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Abstract: Statistical methodologies have broader applications in almost every sector of life including
education, hydrology, reliability, management, and healthcare sciences. Among these sectors,
statistical modeling and predicting data in the healthcare sector is very crucial. In this paper, we
introduce a new method, namely, a new extended exponential family to update the distributional
flexibility of the existing models. Based on this approach, a new version of the Weibull model,
namely, a new extended exponential Weibull model is introduced. The applicability of the new
extended exponential Weibull model is shown by considering two data sets taken from the health
sciences. The first data set represents the mortality rate of the patients infected by the coronavirus
disease 2019 (COVID-19) in Mexico. Whereas, the second set represents the mortality rate of
COVID-19 patients in Holland. Utilizing the same data sets, we carry out forecasting using three
machine learning (ML) methods including support vector regression (SVR), random forest (RF), and
neural network autoregression (NNAR). To assess their forecasting performances, two statistical
accuracy measures, namely, root mean square error (RMSE) and mean absolute error (MAE) are
considered. Based on our findings, it is observed that the RF algorithm is very effective in predicting
the death rate of the COVID-19 data in Mexico. Whereas, for the second data, the SVR performs
better as compared to the other methods.
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1. Introduction

The first COVID-19 infected case was identified in late 2019 in China and then spread around the
globe with extraordinary speed. By March 11, 2021, the COVID-19 confirmed cases were registered
in 213 countries, and the World Health Organization (WHO) declared this disease a global pandemic;
see Ngo et al. [1]. Due to this pandemic, every aspect of life has been disturbed and almost every
region around the globe has faced unexpected situations. In every region, among other sectors
affected by this pandemic, the health sector is the most affected area; see Pfefferbaum and North [2],
Kim et al. [3], Campion et al. [4], Gloster et al. [5], Talevi et al. [6], and Wastnedge et al. [7]. As of
December 13, 2021, 09:09 GMT (Greenwich Mean Time), totally confirmed cases (TCC) have
touched a figure of 270488249, the total number of deaths (TND) has reached 5324113, and
243235043 infected persons have been recovered. For the latest updates and details about the
COVID-19 events; see https://www.worldometers.info/coronavirus/.

The top fifteen countries with the higher TND, include (i) America with 817956 deaths, (ii) Brazil
with 616941 deaths, (iii) India with 475636 deaths, (iv) Mexico with 296672 deaths, (v) Russia with
290604 deaths, (vi) Peru with 201,650 deaths, (vii) the United Kingdom with 146439 deaths, (viii)
Indonesia with 143936 deaths, (ix) Italy with 134831 deaths, (x) Iran with 130722 deaths, (xi)
Colombia with 129107 deaths, (xii) France with 120431 deaths, (xiii) Argentina with 116771 deaths,
(ivx) Germany with 106331 deaths, and (xv) Ukraine with 91215 deaths. For a brief overview of
country-wise statistics related to the COVID-19 pandemic, we refer to Bo et al. [8].

Due to the unprecedented situation of the COVID-19 pandemic, it is necessary to have the best
description and efficient modeling of the COVID-19 events. Statistical methodologies are very useful
in modeling and predicting lifetime events. Several statistical studies on this pandemic have appeared.
For example, Moreau [9] predicted the COVID-19 phenomena in Brazil. Tuli et al. [10] predicted the
growth trend of the COVID-19 pandemic. Rahman et al. [11] implemented the Weibull model for the
COVID-19 data analysis. Almetwally [12] introduced a new inverted Topp-Leone (NITL) distribution
and used it for modeling the COVID-19 mortality rate data.

These statistical studies are carried out either by implementing the existing models or by proposing
new methodologies to update/modify the existing distributions. In the recent era of DT (distribution
theory), the development of new methods to introduce new distributions is an important research topic.
In this regard, numerous methods to update the distributional flexibility of the existing model have
been introduced; see Alizadeh et al. [13] Chipepa et al. [14], Handique et al. [15], Tahir et al. [16],
Zaidi et al. [17], Riad et al. [18], and Bakr et al. [19]. For more information about the applicability of
statistical models in applied sectors, we refer to Xu et al. [20], and Luo et al. [21].

In this paper, we further contribute to the literature on DT by proposing a new approach, namely,
a new extended exponential (NEExp) family. It can be used to obtain the updated versions of the
classical/traditional (such as Weibull, beta, gamma, Gumble, Rayleigh, etc.) or other existing models.
The NEExp family is proposed by incorporating the T-X distributions approach of Alzaatreh et al. [22]
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with the exponential distribution with probability density function (PDF) e−t, taken as a parent model.
The novelty and key motivations of the proposed method are the followings:

• The method introduced in this paper is new and has not been studied in the literature.
• The proposed method is a very simple and convenient approach of adding an extra parameter to

obtain the updated versions of the existing models.
• The proposed approach helps to improve the flexibility and characteristics of the existing models.
• The proposed method provides a close fit to healthcare and other related data sets.

The reaming work carried out in this paper is organized as follows. In Section 2, we define the
proposed family and discuss its special case. Certain mathematical properties of the NEExp family
are provided in Section 3. The estimation of the parameters and a simulation study are provided
in Section 4. To illustrate the NEExp family, two practical data sets are analyzed in Section 5. To
forecast the COVID-19 data sets, the machine learning methods are discussed in Section 6. Finally,
some concluding remarks, limitations of the proposed method, and future study plans are discussed in
Section 7.

2. The proposed method and its special model

This section is divided into two subsections. In the very first subsection, we define the proposed
NEExp family of distributions. Whereas, the second subsection is devoted to studying a special case
of the NEExp family of distributions

2.1. The proposed method

Let V has a NEExp family, if its distribution function (DF) F (v; δ,ϑϑϑ) is given by

F (v; δ,ϑϑϑ) = 1 −
δ [1 − M (v;ϑϑϑ)]
δ + M (v;ϑϑϑ)

, v ∈ R, (2.1)

where δ > 0 is an additional parameter and ϑϑϑ is a vector of parameters associated with the baseline DF
M (v;ϑϑϑ) .

