aggregation state. If α1 = 1 and α2 = 0, this indicates that cyanobacteria bloom has erupted in a
large area, especially serious, and all cyanobacteria populations are clustered, which is an extreme
state of existence and almost does not exist in reality.

2) Because when unicellular cyanobacteria gather into groups, the light utilization rate of algae
cells can be enhanced [40], the salt stress resistance and high light stress of algal cells can be improved
[41,42], the ability to avoid the invasion of viruses, bacteria and algae phages can be strengthened [43],
nutrient and inorganic carbon absorption capacity can be greatly promoted [44,45], the risk of predation
can be greatly reduced [46]. In light of the above, cyanobacteria aggregation can find more suitable
niche, obtain greater ecological advantages and enhance growth rate. Therefore, we assume that the
growth kinetics function of cyanobacteria x(t) is f (α1

α2
)x(t)(1 − x(t)

k ) with intrinsic growth rate function
f (α1
α2

) and maximum environmental capacity k,

f (
α1

α2
) =


r1
α1
α2
, 0 < α1 < 1, 0 < α2 < 1,

rmin, α1 = 0, α2 = 1,
rmax, α1 = 1, α2 = 0,

where r1 is a median growth rate with α1 =
1
2 and α2 =

1
2 , rmin is a growth rate without aggregation,

and, rmax is a growth rate with overall aggregation state.

3) During cyanobacteria blooms, cyanobacteria can induce morphological changes to colonial forms
in order to avoid zooplankton grazing, this mechanism can be an adaptive reaction for survival that has
developed through evolutionary processes [47, 48]. For example, Microcystis exists as colonial forms,
the relevant research results are in the papers [35, 38, 43]. However, unicellular cyanobacteria do
not have this protective mechanism. Hence, we use Holling type II functional responses a2

α2 x(t)y(t)
b+α2 x(t) to

describe the predation mechanism of potential grazers on unicellular cyanobacteria, this is because the
predation process of potential grazers not only take time to capture, but also depend on the abundance
of unicellular cyanobacteria, where a2 is a grazing coefficient and b is a half-saturation constant. At the
same time, we use mathematical functional a1(α1x(t)− g(α1

α2
))y(t) to describe the predation mechanism

of potential grazers on colonial cyanobacteria, a1 is a grazing coefficient and predation function g(α1
α2

)
avoided by colonial cyanobacteria, and
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g(
α1

α2
) =


mα1
α2
, 0 < α1 < 1, 0 < α2 < 1,

0, α1 = 0, α2 = 1,
mmax, α1 = 1, α2 = 0,

where m is a median biomass of colonial cyanobacteria (which can never be hunted) with α1 =
1
2 and

α2 =
1
2 , 0 indicates that unicellular cyanobacteria do not have this ability, mmax is a maximum biomass

of colonial cyanobacteria (which can never be hunted) with overall aggregation state.
4) It is widely known that potential grazers can not eat only cyanobacteria, and must forage other

species as alternate foods. Thus, the growth kinetics function of potential grazers is r2y(t)+e1a1(α1x(t)−
g(α1
α2

))y(t) + e2a2
α2 x(t)y(t)
b+α2 x(t) with alternate coefficient r2 and absorption conversion coefficients e1 and e2.

Furthermore, cyanobacteria and potential grazers have their own other losses (such as natural death),
we might as well set them to m1x(t) and m2y(t) with loss coefficient m1,m2.

Based on the above assumptions and analysis, we can construct a new aquatic ecological control
model and two special aquatic ecological models with non-negative initial conditions x(0) ≡ x0 ≥ 0
and y(0) ≡ y0 ≥ 0, which can be described as following:

dx(t)
dt = r1

α1
α2

x(1 − x
k ) − a1(α1x − α1

α2
m)y − a2

α2 xy
b+α2 x − m1x,

dy(t)
dt = r2y + e1a1(α1x − α1

α2
m)y + e2a2

α2 xy
b+α2 x − m2y,

(2.1)


dx(t)

dt = rminx(1 − x
k ) − a2

xy
b+x − m1x,

dy(t)
dt = r2y + e2a2

xy
b+x − m2y,

(2.2)


dx(t)

dt = rmaxx(1 − x
k ) − a1(x − mmax)y − m1x,

dy(t)
dt = r2y + e1a1(x − mmax)y − m2y.

(2.3)

The model (2.1) represents the mixed state of unicellular cyanobacteria and colonial cyanobacteria,
the biomass of unicellular cyanobacteria and colonial cyanobacteria is controlled by critical parameter
α1 or α2 because of α1 + α2 = 1. If the value of α1 belongs to (0, 0.2], the model (2.1) represents
cyanobacteria cell proliferation stage. If the value of α1 belongs to (0.2, 0.4], the model (2.1) represents
cyanobacteria cell groups formation stage. If the value of α1 belongs to (0.4, 0.6], the model (2.1)
represents cyanobacteria cell groups floating stage. If the value of α1 belongs to (0.6, 1), the model (2.1)
represents cyanobacteria bloom outbreak stage. Overall, the model (2.1) can describe that the outbreak
of cyanobacteria bloom in Taihu Lake actually experienced four stages [2]. The models (2.2) and (2.3)
represent the stage of unicellular cyanobacteria and colonial cyanobacteria respectively, neither of these
two states will exist in reality, therefore, we only study them as two limit states.

With the help of bifurcation dynamic analysis and dynamic simulation of the model (2.1), the main
purpose of this paper is to explore how the aquatic ecosystem can recover and strengthen itself after
the comprehensive treatment of cyanobacteria bloom. To solve this problem, we firstly make a
qualitative analysis of the model (2.1), deduce some critical threshold conditions to ensure the
existence and stability of some equilibrium points, and give some critical conditions under which the
model can induce Transcritical and Hopf bifurcation. Secondly, we will comprehensively investigate
how comprehensive management measures affect the dynamic characteristics of cyanobacteria bloom
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and evaluate the effectiveness of comprehensive management measures in controlling cyanobacteria
bloom. Finally, we carry out relevant dynamic experiments to verify the feasibility of the theoretical
derivation results and identify the possible coexistence mode of cyanobacteria and potential grazers,
then we can analyze interaction mechanism between cyanobacteria and potential grazers in the
process of cyanobacteria bloom outbreak and control.

3. Superiority analysis of the proposed model (2.1)

In order to investigate the superiority of the model (2.1), the dynamic relationship between the
biomass of cyanobacteria and potential grazers was qualitatively analyzed and numerically simulated
with r1 = 0.56, r2 = 0.2, k = 5, a1 = 0.6, a2 = 0.4, b = 0.15, m1 = 0.18, m2 = 0.28, e1 = 0.6, e2 = 0.28,
α1 = 0.35, α2 = 0.65, rmin = 0.2, rmax = 0.8, mmax = 3, m = 0.1.

(a) The dynamic relationship between x and y
biomass of the model (2.2).

(b) The dynamic relationship between x and y
biomass of the model (2.3).

(c) The dynamic relationship between x and y
biomass of the model (2.1).

Figure 1. The dynamic evolution relationship between cyanobacteria and potential grazers.

From the model (2.2), we can find that the relation expression of cyanobacteria x and potential
grazers y is given by

y =
(rmin(1 − x

k ) − m1)(b + x)
a2

.

It is easy to see from Figure 1(a) that the dynamic relationship of cyanobacteria x and potential grazers
y is a concave function as the value of cyanobacteria x increases, and there is a unique maximum
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value, and the maximum value of cyanobacteria population is still low. Unfortunately, the value range
of cyanobacteria x is relatively small, and the biomass of potential grazers y becomes negative with the
increase of cyanobacteria x. Obviously, this dynamic result can not better reflect the running law of
cyanobacteria bloom control test in the laboratory.

From the model (2.3), we can find that the relation expression of cyanobacteria x and potential
grazers y is given by

y =
a1x + m1x − rmax(1 − x

k )
a1mmax

.

It can clearly find from Figure 1(b) that the dynamic relationship of cyanobacteria x and potential
grazers y is a convex function as the value of cyanobacteria x increases, and there is a unique
minimum value 0, which is not in line with the wild growth law of cyanobacteria population because
cyanobacteria population will never die out. Furthermore, it is even more regrettable that the value of
potential grazers y approaches positive infinity with the increase of cyanobacteria x value, which
completely violates the dynamic relationship between cyanobacteria x and potential grazers y in the
process of cyanobacteria bloom.

From the model (2.1), we can find that the relation expression of cyanobacteria x and potential
grazers y is given by

y =
r1α1 x
α2
− m1x

a1(α1x − α1m
α2

) + a2α2 x
b+α2 x

.

It is worth pointing out that potential grazers y is monotonically increasing and has supremum r1
a1α2
−

m1
a1α1

as the value of cyanobacteria x increases to positive infinity. Furthermore, the better result is that
cyanobacteria x approaches a small fixed value when potential grazers y approaches positive infinity,
this result is more in line with the natural law (see Figure 1(c)). Moreover, what is more gratifying is
that there is a unique minimum value, through which we can regulate the recyclability of cyanobacteria
bloom test, which is also our favorite routine manipulation.

In a word, through the comparative analysis of numerical simulation results, it can be seen that the
model (2.1) can more accurately describe the dynamic relationship between cyanobacteria and
potential grazers under the mechanical and ecological integrated control, so we mainly study the
relevant dynamic problems of the model (2.1).

4. Existence and stability of equilibrium point

The existence and local stability of all possible equilibrium points will be investigated in detail.
The equilibrium point is a kind of special solution of the model (2.1), which can determine some
coexistence modes of cyanobacteria and potential grazers, and it is also the basis of subsequent
bifurcation dynamics research. Thus, the existence and local stability of all possible equilibrium
points will be futher investigated in this section.

Now, we consider the algae isocline vertically and potential grazers isocline horizontally,
respectively:  r1

α1
α2

x(1 − x
k ) − a1α1(x − m

α2
)y − a2

α2 xy
b+α2 x − m1x = 0,

r2 + e1a1α1(x − m
α2

) + e2a2
α2 x

b+α2 x − m2 = 0&y = 0.
(2.4)
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By solving the above equations with zero dash, there are two classes of equilibrium points:
boundary equilibrium points E0 and E1, the coordinates of internal equilibria E∗1 and E∗2.