Furthermore, in link to F (v; δ,ϑϑϑ), the PDF f (v; δ,ϑϑϑ) of the NEExp family is

f (v; δ,ϑϑϑ) =
δ (δ + 1) m (v;ϑϑϑ)

[δ + M (v;ϑϑϑ)]2 , v ∈ R. (2.2)

For v ∈ R, the survival function (SF) S (v; δ,ϑϑϑ) = 1 − F (v; δ,ϑϑϑ), and hazard function (HF)
h (v; δ,ϑϑϑ) =

f (v;δ,ϑϑϑ)
1−F(v;δ,ϑϑϑ) of the NEExp family are given by

S (v; δ,ϑϑϑ) =
δ [1 − M (v;ϑϑϑ)]
δ + M (v;ϑϑϑ)

,

and

h (v; δ,ϑϑϑ) =
(δ + 1) m (v;ϑϑϑ)

[1 − M (v;ϑϑϑ)] [δ + M (v;ϑϑϑ)]
,

respectively.
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A special member of the NEExp family called, a new extended exponential Weibull
(NEExp-Weibull) model is discussed in the next subsection. The NEExp-Weibull model is introduced
by using the DF of the Weibull model in Eq (2.1). The DF M (v;ϑϑϑ) of the Weibull model is given by

M (v;ϑϑϑ) = 1 − e−ϕ2vϕ1
, v ≥ 0, ϕ1 > 0, ϕ2 > 0, (2.3)

with PDF m (v;ϑϑϑ) given by

m (v;ϑϑϑ) = ϕ1ϕ2vϕ1−1e−ϕ2vϕ1
, v > 0, ϕ1 > 0, ϕ2 > 0,

where ϑϑϑ = (ϕ1, ϕ2) . By incorporating Eq (2.3) in Eq (2.1), we reach at the DF of the NEExp-Weibull
model; see Subsection 2.2.

2.2. The NEExp-Weibull distribution: a special model

A random variable V has the NEExp-Weibull model with parameters ϕ1 > 0, ϕ2 > 0, and δ > 0, if
its DF F (v; δ,ϑϑϑ) and PDF F (v; δ,ϑϑϑ), are given by

F (v; δ,ϑϑϑ) = 1 −
δe−ϕ2vϕ1

δ + 1 − e−ϕ2vϕ1
, v ≥ 0, (2.4)

and

f (v; δ,ϑϑϑ) =
δ (δ + 1)ϕ1ϕ2vϕ1−1e−ϕ2vϕ1[

δ + 1 − e−ϕ2vϕ1
]2 , v > 0, (2.5)

respectively.
For the NEExp-Weibull model with DF in Eq (2.4) and PDF in Eq (2.5), the SF F̄ (v; δ,ϑϑϑ) = 1 −

F (v; δ,ϑϑϑ), HF h (v; δ,ϑϑϑ) =
f (v;δ,ϑϑϑ)
F̄(v;δ,ϑϑϑ) , and CHF H (v; δ,ϑϑϑ) = − log

(
F̄ (v; δ,ϑϑϑ)

)
are given by

F̄ (v; δ,ϑϑϑ) =
δe−ϕ2vϕ1

δ + 1 − e−ϕ2vϕ1
, v > 0,

h (v; δ,ϑϑϑ) =
(δ + 1)ϕ1ϕ2vϕ1−1[
δ + 1 − e−ϕ2vϕ1

] , v > 0,

and

H (v; δ,ϑϑϑ) = − log
(

δe−ϕ2vϕ1

δ + 1 − e−ϕ2vϕ1

)
, v > 0,

respectively.
A visual behavior of f (v; δ,ϑϑϑ) for (i) ϕ1 = 5.5, ϕ2 = 0.2, δ = 9.5 (red curve) (ii) ϕ1 = 4.5, ϕ2 =

0.6, δ = 2.5, (green curve) (iii) ϕ1 = 0.5, ϕ2 = 1.6, δ = 1.5, (blue curve) and (iv) ϕ1 = 1.9, ϕ2 = 2.6, δ =

2.5, (gold curve) is provided in Figure 1.
From the visual illustration in Figure 1, we can see that f (v; δ,ϑϑϑ) possess different behaviors. For

example, it takes (i) the left-skewed form (red curve), (ii) the symmetrical shape (green curve), (iii) the
reverse-J shape (blue curve), and (iv) the right-skewed (gold curve).
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Figure 1. A visual behavior of f (v; δ,ϑϑϑ) for different values of ϕ1, ϕ2, and δ.

3. Mathematical properties

Here, we obtain different mathematical properties of the NEExp family with PDF f (v; δ,ϑϑϑ). These
properties include QF (quantile function) expressed by Q (u), rth moment denoted by µ/r , MGF
(moment generating function) represented by MV (t), RL (residual life), and RRL (reverse residual
life) functions.

3.1. The quantile function

The QF of the NEExp family can be obtained by inverting Eq (2.1). Let V have the NEExp family
with DF F (v; δ,ϑϑϑ), then, its QF is given by

vq = Q (u) = F−1
(

δu
δ + 1 − u

)
,

where u ∈ (0, 1).

3.2. The rth moment

Suppose V follows the NEExp family of distributions, then the rth moment of the NEExp
distributions is derived as
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µ/r =

∫
Ω

vr δ (δ + 1) m (v;ϑϑϑ)

[δ + M (v;ϑϑϑ)]2 dv,

µ/r =
(δ + 1)
δ

∫
Ω

vr m (v;ϑϑϑ)[
1 +

M(v;ϑϑϑ)
δ

]2 dv. (3.1)

Consider the series

1
(1 + k)2 =

∞∑
a=1

(−1)a−1 aka−1. (3.2)

By implementing Eq (3.2) with k =
M(v;ϑϑϑ)
δ
, we have

1(
1 +

[
M(v;ϑϑϑ)
δ

])2 =

∞∑
a=1

(−1)a−1 a
(

M (v;ϑϑϑ)
δ

)a−1

. (3.3)

Using Eq (3.3) in Eq (3.1), we get

µ/r =
(δ + 1)
δa

∞∑
a=1

(−1)a−1 a
∫

Ω

vrm (v;ϑϑϑ) M (v;ϑϑϑ)a−1 dv,

µ/r =
(δ + 1)
δa

∞∑
a=1

(−1)a−1
∫

Ω

vrka (v;ϑϑϑ) dv, (3.4)

where ka (v;ϑϑϑ) = a m (v;ϑϑϑ) M (v;ϑϑϑ)a−1 is the exponentiated PDF, and a is a power parameter. We can
also write Eq (3.4), as follows

µ/r =
(δ + 1)
δa

∞∑
a=1

(−1)a−1 λa,r, (3.5)

where
λa,r =

∫
Ω

vrka (v;ϑϑϑ) dv. (3.6)

Using the DF and PDF of the Weibull model in Eq (3.6), we get

λa,r =

∫ ∞

0
vrϕ1ϕ2vϕ1−1e−ϕ2vϕ1

(
1 − e−ϕ2vϕ1

)a−1
dv. (3.7)

On solving Eq (3.7), we get

λa,r =

a−1∑
k=0

(−1)k
(
a − 1

k

) ∫ ∞

0
vrϕ1ϕ2vϕ1−1e−ϕ2(k+1)vϕ1 dv,

λa,r =

a−1∑
k=0

(−1)k
(
a − 1

k

)
Γ
(

r
ϕ1

+ 1
)

(ϕ2)
r
ϕ1 (k + 1)

r
ϕ1

+1
. (3.8)
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Using Eq (3.8) in Eq (3.5), we get the rth moment of the NEExp-Weibull model, given by

µ/r =
(δ + 1)
δa

∞∑
a=1

a−1∑
k=0

(−1)a+k−1
(
a − 1

k

)
Γ
(

r
ϕ1

+ 1
)

(ϕ2)
r
ϕ1 (k + 1)

r
ϕ1

+1
. (3.9)

Using r = 1, in Eq (3.9), we get the first rth moment of the NEExp-Weibull model, given by

µ/1 =
(δ + 1)
δa

∞∑
a=1

a−1∑
k=0

(−1)a+k−1
(
a − 1

k

)
Γ
(

1
ϕ1

+ 1
)

(ϕ2)
1
ϕ1 (k + 1)

1
ϕ1

+1
.

Using r = 2, in Eq (3.9), we obtain the second rth moment of the NEExp-Weibull model, given by

µ/2 =
(δ + 1)
δa

∞∑
a=1

a−1∑
k=0

(−1)a+k−1
(
a − 1

k

)
Γ
(

2
ϕ1

+ 1
)

(ϕ2)
2
ϕ1 (k + 1)

2
ϕ1

+1
.

Using r = 3, in Eq (3.9), we obtain the third rth moment of the NEExp-Weibull model, given by

µ/3 =
(δ + 1)
δa

∞∑
a=1

a−1∑
k=0

(−1)a+k−1
(
a − 1

k

)
Γ
(

3
ϕ1

+ 1
)

(ϕ2)
3
ϕ1 (k + 1)

3
ϕ1

+1
.

Using r = 4, in Eq (3.9), we obtain the second rth moment of the NEExp-Weibull model, given by

µ/4 =
(δ + 1)
δa

∞∑
a=1

a−1∑
k=0

(−1)a+k−1
(
a − 1

k

)
Γ
(

4
ϕ1

+ 1
)

(ϕ2)
4
ϕ1 (k + 1)

4
ϕ1

+1
.

Furthermore, the MGF of the NEExp-Weibull model is given by

MV (t) =
(δ + 1)
δa

∞∑
a=1

a−1∑
k=0

∞∑
r=0

(−1)a+k−1 tr

r!

(
a − 1

k

)
Γ
(

r
ϕ1

+ 1
)

(ϕ2)
r
ϕ1 (k + 1)

r
ϕ1

+1
.

3.3. The residual life

The RL of the NEExp-Weibull model represented by Rt (v) , is given by

Rt (v) =
δe−ϕ2(v+t)ϕ1

δ + 1 − e−ϕ2(v+t)ϕ1
×
δ + 1 − e−ϕ2vϕ1

δe−ϕ2vϕ1
.

Furthermore, the RRL of the NEExp-Weibull model represented by R̄t (v) , is given by

R̄t (v) =
δe−ϕ2(v−t)ϕ1

δ + 1 − e−ϕ2(v−t)ϕ1
×
δ + 1 − e−ϕ2vϕ1

δe−ϕ2vϕ1
.

4. Estimation and simulation study

In this section, we obtain the estimators
(
ϕ̂1, ϕ̂2, δ̂

)
of the parameters (ϕ1, ϕ2, δ) by implementing the

maximum likelihood estimation approach. Furthermore, for the evaluation of ϕ̂1, ϕ̂2, and δ̂, a simulation
is also provided.
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4.1. Estimation

Let V1,V2, ...,Vp be a sample of size p observed from the PDF f (v; δ,ϑϑϑ). In link to f (v; δ,ϑϑϑ), the
likelihood function (LH) λ

(
δ,ϑϑϑ|v1, v2, ..., vp

)
is given by

λ
(
δ,ϑϑϑ|v1, v2, ..., vp

)
=

p∏
a=1

f (va; δ,ϑϑϑ) . (4.1)

Using Eq (2.5) in Eq (4.1), we get

λ
(
δ,ϑϑϑ|v1, v2, ..., vp

)
=

p∏
a=1

δ (δ + 1)ϕ1ϕ2vϕ1−1
a e−ϕ2vϕ1

a[
δ + 1 − e−ϕ2vϕ1

a

]2 . (4.2)

Corresponding to λ
(
ϕ1, ϕ2, δ|v1, v2, ..., vp

)
, the log LH π

(
δ,ϑϑϑ|v1, v2, ..., vp

)
is given by

π
(
δ,ϑϑϑ|v1, v2, ..., vp

)
= p log δ + p log (δ + 1) + p logϕ1 + p logϕ2 + (ϕ1−1)

p∑
a=1

log va

−

p∑
a=1

ϕ2vϕ1
a − 2

p∑
a=1

log
(
δ + 1 − e−ϕ2vϕ1

a
)
.