It is obvious that the equilibrium points are the intersections of these nullclines. Thus, we easily see
that the model (2.1) possesses two boundary equilibrium points E0(0, 0) and E1(x1, 0). For the possible
positive equilibria, we only need consider the positive solutions of the following equations:

 a1e1α1α2x2 + (α2r2 − α2m2 + a2e2α2 + a1be1α1 − a1e1α1m)x + b(r2 − m2 −
a1e1α1bm
α2

) = 0,
r1
α1
α2

x(1 − x
k ) − a1α1(x − m

α2
)y − a2

α2 xy
b+α2 x − m1x = 0.

(2.5)

For positive equilibrium points, the algae population x must satisfy m
α2
< x < k, Let ∆(x) denote the

discriminant of the first equation of (2.5) and express ∆(x) in terms of, i.e,

∆(x) = B2 − 4AC,

where, B = (r2 − m2 + a2e2)α2 + a1e1α1b − a1e1α1m,
A = a1e1α1α2, C = b(r2 − m2 −

a1e1α1bm
α2

).

Hence, we have

∆ = ((r2 − m2 + a2e2)α2 + a1e1α1b − a1e1α2m)2 − 4a1e1α1α2b(r2 − m2 + a1e1m).

With respect to the conditions of the equilibrium points, we obtain the following theorem:
Theorem 1. The equilibrium points of the model (2.1) are as follows: the model(2.1) always has a
boundary equilibrium point E0(0, 0). If α1

α2
> m1

r1
, then the model (2.1) has a boundary equilibrium point

E1(x1, 0) with x1 =
k(r1α1−m1α2)

r1α1
.

Theorem 2. For the positive equilibrium point, we have:
1) When m ≤ I1, the model (2.1) has no positive equilibrium point E∗1(x∗1, y

∗
1),

2) When r2 − m2 + a2e2 > 0 and r2 − m2 < 0, if max{0, I1} < m < min{I2, I3, I4} or max{0, I1, I2} <

m < min{I3, I4}, then the model (2,1) has a unique positive equilibrium point E∗1(x∗1, y
∗
1),

3) When r2 − m2 + a2e2 < 0, if max{0, I1, I3} < m < min{I2, I4} or max{0, I1, I2, I3} < m < I4, then
the model (2.1) has a unique positive equilibrium point E∗1(x∗1, y

∗
1),

where
x∗1 =

−((r2−m2+a2e2)α2+a1e1α1b−a1e1α2m)+
√
∆

2a1e1α1α2
, y∗1 =

(r1
α1
α2
−m1)x∗1−

r1α1
kα2

x∗21

a1(α1 x∗1−
α1m
α2

)+
a2α2 x∗1
b+α2 x∗1

,

I1 =
(r2−m2)α2

a1e1α1
, I2 =

α2(r2−m2+a2e2)
α1a1e1

, I3 =
b(m2−r2)

r2−m2+a2e2
, I4 =

(kα2
2+bα2)(r2−m2+a1e1α

2
2k

a1e1α1(α2k+b) .

Proof. Let the solution of the nullclines g(x) = Ax2 + Bx + C = 0, we know that the model (2.1) has
the positive roots only if r2 − m2 −

a1e1α1m
α2
< 0, which means m ≥ I1. At the same time, we also show

that if m ≥ I1, then ∆ > 0 and C < 0, which means that g(x) has a unique positive root E∗1(x∗1, y
∗
1).

Hence, if g( m
α2

) < 0 and g(k) > 0, there is a positive real root in m
α2
< x < k. Due to the fact that ∆ > 0,

hence, if g( m
α2

) < 0 and g(k) > 0, we have the conditions with I3 and I4. If g( m
α2

) < 0, it follows that
r2 − m2 + a2e2 > 0 for m < I3 or r2 − m2 + a2e2 < 0 for m > I3. If m < I4, we have f (k) > 0. Next, we
just discuss the symbols of B.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 930–954.



939

If m = I2, we have B = 0, then g(x) = 0 has a unique positive root x1 =
√

b(α2m2−α2r2+a1e1α1m)
a1e1α1α

2
2

.
Similarly, if m < I2 or m > I2, then B > 0 or B < 0, we must know that g(x) = 0 has a unique positive
root x∗. From the above analysis, the model (2.1) has a unique positive equilibrium point if and only if
one of the following situation:
1) When m = I2, the model (2.1) has a unique equilibrium point E∗1(x∗1, y

∗
1).

2) When r2 − m2 + a2e2 > 0 and r2 − m2 < 0, if max{0, I1} < m < min{I2, I3, I4} or max{0, I1, I2} < m <
min{I3, I4}, then the model (2.1) has a unique positive equilibrium point E∗1(x∗1, y

∗
1).

3) When r2 − m2 + a2e2 < 0, if max{0, I1, I3} < m < min{I2, I4} or max{0, I1, I2, I3} < m < I4, then the
model (2.1) has a unique positive equilibrium point E∗1(x∗1, y

∗
1).