The partial derivatives of π
(
δ,ϑϑϑ|v1, v2, ..., vp

)
are given by

∂

∂ϕ1
π
(
δ,ϑϑϑ|v1, v2, ..., vp

)
=

p
ϕ1

+

p∑
a=1

log va − ϕ2

p∑
a=1

(
log va

)
vϕ1

a

− 2ϕ2

p∑
a=1

(
log va

)
vϕ1

a e−ϕ2vϕ1
a(

δ + 1 − e−ϕ2vϕ1
a

) ,

∂

∂ϕ2
π
(
δ,ϑϑϑ|v1, v2, ..., vp

)
=

p
ϕ2
−

p∑
a=1

vϕ1
a − 2

p∑
a=1

vϕ1
a e−ϕ2vϕ1

a(
δ + 1 − e−ϕ2vϕ1

a

) ,
and

∂

∂δ
π
(
δ,ϑϑϑ|v1, v2, ..., vp

)
=

p
δ

+
p

(δ + 1)
− 2

p∑
a=1

1(
δ + 1 − e−ϕ2vϕ1

a

) ,
respectively.

On solving ∂
∂ϕ1
π
(
δ,ϑϑϑ|v1, v2, ..., vp

)
= 0, ∂

∂ϕ2
π
(
δ,ϑϑϑ|v1, v2, ..., vp

)
= 0, and ∂

∂δ
π
(
δ,ϑϑϑ|v1, v2, ..., vp

)
, we

get the estimators ϕ̂1, ϕ̂2, and δ̂, respectively.
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4.2. Simulation study

Now, we evaluate the performances of ϕ̂1, ϕ̂1, and ϕ̂ by conducting a SiSt (simulation study). The
SiSt is performed by adopting the following steps

• To carry out the SiSt, the RNs (random numbers) from the NEExp-Weibull model are generated
using the inverse DF, given by

vq = Q (u) = F−1
(

δu
δ + 1 − u

)
.

• The SiSt is performed for two different combination sets of ϕ1, ϕ2, and δ, such as (a) ϕ1 = 0.7, ϕ2 =

0.9, δ = 1.4, and (b) ϕ1 = 1.5, ϕ2 = 1.4, δ = 1.25.
• For both two sets of ϕ1, ϕ2, and δ, RNs of sizes p = 25, 50, 75, ..., 500 are generated using the

inverse DF method.
• The numerical values of the maximum likelihood estimators (MLEs)

(
ϕ̂1, ϕ̂2, δ̂

)
of the parameters

(ϕ1, ϕ2, δ) are obtained.
• Two statistical quantities/measures such as (i) mean square errors (MSEs) and (ii) Bias, are

selected for assessing ϕ̂1, ϕ̂2, and δ̂. The values of these quantities are given by

MS E
(
φ̂̂φ̂φ
)

=
1

500

500∑
a=1

(
φ̂̂φ̂φa − φφφ

)2
,

and

Bias
(
φ̂̂φ̂φ
)

=
1

500

500∑
a=1

(
φ̂̂φ̂φa − φφφ

)
,

respectively, where φφφ = (ϕ1, ϕ2, δ) .

All the numerical and simulation results are obtained using optim() R-function with the argument
method = ”L-BFGS-B”. The results of the SiSt of the NEExp-Weibull distribution are reported in
Tables 1 and 2, and presented visually in Figures 2 and 3.
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Table 1. The results of the SiSt of the NEExp-Weibull model for ϕ1 = 0.7, δ = 1.4, ϕ2 = 0.9.

n Parameters MLEs MSEs Biases
ϕ1 0.7439555 0.01816230 0.043955486

20 δ 2.5224710 4.62452592 1.122470958
ϕ2 0.9819897 0.08933255 0.081989688
ϕ1 0.7261523 0.00675241 0.026152290

40 δ 2.2436960 3.50148162 0.843695947
ϕ2 0.9475541 0.04503070 0.047554140
ϕ1 0.7174831 0.00469112 0.017483127

60 δ 2.1504600 3.14461417 0.750459996
ϕ2 0.9382455 0.03002095 0.038245459
ϕ1 0.7139450 0.00303585 0.013945008

80 δ 2.0166510 2.71268772 0.616651319
ϕ2 0.9172897 0.02141037 0.017289700
ϕ1 0.7118858 0.00250170 0.011885794

100 δ 1.9587070 2.39162374 0.558707085
ϕ2 0.9215668 0.01819720 0.021566823
ϕ1 0.7071069 0.00095725 0.007106915

200 δ 1.6315320 1.20339825 0.231531527
ϕ2 0.8963361 0.00907772 -0.003663932
ϕ1 0.7059804 0.00056999 0.005980353

300 δ 1.4947460 0.59116842 0.094745813
ϕ2 0.8942843 0.00510254 -0.005715678
ϕ1 0.7046970 0.00042009 0.004696986

400 δ 1.4758080 0.42345175 0.075807616
ϕ2 0.8949554 0.00295727 -0.005044638
ϕ1 0.7026197 0.00015114 0.002619658

500 δ 1.4191470 0.17256813 0.019147385
ϕ2 0.8958860 0.00155967 -0.004113986
ϕ1 0.7021186 0.00011673 0.002118624

600 δ 1.3973690 0.05930217 -0.002630857
ϕ2 0.8964089 0.00084446 -0.003591110
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Figure 2. A visual display of the SiSt for ϕ1 = 0.7, δ = 1.4, ϕ2 = 0.9.
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Table 2. The results of the SiSt of the NEExp-Weibull model for ϕ1 = 0.6, δ = 1.5, ϕ2 = 0.8.

n Parameters MLEs MSEs Biases
ϕ1 0.6538964 1.61446e-02 0.053896399

20 δ 2.3444560 3.753281849 0.844456065
ϕ2 0.8422871 0.074129355 0.042287133
ϕ1 0.6335936 6.57586e-03 0.033593572

40 δ 2.0966990 2.835106550 0.596698837
ϕ2 0.8114326 0.027465620 0.011432631
ϕ1 0.6207884 3.08374e-03 0.020788424

60 δ 1.9743140 2.393837599 0.474313588
ϕ2 0.8107312 0.022889902 0.010731190
ϕ1 0.6195547 2.83132e-03 0.019554745

80 δ 1.8076620 1.762573786 0.307661602
ϕ2 0.7912179 0.016246953 -0.008782086
ϕ1 0.6135883 1.52055e-03 0.013588293

100 δ 1.7689760 1.451201967 0.268976369
ϕ2 0.7923297 0.011392565 -0.007670316
ϕ1 0.6062087 4.83673e-04 0.006208661

200 δ 1.5338360 0.437971185 0.033836372
ϕ2 0.7870588 0.003783507 -0.012941210
ϕ1 0.6050252 2.87229e-04 0.005025202

300 δ 1.4799110 0.134430960 -0.020089413
ϕ2 0.7911718 0.001925689 -0.008828233
ϕ1 0.6021233 1.08930e-04 0.002123257

400 δ 1.5034740 0.104238258 0.003473527
ϕ2 0.7954403 0.000832362 -0.004559674
ϕ1 0.6014035 6.62443e-05 0.001403539

500 δ 1.4982590 0.048978064 -0.001741474
ϕ2 0.7974116 0.000411811 -0.002588439
ϕ1 0.6009386 3.77904e-05 0.000938590

600 δ 1.4899270 0.005002637 -0.010072511
ϕ2 0.7976296 0.000242969 -0.002370384
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Figure 3. A visual display of the SiSt for ϕ1 = 0.6, δ = 1.5, ϕ2 = 0.8.

5. Analyzing the COVID-19 data taken from Mexico and Holland

The primary aim of the introduction of the proposed distribution is its implementation for data
analysis in the health and other related sectors. This section illustrates the respective fact by analyzing
two data sets. The first data set (Data 1) represents the mortality rates of the COVID-19 infected
persons in Mexico. Whereas, the second illustration is based on taking another COVID-19 data from
Holland.

By analyzing these two COVID-19 data sets, the numerical results of the proposed model is
compared with the

• Weibull model with SF given by

S (v;ϕ1, ϕ2) = e−ϕ2vϕ1
, v, ϕ1, ϕ2 > 0,
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• Logarithmic Weibull (L-Weibull) model with SF given by

S (v;ϕ1, ϕ2, θ, σ) =

1 − σ
[
1 − e−ϕ2vϕ1

]
σ −

[
log

(
1 − e−ϕ2vϕ1

)]
α

, v, ϕ1, ϕ2, α, σ > 0,

• Novel exponent power-Weibull (NEP-Weibull) model with SF given by

S (v;ϕ1, ϕ2, θ) =

(
1 −

1 − e−ϕ2vϕ1

ee−ϕ2vϕ1

)θ
, v, ϕ1, ϕ2, θ > 0,

and

• New modified Weibull (NM-Weibull) model with SF given by

S (v;ϕ1, ϕ2, σ) = 1 −

(
1 − e−ϕ2vϕ1

)
σ

[
σ − e−ϕ2vϕ1

]
, v, ϕ1, ϕ2, σ ≥ 1, σ ≤ −1.

To figure out the best competitive model for the COVID-19 data, certain statistical tests such as the
(i) AD (Anderson-Darling) test statistic given by

AD = −p − 1
p

p∑
a=1

(2a − 1)
[
log M (va) + log

{
1 − M

(
vp−a+1

)}]
, (ii) CM (Cramer-von Mises) test statistic

expressed by CM = 1
12p +

p∑
a=1

[
2a−1

2p − M (va)
]2
, and (iii) KS (Kolmogorov-Smirnov (KS) test statistic

derived by KS = supv

[
Mp (v) − M (v)

]
, are considered.

5.1. A data set considered from Mexico

Here, we analyze the mortality rates of the patients infected by the COVID-19 pandemic in Mexico;
see https://covid19.wh. It is also studied by Almongy et al. [23] using a new extension of the Rayleigh
distribution. This data set consists of 106 observations and is recorded from March 4, 2020, to July
20, 2020. The data set is given by: 4.4130, 3.0525, 4.6955, 7.4810, 5.1915, 3.6335, 6.6100, 8.2490,
5.8325, 3.0075, 5.4275, 3.0610, 3.3280, 1.7200, 2.9270, 5.3425, 5.0175, 2.6210, 2.1720, 2.5715,
3.8150, 7.3020, 3.9515, 3.1850, 1.7685, 3.1635, 2.3650, 1.6075, 4.6420, 6.4390, 4.4065, 5.0215,
3.6300, 2.9925, 3.2060, 1.6975, 2.2120, 4.9675, 3.9200, 4.7750, 1.7495, 1.8755, 3.4840, 1.6430,
5.0790, 4.0540, 3.3485, 3.5755, 3.2800, 1.0385, 1.8890, 1.4940, 1.6680, 3.4070, 4.1625, 3.9270,
4.2755, 1.6140, 3.7430, 3.3125, 3.0700, 2.4545, 2.3305, 2.6960, 6.0210, 4.3480, 0.9075, 1.6635,
2.7030, 3.0910, 0.5205, 0.9000, 2.4745, 2.0445, 1.6795, 1.0350, 1.6490, 2.6585, 2.7210, 2.2785,
2.1460, 1.2500, 3.2675, 2.3240, 2.3485, 2.7295, 2.0600, 1.9610, 1.6095, 0.7010, 1.2190, 1.6285,
1.8160, 1.6165, 1.5135, 1.1760, 0.6025, 1.6090, 1.4630, 1.3005, 1.0325, 1.5145, 1.0290, 1.1630,
1.2530, 0.9615.

Corresponding to the COVID-19 data (mortality rate of the COVID-19 infected persons) of Mexico,
the summary measures are: minimum = 0.5205, 1st quartile = 1.6445, median = 2.6397, mean =

2.9112, 3rd quartile = 3.7970, maximum = 8.2490, variance = 2.640433, range = 7.7285, standard
deviation = 1.624941, skewness = 0.9732453, and kurtosis = 3.666136.