Next, we will study the types and stability of the equilibrium points. Firstly, the Jacobian matrix of
the model (2.1) is given as follows:

J(x, y) =
r1
α1
α2

(1 − 2x
k ) − a1α1y − a2α2by

(b+α2 x)2 − m1 −a1α1(x − m
α2

) − a2α2 x
b+α2 x

e1a1α1y + a2e2α2by
(b+α2 x)2 r2 − m2 + e1a1α1(x − m

α2
) + e2a2

α2 x
b+α2 x

 .
Theorem 3. With respect to the origin of this equilibrium point E0, we have:

1) When α1
α2
< m1

r1
and α1

α2
< m2−r2

e1a1m hold, the equilibrium point E0 is a stable node.
2) When α1

α2
> m1

r1
and α1

α2
< m2−r2

e1a1m hold, or α1
α2
< m1

r1
and α1

α2
> m2−r2

e1a1m hold, the equilibrium point E0 is a
saddle.

Proof. The Jacobian matrix of the equilibrium point E0 is

JE0 =

( r1α1
α2
− m1

α1a1m
α2

0 r2 − m2 +
α1e1a1m
α2

)
.

Obviously, JE0 has two characteristic roots λ1 =
r1α1
α2
− m1, λ2 = r2 − m2 +

α1e1a1m
α2

. We applied the
Routh-Hurwitz criterion to analyze the stability. The equilibrium point E0 is a stable node since λ1 < 0
and λ2 < 0, while r1α1

α2
< m1 and r2 +

e1a1α1m
α2

< m2 hold. The equilibrium point E0 is a saddle since
λ1 < 0 and λ2 < 0, while r1α1

α2
< m1 and r2 +

e1a1α1m
α2

< m2 hold. Similarly it can be proved that the
equilibrium point E0 is a saddle if r1α1

α2
< m1 and r2 +

e1a1α1m
α2
> m2.

Theorem 4. When α1
α2
> m1

r1
, then the equilibrium point E1(x1, 0) is a stable node if r2 − m2 −

α1e1a1m
α2
+

e1η1 + e2η2 < 0, and the equilibrium point E1(x1, 0) is a saddle if r2 − m2 −
α1e1a1m
α2
+ e1η1 + e2η2 > 0.

Proof. The Jacobian matrix of E1 is

JE1 =

(
m1 −

α1r1
α2

α1a1m
α2
− η1 − η2

0 r2 − m2 −
α1e1a1m
α2
+ e1η1 + e2η2

)
,

where
η1 =

a1k(α1r1 − α2m1)
r1

, η2 =
a2kα2(α1r1 − α2m1)

α1r1b − α2k(α1r1 − α2m1)
.

Then the eigenvalues of JE1 are λ3 = m1 −
α1r1
α2

, λ4 = r2 − m2 −
α1e1a1m
α2
+ e1η1 + e2η2. It is obvious

that λ3 < 0, hence the equilibrium point E1(x1, 0) is a stable node if λ4 < 0, and the equilibrium point
E1 is a saddle if λ4 > 0.
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Theorem 5. The conditions for the existence of the internal equilibrium point E∗1(x∗1, y
∗
1) are shown

in Theorem 2. In this paper, it has been proved that there is and only one internal equilibrium point
E∗1(x∗1, y

∗
1). If Tr(JE∗1

(x∗1, y
∗
1)) < 0, then the internal equilibrium point E∗1(x∗1, y

∗
1) is locally asymptotically

stable; otherwise, the internal equilibrium point E∗1(x∗1, y
∗
1) is unstable.

Proof. The Jacobian matrix of the internal equilibrium point E∗1 is

JE∗1
=

r1
α1
α2

(1 − 2x∗1
k ) − a1α1y∗1 −

a2α2by∗1
(b+α2 x∗1)2 − m1 −a1α1(x∗1 −

m
α2

) − a2α2 x∗1
b+α2 x∗1

e1a1α1y∗1 +
a2e2α2by∗1
(b+α2 x∗1)2 0

 .
The determinant of the matrix JE∗1

is

Det(JE∗1
) = (e1a1α1y∗1 +

a2e2α2by∗1
(b+α2 x∗1)2 )(a1α1(x∗1 −

m
α2

) + a2α2 x∗1
b+α2 x∗1

).

The trace of the matrix JE∗1
is

Tr(JE∗1
) = r1

α1
α2

(1 − 2x∗1
k ) − a1α1y∗1 −

a2α2by∗1
(b+α2 x∗1)2 − m1.

It is obvious that all terms of the product of determinants are positive, hence, we can judge that the
determinants of the Jacobian matrix of E∗1 is always positive. Thus, when Tr(JE∗1

) < 0, the internal
equilibrium point E∗1 has two negative eigenvalues, which means that the internal equilibrium point
E∗1 is locally asymptotically stable. Otherwise, both characteristic roots are positive, and the internal
equilibrium point E∗1 is unstable.

5. Local bifurcation analysis

In order to probe some possible coexistence evolution modes of cyanobacteria and potential
grazers during the outbreak of cyanobacteria bloom, and clarify how the sheltering effect of colonial
cyanobacteria affects the coexistence mode of cyanobacteria and potential grazers, we choose m as the
control parameter to study the bifurcation dynamic behavior of the model (2.1), mainly including
Transcritical bifurcation and Hopf bifurcation. If the model (2.1) can have Transcritical bifurcation,
which implies that the cyanobacteria and potential grazers can coexist in a certain range at least, and
there will be no extinction of at least one population with the advance of time. If the model (2.1) can
have Hopf bifurcation, which shows that cyanobacteria and potential grazers can coexist in a periodic
oscillation mode in a certain range, and the two populations can continue to survive with the advance
of time. Therefore, bifurcation dynamics of the model (2.1) has important significance in population
ecology and is worthy of our in-depth study.