Corresponding to the mortality rate of the COVID-19 infected persons in Mexico, some basic plots
are presented in Figure 4. The plots in Figure 4, show that the first data set is right-skewed and
possesses the increasing failure rate behavior.
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Figure 4. Basic plots of the Mexico data.

Corresponding to the Mexico data, the values of ϕ̂1, ϕ̂2, and δ̂ are presented in Table 3. The standard
errors (SEs) (numerical values in the parentheses) of ϕ̂1, ϕ̂2, and δ̂ are also presented in Table 3.

For the Mexico data, the values of the selected tests CM, AD, and KS of the fitted models are
reported in Table 4. The associated p-value of fitted models is also provided in Table 4. From the
numerical illustration in Table 4, we can see that the proposed model has the smallest values of CM,
AD, and KS, and the largest p-value. These facts show that the proposed model is the best competitor.
Besides the numerical illustration, a visual display of the performances of the proposed model is also
provided in Figure 5.

Table 3. The numerical values of ϕ̂1, ϕ̂2, δ̂, α̂, σ̂, and θ̂ using the mortality rate data.

Model ϕ̂1 ϕ̂2 δ̂ α̂ σ̂ θ̂

NEExp-
Weibull

2.53401
(0.31876)

0.01723
(0.01562)

0.26201
(0.24135)

- - -

Weibull 1.92738
(0.14019)

0.09976
(0.02220)

- - - -

L-Weibull 1.57117
(0.01001)

1.20372
(0.00879)

- 0.16022
(0.01580)

0.45036
(0.01773)

-

NEP-Weibull 1.71906
(0.03634)

0.95340
(0.03634)

- - - 0.15201
(0.01503)

NM-Weibull 1.89237
(0.15734)

0.11004
(0.03088)

- - 12.06058
(20.5532)

-
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Table 4. The analytical measures of the fitted models using Data 1.

Model CM AD KS p-value
NEExp-Weibull 0.05834 0.33674 0.06266 0.79940
Weibull 0.10264 0.66004 0.07147 0.65100
L-Weibull 0.06002 0.36130 0.07091 0.66060
NEP-Weibull 0.07017 0.43993 0.07862 0.52880
NM-Weibull 0.10723 0.68969 0.07024 0.67240
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Figure 5. For the first data, the plots of the fitted DFs of the proposed and all the fitted
models.

5.2. A data set considered from Holland

Here, we provide a second illustration of the proposed model by analyzing another COVID-19 data
taken from Holland; see Almongy et al. [23]. This data set consists of 30 observations and is recorded
between March 31, 2020, and April 30, 2020. The second data set is given by: 7.4590, 3.7490, 3.4700,
5.3280, 1.4285, 1.1270, 6.1370, 5.1445, 5.4160, 3.5495, 1.7305, 1.8235, 2.9640, 6.6055, 3.9840,
3.7920, 2.6535, 2.5240, 2.7155, 2.7775, 3.0135, 2.0485, 1.8055, 2.4800, 2.2310, 1.9415, 0.9870,
0.6365, 0.7080, 2.1175.

The summary measures of the mortality rate of the COVID-19 infected persons in Holland are:
minimum = 0.6365, 1st quartile = 1.8530, median = 2.6845, mean = 3.0783, 3rd quartile = 3.7812,
maximum = 7.4590, variance = 3.121073, range = 6.8225, standard deviation = 1.766656, skewness
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= 0.8339708, and kurtosis = 2.953478.
In link to the mortality rate of the COVID-19 infected persons in Holland, some basic plots are

sketched in Figure 6. From the plots in Figure 6, it is obvious that the second data set, related to the
mortality rate of the COVID-19 infected persons, is skewed to the right and has increasing failure rate
behavior.
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Figure 6. Basic plots of the Holland data.

Based on the Holland’s COVID-19 data, the numerical values of estimators ϕ̂1, ϕ̂2, and δ̂ are
obtained in Table 5. Furthermore, the SEs of these estimators are also reported in Table 5.

Table 5. The numerical values of ϕ̂1, ϕ̂2, δ̂, α̂, σ̂, and θ̂ using the mortality rate data.

Model ϕ̂1 ϕ̂2 δ̂ α̂ σ̂ θ̂

NEExp-
Weibull

2.20197
(0.48765)

0.03704
(0.04876)

0.75896
(0.10983)

- - -

Weibull 1.92738
(0.14019)

0.09976
(0.02220)

- - - -

L-Weibull 1.42252
(0.51193)

0.12239
(0.05844)

- 2.85548
(0.97654)

0.89686
(2.15028)

-

NEP-Weibull 1.77603
(0.07305)

1.03756
(0.07304)

- - - 0.11297
(0.02890)

NM-Weibull 2.00489
(0.28946)

0.06377
(0.04170)

- - -2.41345
(3.47713)
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Corresponding to the Holland data, the p-value and values of CM, AD, and KS are reported in Table
6. From the numerical comparison of the fitted models in Table 6, it is obvious that the proposed model
performs better than the other competitors as it has the largest p-value and smallest CM, AD, and KS
values. In support of Table 6, the performances of the proposed model are also illustrated visually by
plotting the estimated DF, PP, PDF, QQ, and SF; see Figure 7.

Table 6. The analytical measures of the fitted models using Data 2.

Model CM AD KS p-value
NEExp-Weibull 0.03088 0.20437 0.08557 0.96710
Weibull 0.04794 0.29434 0.10236 0.88030
L-Weibull 0.05165 0.31630 0.10144 0.88660
NEP-Weibull 0.03423 0.22143 0.10418 0.86740
NM-Weibull 0.03926 0.24960 0.08981 0.95100
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Figure 7. For the first data, the plots of the fitted DFs of the proposed and all the fitted
models.