5.1. Transcritical bifurcation

The existence of Transcritical bifurcation is studied at the boundary equilibrium point E1(x1, 0), we
should ensure that α1

α2
> m1

r1
is satisfied. Thus, we state the following theorem.

Theorem 6. The model (2.1) can undergo a Transcritical bifurcation at the boundary equilibrium poin
E1(x1, 0) when m ≡ mTC =

α2
α1e1a1

(r2 − m2 + e1η1 + e2η2).
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Proof. Now, we use Sotomayor’s Theorem to verify the transversality condition for the occurrence
of Transcritical bifurcation at m ≡ mTC =

α2
α1e1a1

(r2 − m2 + e1η1 + e2η2), it can be easily verified that
Det(JE1) = 0. Since λ3λ4 = Det(JE1), which implies that JE1TC has a zero eigenvalue, that is to say
λ4 = 0, thus the Jacobian matrix at E1 is

JE1TC =

(
m1 −

α1r1
α2

α1a1m
α2
− η1 − η2

0 0

)
.

Let v and w be the two eigenvectors corresponding to the zero eigenvalue of the matrices JE1TC and
JT

E1TC
respectively, and they are given by

v =
(
v1

1

)
,w =

(
0
1

)
,

where v1 =
α2(r2−m2−e1η2+e2η2)

e1(α1r1−α2m1) .
Furthermore, we can get

Fm(E1,mTC) =
( α1a1y

α2

−
α1e1a1y
α2

)
(E1,mTC)

=

(
0
0

)
,

DFm(E1,mTC)v =
(
0 α1a1

α2

0 −
α1e1a1
α2

) (
v1

1

)
(E1,mTC)

=

( α1a1
α2

−
α1e1a1
α2

)
,

D2Fm(E1,mTC)(v, v) =

∂2F1
∂x2 v2

1 + 2∂
2F1
∂x∂y v1v2 +

∂2F1
∂y2 v2

2
∂2F2
∂x2 v2

1 + 2∂
2F2
∂x∂y v1v2 +

∂2F2
∂y2 v2

2


(E1,mTC)

=

 0
α2(r2−m2−e1η2+e2η2)

e1(α1(r1+m1)−m1) (a1e1α1 +
a2e2bα2

(b+ α2(α1r1−α2m1)
r1α1

)2
)

 ,
clearly, they can satisfy the transversality conditions:
wT Fm(E1,mTC) = 0,
wT [DFm(E1,mTC)v] = −α1e1a1

α2
, 0,

wT [D2Fm(E1,mTC)(v, v)] = 2α2(r2−m2−e1η2+e2η2)
e1(α1(r1+m1)−m1) (a1e1α1 +

a2e2bα2

(b+ α2(α1r1−α2m1)
r1α1

)2
) , 0.

Therefore, when m ≡ mTC =
α2
α1e1a1

(r2 − m2 + e1η1 + e2η2), the model (2.1) can induce Transcritical
bifurcation at the boundary equilibrium point E1.

5.2. Hopf bifurcation

In the view of the proof of Theorem 5, we can know that Hopf bifurcation can occur at the positive
equilibrium point E∗1. At the same time, the positive equilibrium point E∗1 can change its stability when
the value of m passes through the critical magnitude. Thus, we summarize our findings in the following
theorem.
Theorem 7. Based on Theorem 5, the model (2.1) can induce a Hopf bifurcation when m = mHP.
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Proof. The characteristic equation of matrix JE∗1
is λ2 − Tr(JE∗1

)λ + Det(JE∗1
) = 0, and three cross-

sectional conditions of Hopf bifurcation occurs, i.e.,
1) Tr(JE∗1

)m=mHP = 0,
2) Det(JE∗1

)m=mHP > 0,

3)
dTr(JE∗1

)
dα |m=mHP= 0.

Previously, we can show that Det(JE∗1
)m=mHP > 0. And when m = mHP, we have Tr(JE∗1

)m=mHP = 0.

Thus we have
dTr(JE∗1

)
dα |m=mHP= 0, where

Tr(JE∗1
)m=mHP = r1

α1
α2

(1 − 2x∗1
k ) − a1α1y∗1 −

a2α2by∗1
(b+α2 x∗1)2 − m1 = 0.

In conclusion, the model (2.1) can induce a Hopf bifurcation when m = mHP. Next, we will discuss
the stability of the limit cycle by computing the first Lyapunov number. Translate the equilibrium point
E∗1 to the origin by using the following transformation:

x = xm − x∗1, y = ym − y∗1.

Hence, we obtainẋm = a10xm + a01ym + a20x2
m + a11xmym + a02y2

m + a30x3
m + a21x2

mym + a12xmy2
m + a03y3

m + Q(xm, ym),
ẏm = b10xm + b01ym + b20x2

m + b11xmym + b02y2
m + b30x3

m + b21x2
mym + b12xmy2

m + b03y3
m + P(xm, ym),

where

a10 = a1α1y∗1 +
a2α2y∗1

b − x∗1α2
+

r1α1k + 2r1α1x∗1
α2k

+
a2α

2
2x∗1y∗1

(b − x∗1α2)2 − m1,

a20 = −
r1α1

α2k
−

a2α
2
2y∗1

(b − x∗1α2)2 −
a2α

3
2x∗1y∗1

(b − x∗1α2)3 , a30 =
a2α

3
2y∗1

(b − x∗1α2)3 +
a2α

4
2x∗1y∗1

(b − x∗1α2)4 ,

a21 =
a2α

2
2

(b − x∗1α2)2 +
a2α

3
2x∗1

(b − x∗1α2)3 , a11 = −a1α1 −
a2α2

b − x∗1α2
−

a2α
2
2x∗1

(b − x∗1α2)2 ,

a01 =
α1a1m
α2

+ a1x∗1y∗1 +
a2α2x∗1

b − x∗1α2
, b10 = −y∗a1e1α1 −

e2a2α2y∗1
b − x∗1α2

−
e2a2α

2
2x∗1y∗1

(b − x∗1α2)2 ,

b20 =
e2a2α

2
2y∗1

(b − x∗1α2)2 +
e2a2α

3
2x∗1y∗1

(b − x∗1α2)3 , b30 = −
e2a2α

3
2y∗1

(b − x∗1α2)3 −
e2a2α

4
2x∗1y∗1

(b − x∗1α2)4 ,

b21 = −
e2a2α

2
2

(b − x∗1α2)2 −
e2a2α

3
2x∗1

(b − x∗1α2)3 , b11 =
e2a2α2

b − x∗1α2
+

e2a2α
2
2x∗1

(b − x∗1α2)2 + a1e1α1,

b01 = −
α1a1e1m
α2

− m2 + r2 − a1e1α1x∗1 −
e2a2α2x∗1
b − x∗1α2

, a02 = a12 = a03 = b02 = b12 = b03 = 0.

And then Q(xm, ym), P(xm, ym) are power series in (xm, ym) with terms xi
my j

m, which can satisfy i+ j ≥
4. Therefore, the first Lyapunov number to determine the stability of limit cycle is given by the formula
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l1 =
−3π

2a01∆3/2
{[a10b10(a2

11 + a11b02 + a02b11) + a10a01(b2
11 + a20b11 + a11b02)

+ b2
10(a11a02 + 2a02b02) − 2a10b10(b2

02 − a20a02) − 2a10a01(a2
20 − b20b02)

− a2
01(2a20b20 + b11b20) + (a01b10 − 2a2

10)(b11b02 − a11a20)] − (a2
10 + a01b10)[3(b10b03 − a01a30)

+ 2a10(a21 + b12) + (b10a12 − a01b21)]}.

It is well known that the limit cycle generated by the Hopf bifurcation is unstable if l1 > 0 and
stable if l1 < 0. Nevertheless, the expression of the first Lyapunov number is too complex to judge the
positive and negative. Therefore, we will give some numerical solutions in Section 6.

6. Numerical simulation analysis

Under the research framework of theoretical derivation, we will not only verify the feasibility and
effectiveness of the theoretical results, but also explore how clustering affects the dynamic
relationship between cyanobacteria and potential grazers, thus the parameter m and β = α1

α2
are

selected as control variables for numerical simulation with r1 = 0.56, r2 = 0.2, k = 5, a1 = 0.6,
a2 = 0.4, b = 0.15, m1 = 0.18, m2 = 0.28, e1 = 0.6, e2 = 0.28, it should be noted that all parameter
values are estimated according to biological significance and theoretical conditions. Furthermore,
β = α1

α2
represents the proportion of colonial cyanobacteria and unicellular cyanobacteria, which can

also indicate the outbreak degree of cyanobacteria bloom. If β = α1
α2
> 1 indicates that the

manifestation of cyanobacteria is mainly colonial cyanobacteria, which is not conducive to the
capture of potential grazers. If β = α1

α2
< 1 indicates that the manifestation of cyanobacteria is mainly

unicellular cyanobacteria, which is conducive to the capture of potential grazers. Moreover, it should
be pointed out that the predation behavior of potential grazers on cyanobacteria is essentially the
implementation of ecological control technology.

When we take β = 0.5385 with α1 = 0.35 and α2 = 0.65, which represents that the cyanobacteria
in the whole ecosystem are in the bloom period, showing the phenomenon of aggregation. In other
words, the current situation is not conducive to potential grazers to prey on cyanobacteria. Based on
numerical simulation work, the bifurcation diagram of the model (2.1) with control parameter m has
been shown in Figure 2(a). It is easy to find that the model (2.1) will experience a Hopf bifurcation and
Transcritical bifurcation with the value of m changing within [0, 1.8]. When the value of m gradually
decreases from 1.8 to mTC = 1.42282, the model (2.1) will occur a Transcritical bifurcation (Figure 3),
the boundary equilibrium point E1 will change from a stable state to an unstable state, which suggests
that potential grazers will not always be close to extinction.

And when the value of m is between (mHP,mTC), the model (2.1) has an asymptotically stable
internal equilibrium point E∗1 (seeing Figure 3(b)), which indicates that cyanobacteria and potential
grazers can coexist in a stable equilibrium state. If the value of m gradually decreases to mHP =

0.2957018, the model (2.1) will occur Hopf bifurcation, the internal equilibrium point will change
from a stable state to an unstable state, and a stable limit cycle will appear, the detailed numerical
simulation results are shown in Figures 4 and 5. Furthermore, we can get that the Lyapunov exponent
is −2.57010 × 107, which can further verify that the limit cycle is stable. Moreover, it should be
explained that the dynamic characteristics of the model (2.1) have changed substantially, which means
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(a) The bifurcation diagram of the model (2.1)
with α1 = 0.35 and α2 = 0.65.