6. Analyzing the COVID-19 data using machine learning algorithms

In this section, we implement three different machine learning algorithms, namely, SVR, NNAR,
and RF to forecast the data set analyzed in Section 5. Before modeling, we split the data set into
two parts; 80 percent as training data and 20 percent as testing data, followed by Qi and Zhang [24].
We apply all the models to training data and compare their forecasting performances using the testing
data. To assess the out-of-sample (also known as post-sample) prediction accuracy, multistep ahead
forecasts with RMSE and MAE are calculated.
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6.1. Support vector regression

The SVR is a popular ML approach, which is used for regression as well as classification problems.
The SVR was first developed by Cortes and Vapnik [25], and to date, it is one of the most widely used
supervised learning methods that is based on structured risk minimization rule and statistical theory.
The structured risk minimization rule maximizes prediction accuracy and mitigates the likelihood of
over fitting.

In practice, it can effectively approximate linear and nonlinear problems and work well for
numerous problems. The SVR uses various kernel functions to figure out the similarity between two
data points to tackle the non-linear situations. The main advantage of SVR lies in its potential to
capture the predictors’ nonlinearity and then utilize it to enhance forecasting accuracy. In our case,
the set of predictors contains the lagged values. The SVR assists to detect the margin of error which is
bearable in the model; see Ribeiro et al. [26] and Bibi et al. [27]. The SVR equation with kernel
function can be expressed as

Ft =

h∑
k=1

(
λk − λ

∗
k
)

N (ck, c) + µ, (6.1)

where Ft is the outcome variable. The kernel function, N (ck, c) denotes the inner product, while
µ is accommodated within the kernel function. In the literature, several kernel functions have been
developed. Among them, the radial basis function (RBF) is the most popular, which can be illustrated
as

N (ck, c) = exp
{
−
||ck − cN ||

2

2τ2

}
, (6.2)

where the Euclidean distance between the two predictors squared vectors is represented by ||ck − cN ||
2

and τ2 is basically the width of RBF; see Lu et al. [28]. Hence, in this study, we focus on the RBF
kernel function for the SVR. Tuning the SVR model enable us to arrive at optimal parameters.

6.2. The random forest

Another ML approach is RF which is also known as the random decision forest. It falls within
the supervised learning category. The RF is a very effective algorithm that is used for both regression
and classification problems as proposed by Breiman [29]. Dietterich [30] argued that RF is considered
the most efficient ensemble technique appearing in ML and fulfills good forecasting properties. The
RF approach is employed in different areas, including stock trading, finance, e-commerce, and health
care. It provides a forest out of a collection of decision trees that are usually estimated (trained) by
employing the bagging approach.

The RF approach discovers the output based on the decision trees’ forecasts. The forecasts are
computed by averaging the output of several trees. The improvement is achieved in prediction by
expanding the number of trees. In other words, as the number of trees in the forest grows, a more
accurate forecast is obtained and circumvents the issue of over fitting as well. To estimate the RF,
we use three hyper parameters i.e., the number of trees, number of nodes, and sample repetition. The
number of nodes and trees are utilized as 3 and 500, respectively.
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6.3. The neural network autoregression

In general, neural networks (NNs) are basically a network or circuit of neurons. The artificial
neural network (ANNs) is composed of nodes or artificial neurons. NNs are highly flexible computing
frameworks for analyzing a wide range of nonlinear problems. A key advantage of such networks is
that they have not required prior information regarding the functional form in the model establishing
process, rather highly determined by the characteristics of data; see Peng et al. [31].

A feedback NN is established with lagged realization as predictors and hidden layer(s) with
dimension nodes. The neural network autoregression (NNAR) contains three layers such as (i) the
input layer, (ii) the hidden layer, and (iii) the output layer. The NNAR model is fitted to forecast a
time series by utilizing its past information as inputs Ft, Ft−1, ..., Ft−m, the entire process refers to
feedback delay, where t indicates the time delay parameter. The NNAR (m, n) entails that the hidden
layer consists of m delayed inputs and n nodes. The mathematical form of NNAR can be illustrated as

Ft = ω0 +

m∑
c=1

θωc

ℵc +

z∑
n=1

ℵcnFt−i

 + µ, (6.3)

where ℵcn (c = 1, 2, 3, ...,m, n = 1, 2, 3, ..., z) and ωc (c = 1, 2, 3, ...,m) are the weights of
interconnection, and z is the length of input layers, and m is the length of hidden layers.

The prediction accuracy of all ML techniques is quantified by using two statistical accuracy criteria
computed from a testing data set. Statistically, the forecast errors are more appropriate criteria to
evaluate the predictive power and to finalize the best approach. In general, the most popular measures
are MAE and RMSE. Hence, we compare the forecasting performance of ML techniques using these
two measures in our study. Their mathematical expressions are given by

MAE = mean
(
|Ft − F̂t|

)
,

and

RMS E =

√
mean

(
Ft − F̂t

)2
,

respectively.

6.4. The empirical results and discussion

This subsection is further divided into two parts. In the first part, we deal with the mortality rates of
the patients infected by the COVID-19 pandemic in Mexico. In the second part, we deal with the death
rates of the patients infected by the COVID-19 pandemic in Holland.

6.4.1. Analyzing the Mexico data

From Figure 8, it can be observed that the entire trajectory of the mortality rate has experienced
many ups and downs in the last few months, but the trend of data is decreasing over time. The mortality
rate series is plotted in Figure 8, where the vertical blue dotted line splits the estimation and post-sample
forecasting periods. The histogram plot and box plot are also provided in Figure 8, which reveal that
the underlying time series is right skewed.
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Figure 8. A virtual display of the mortality rate data in Mexico.

The two statistical accuracy measures for the Mexico data set are given in Table 7. The MAE
and RMSE are calculated for ML algorithms such as SVR, RF, and NNAR. It is inferred that the RF
outperformed the other competitor counterparts. For the RF method, the RMSE and MAE values are
given by 0.066 and 0.039, respectively. Whereas, for the SVR, the values of the RMSE and MAE
are given by 0.073 and 0.043, respectively. On the other hand, the RMSE and MAE values for the
NNAR are, respectively, given by 0.198 and 0.149. From the values of the RMSE and MAE for the
NNAR approach, it is clear that the values of NNAR are higher than the values of the RMSE and MAE
computed for RF and SVR.

Table 7. The error metrics.