(b) The bifurcation diagram of the model (2.1)
with α1 = 0.52 and α2 = 0.48.

Figure 2. The evolution process of coexistence mode of cyanobacteria and potential grazers.
The red line represents the internal equilibrium point x∗1 changing by m, solid line represents
the equilibrium point stable, dashed line represents the equilibrium point unstable and two
vertical dashed lines represent the critical value of bifurcation. More detailed, Hp and
TC are the critical values for the Hopf bifurcation, Transcritical bifurcation of the model,
respectively. (a) mHP = 0.2957018, mTC = 1.42282; (b) mHP = 0.1412414, mTC = 1.74941.
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(b) E∗1 is a stable node, and E1 is a saddle point with m < mTC .

m = 1.52
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(c) E∗1 is not existed, and E1 is a stable node with m > mTC .

Figure 3. Evolution process of steady-state coexistence mode with α1 = 0.35 and α2 = 0.65.
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that the coexistence state of cyanobacteria and potential grazers changes from a stable equilibrium state
to a stable periodic oscillation state.

(a) Hopf bifurcation with m = mHP. (b) Local amplification of (a).

m = 0.315
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(c) Stable internal equlilbrium point with m > mHP.

m = 0.28
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(d) A limit cycle with m < mHP.

Figure 4. Evolution process of periodic oscillation coexistence mode with α1 = 0.35
and α2 = 0.65. (a) We have stable periodic orbits bifurcate through Hopf bifurcation
around E∗1(0.48682, 0.16138) with m = mHP = 0.2957018; (b) Local amplification of (a);
(c) E∗1(0.50822, 0.16493) is a locally asymptotically stable with m = 0.315 > mHP; (d)
E∗1(0.46966, 0.15840) is an unstable focus with m = 0.28 < mHP.

When we take β = 1.083 with α1 = 0.52 and α2 = 0.48, which represents that the cyanobacteria
in the whole ecosystem are still in the bloom period, but the current situation is quite disadvantageous
to potential grazers to prey on cyanobacteria because unicellular cyanobacteria account for 0.48. It is
easy to discover from Figure 2(b) that the model (2.1) has almost the same dynamic evolution process.
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Figure 5. Dynamic evolution diagram of Hopf bifurcation with critical value m = mHP =

0.2957018.

m = 1.74941
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(b) E∗1 is a stable node, and E1 is a saddle point with m < mTC .
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(c) E∗1 is not existed, and E1 is a stable node with m > mTC .

Figure 6. Evolution process of steady-state coexistence mode with α1 = 0.52 and α2 = 0.48.

When the value of m gradually decreases from 2 to mTC = 1.74941, a Transcritical bifurcation will
occur (Figure 6). When the value of m continues to decrease to mHP = 0.125, the instability of the

Mathematical Biosciences and Engineering Volume 20, Issue 1, 930–954.



947

equilibrium point can produce a stable limit cycle, the detailed dynamic results are shown in Figures 7
and 8.

At the same time, the Lyapunov exponent is −5.15158 × 1014, which can show the stability of
the limit cycle. From the essence of system dynamics evolution, whether the value of β is greater
than 1 or less than 1, the model (2.1) has exactly the same dynamic evolution characteristics, that
is, Transcritical bifurcation and Hopf bifurcation. That is to say, the ratio of colonial cyanobacteria
to unicellular cyanobacteria does not affect the evolution characteristics of the dynamic state of the
model (2.1). Moreover, it is also worth emphasizing that the value of parameter m seriously affects the
dynamic relationship and coexistence mode between cyanobacteria and potential grazers.

m = 0.1412414
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(a) Hopf bifurcation with m = mHP.
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(d) A limit cycle with m < mHP.

Figure 7. Evolution process of periodic oscillation coexistence mode with α1 = 0.35
and α2 = 0.65. (a) We have stable periodic orbits bifurcate through Hopf bifurcation
around E∗1(0.38961, 0.58723) with m = mHP = 0.14124142; (b) Local amplification of
(a); (c) E∗1(0.41055, 0.60801) is locally asymptotically stable with m = 0.155 > mHP; (d)
E∗1(0.36531, 0.56250) is unstable focus with m = 0.125 < mHP.

Based on the comparative analysis of numerical simulation results, a Transcritical bifurcation will
occur at mTC = 1.42282 when the value of β is less than 1, however a Transcritical bifurcation will
occur at mTC = 1.74941 when the value of β is greater than 1. This result means that during the outbreak
of cyanobacteria bloom, the earlier the clustered cyanobacteria population is crushed by physical spray
treatment technology, the more opportunities there are to change the dynamic relationship between
cyanobacteria and potential grazers, and provide an entry point for the coexistence of cyanobacteria
and potential grazers. However, the critical value of inducing Hopf bifurcation is just the opposite.
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When the value of β is less than 1, Hopf bifurcation can be induced at m = 0.2957018, which suggests
that potential grazers actively prey on unicellular cyanobacteria to obtain sufficient food, which can
lead to a large increase in the biomass of potential grazers. This increased predation ability can lead
to essential changes in the dynamic relationship between them, and then play a role in controlling
the large-scale outbreak of cyanobacteria bloom. However, when the value of β is greater than 1,
Hopf bifurcation can be induced at m = 0.14124142, which means that the number of unicellular
cyanobacteria can not basically maintain the growth needs of potential grazers, and a large number
of colonial cyanobacteria need to be prey, which will cause colonial cyanobacteria to be gradually
broken. This result also leads to a stable equilibrium between cyanobacteria and potential grazers
in the range of m. Therefore, from the perspective of controlling cyanobacteria bloom by physical
spray treatment technology, the colonial cyanobacteria turns into unicellular cyanobacteria after the
cyanobacteria bloom is treated by physical spray, which is conducive to potential grazers to prey, and
then lead to the coexistence mode of potential grazers and cyanobacteria in a stable state.

Figure 8. Dynamic evolution diagram of Hopf bifurcation with critical value m = mHP =

0.1412414.

7. Conclusions

Within the framework of physical and ecological integrated control and management of
cyanobacteria bloom, according to the growth characteristics and comprehensive management
characteristics of wild cyanobacteria population, we mainly focus on the impact of physical spraying
treatment technology on the structural characteristics of cyanobacteria population and the predation
effect of potential grazers, and give some ecological modeling assumptions. On this basis, a aquatic
ecological dynamic new model is proposed to describe the dynamic relationship between
cyanobacteria and potential grazers. At the same time, it is worth emphasizing from Figure 1 that the
biggest advantage of this new model is that it integrates three kinds of dynamic action modes, of
which the sub model (2.1) is the most distinctive and has not been studied by predecessors.
Furthermore, the biggest advantage of the model (2.1) is that it can perfectly describe the dynamic
relationship between cyanobacteria and potential grazers under the physical and ecological integrated
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control, most commendably, it can control cyanobacteria bloom from the perspective of minimum
value, and the consumption of potential predators is limited.

Underlying the analysis of mathematical theory, we first explore the existence and stability of the
equilibrium point of the model (2.1), and give some critical conditions of some critical parameters.
Then, we obtain some key threshold conditions to ensure that the model (2.1) has specific dynamic
behaviors, such as Transcritical bifurcation and Hopf bifurcation. These theoretical results are the basis
for our numerical simulation analysis, which provides theoretical support for in-depth exploration of
the dynamic relationship between cyanobacteria and potential grazers.

Based on the results of numerical analysis, the dynamic behavior type and dynamic evolution
process of the model (2.1) are clarified, focusing on the Transcritical bifurcation and Hopf
bifurcation. It is easy to find from Figure 2 that when cyanobacteria bloom break out and gather into
clusters, we implement a physical and ecological comprehensive control strategy for cyanobacterial
bloom, the dynamic relationship between cyanobacteria and potential grazers suddenly changes by
Transcritical bifurcation, which can form coexistence mode in a stable equilibrium state, the detailed
dynamic simulation results are shown in Figures 3 and 6. After then, the biomass of cyanobacteria
and potential grazers gradually decrease with the reduction of agglomeration, finally, a stable periodic
oscillation coexistence mode is formed to maintain a good cycle of ecological algae control strategy,
these dynamic simulation results are shown in Figures 4, 5, 7 and 8. Furthermore, it is more
meaningful to obtain from Figures 3 and 6 that Transcritical bifurcation represents evolution process
of steady-state coexistence mode, and it is the most ecologically significant result form Figures 4
and 7 that Hopf bifurcation represents evolution process of periodic oscillation coexistence mode. In
addition, it should be emphasized that the most important role of physical spraying treatment
technology is to break up clumps of cyanobacteria in the process of controlling cyanobacteria bloom,
which will not change the dynamic essential characteristics of cyanobacteria and potential grazers
represented by the model (2.1).

Based on theoretical and numerical research results, the main results of this paper are as follows: 1)
The population density of cyanobacteria decreases gradually as the value of key parameter m decreases,
that is to say, the implementation of physical spraying treatment technology can effectively control the
population density of cyanobacteria. 2) Transcritical bifurcation can induce steate-state coexistence
mode between cyanobacteria and potential grazers, and Hopf bifurcation can force cyanobacteria and
potential grazers to form periodic oscillation coexistence mode. 3) The evolutionary characteristics of
bifurcation dynamics suggest that physical and ecological integrated control technique can effectively
inhibit the growth of cyanobacteria, and promote the formation of a stable coexistence mode between
cyanobacteria and potential grazers within a controllable range.

In general, some results have been obtained by proposing a new aquatic ecological model, however,
the work of this paper still has some limitations, such as: 1) the characteristics of toxicity released by
cyanobacteria population were not considered in the modeling, 2) cyanobacteria migration behavior
is not mentioned, 3) modeling assumptions make that the application of the model (2.1) has certain
limitations. Thus there is still much work to be further studied, for example, how does the release of
cyanobacteria toxins affects the predatory ability of potential grazers during physical spray treatment,
effect of cyanobacteria migration behavior on algae control effect of physical spraying technology,etc.
In a word, it is hoped that the research results of this paper will provide some theoretical support for
the application of physical and ecological comprehensive management of cyanobacteria bloom.
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