Criteria SVR RF NNAR
RMSE 0.073 0.066 0.198
MAE 0.043 0.039 0.149

Furthermore, the visual illustration of forecast errors is porvided in Figure 9. The plots in Figure 9
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show that the ML algorithms, specifically, the RF remained an efficient tool in forecasting the mortality
rates of COVID-19 patients.

Figure 9. The schematic representation of forecast errors for the mortality rate data in
Mexico.

We also plot the prediction curves for COVID-19 deaths under the three machine learning
algorithms to get a more intuitive picture of the prediction accuracy and results. In this regard, the line
chart has been constructed, for the representation of predicted and actual values; see Figure 10. Some
predicted values of the NNAR approach are very close, but few are substantially far away from the
actual data. On the other hand, SVR prediction is highly stable over time and therefore beat the rival
algorithms in predictive modeling.

Figure 10. Forecasting performance of ML algorithms for the mortality rate data in Mexico.

6.4.2. Analyzing the Holland data

Here, we estimate and predict the daily death data of COVID-19 for Holland. It can be observed
from Figure 11 that the entire trajectory of mortality rate has experienced numerous episodes in several
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months, but the times series is declining over time. The mortality rate series is plotted in Figure 11,
where the vertical blue dotted line represents the estimation and post-sample forecasting periods. The
histogram plot and box plot are also presented in Figure 10, which demonstrates that the underlying
series is right skewed.
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Figure 11. A virtual display of the mortality rate data in Holland.

The two considered statistical accuracy measures for the Holland data set are reported in Table 8.
The MAE and RMSE are computed for ML algorithms, namely SVR, RF, and NNAR. From Table 8,
we can observe that the SVR showed superior forecast performance as compared to the rival
counterparts. For the SVR method, the RMSE and MAE values are 0.16 and 0.118, respectively. On
the other hand, for the RF approach, these values are given by 0.191 and 0.139, respectively.
Whereas, the forecast errors (RMSE and MAE) of NNAR are given by 0.444 and 0.398, respectively.
From the above discussion, it is obvious that the forecast errors of the NNAR approach are
substantially higher than the forecast errors of RF and SVR.
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Table 8. The error metrics.

Criteria SVR RF NNAR
RMSE 0.160 0.191 0.444
MAE 0.118 0.139 0.398

The graphical comparison of forecast errors is also depicted in Figure 12. It manifests that the ML
algorithms, specifically SVR remained an effective tool in forecasting the post-sample trajectory of the
mortality rate of COVID-19 patients.

Figure 12. The schematic representation of forecast errors for the mortality rate data in
Holland.

We portray the prediction curves for COVID-19 deaths using these three ML algorithms to get a
more clear picture of the models performances. In this regard, we use the line chart for the
representation of forecasted and observed data; see Figure 13. From the plots in Figure 13, it can be
seen that the observed test series is highly volatile and noisy. Despite this volatility, SVR and RF have
shown good results, particularly the RF performance is highly satisfactory.

Figure 13. Forecasting Performance of ML algorithms for the mortality rate data in Holland.
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7. Conclusions, limitations, and future research plan

The efforts in this paper added another useful approach to the literature on statistical
methodologies by introducing a new family of distributions. The new family was named a NEExp
family of distributions. Based on a NEExp family, an updated version of the Weibull model called, a
NEExp-Weibull model was studied. The MLEs of the NEExp-Weibull model were obtained. The
evaluation of the MLEs of the NEExp-Weibull distribution was carried out through a brief SiSt. The
usefulness of the NEExp-Weibull model was shown by analyzing two data sets taken from the
healthcare sector. The first data set was representing the mortality rate of COVID-19 patients in
Mexico. Whereas, the second data was also related to the COVID-19 events taken from Holland.
Using these two COVID-19 data sets, the NEExp-Weibull distribution was compared with the Weibull
and three other well-known models such as the L-Weibull, NEP-Weibull, and NM-Weibull
distributions. Based on four well-known comparative tools, it is observed that the NEExp-Weibull
distribution was the best competitive model as compared to the Weibull and other well-known
modified forms of the Weibull distribution. Therefore, based on the numerical results and findings of
this study, it is observed that the NEExp-Weibull distribution may be the best suitable choice to use
for analyzing the medical and other related data sets. Besides the statistical modeling, for prediction
purposes, we further implemented three ML methods including SVR, RF, and NNAR using the same
data sets. To compare their forecasting performances, two well-known statistical accuracy quantities
such as the RMSE and MAE were computed. We found that the RF algorithm was very efficient in
forecasting using the first data. However, for the second data set, the SVR showed superior
performance in contrast to other methods.

Besides the certain advantages of the NEExp-Weibull distribution over the Weibull and other
competitive distributions, the NEExp-Weibull distribution has also some certain limitations, for
example

• The proposed NEExp-Weibull model is a continuous probability distribution, and it is employed
to analyze the mortality rates of COVID-19 patients. Therefore, the NEExp-Weibull model could
not be implemented to analyze other forms of the COVID-19 data that are discrete in nature,
for example, (i) the number of deaths, (ii) the number of confirmed cases, or (iii) the number of
recovered cases, etc.
• Due to the introduction of the additional parameter, the NEExp-Weibull distribution has a

complicated form of its PDF. Therefore, the expressions for the estimators of its parameters are
not in explicit forms. Therefore, computer software must be used to obtain the estimated values
of the parameters.
• Since, the PDF of the NEExp family has a complicated form, therefore, more computational

efforts are needed to derive the key mathematical properties.

In the future, we are motivated to obtain the discrete version of the proposed NEExp-Weibull
distribution to counter the discrete data sets. In this work, we only used the maximum likelihood
estimation method to estimate the parameters of the NEExp-Weibull distribution. In the future, we are
intended to estimate the parameters of the NEExp-Weibull distribution using other classical methods
such as ordinary least square, weighted ordinary least square, maximum product spacing methods,
etc. Neutrosophic statistics is a generalization of classical statistics and is implemented when the data

Mathematical Biosciences and Engineering Volume 20, Issue 1, 337–364.



362

sets are generated from a complex process. In the future, we are also motivated to study the
neutrosophic extension of the NEExp-Weibull distribution.
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