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Abstract: In this paper, we construct the SViV2EIR model to reveal the impact of two-dose
vaccination on COVID-19 by using Caputo fractional derivative. The feasibility region of the
proposed model and equilibrium points is derived. The basic reproduction number of the model is
derived by using the next-generation matrix method. The local and global stability analysis is
performed for both the disease-free and endemic equilibrium states. The present model is validated
using real data reported for COVID-19 cumulative cases for the Republic of India from 1 January
2022 to 30 April 2022. Next, we conduct the sensitivity analysis to examine the effects of model
parameters that affect the basic reproduction number. The Laplace Adomian decomposition method
(LADM) is implemented to obtain an approximate solution. Finally, the graphical results are
presented to examine the impact of the first dose of vaccine, the second dose of vaccine, disease
transmission rate, and Caputo fractional derivatives to support our theoretical results.
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1. Introduction

Mathematical models are the foremost technique to investigate the transmission dynamics of
COVID-19 to control and develop a new strategy or policy to prevent the spread of the disease.
Several mathematical models have been developed and formulated in the last two years to
understand the novel infection surge by COVID-19 such as understanding the transmission
dynamics [1-10], the efficiency of lockdown [11,12], the impact of social distancing [13,14], the
effect of isolation and quarantine [15-21], the impact of facemask [22,23], media effect [24,25], the
impact of the environment [26,27].

A vaccine is a kind of medicine that develops a body’s immune system before catching the
disease. Clinically there are four types of COVID-19 vaccine as follows: 1) whole virus, 2) protein
subunit, 3) viral vector, and 4) RNA and DNA (Nucleic acid). The entire world is taken a challenge
to prepare a vaccine to prevent COVID-19. In this short span, various vaccinations are developed
and approved for emergency use such as Covaxin, Moderna, Sputnik Light, Sputnik V, Covishield,
Ad26.COV2.S, Convidecia, Zifivax, Novavax, Comirnaty, Covilo, CoronaVac, etc. At present, the
world health organization (WHO) approved eleven vaccines for emergency use to fight or reduce the
spread of COVID-19 [28]. Among these eleven approved vaccines, Covishield, and Covaxin are
manufactured in India. Covishield is manufactured by the Serum Institute of India along with Oxford
University and approved by 49 countries in the world whereas Covaxin is manufactured by Bharat
Biotech and approved by 14 countries in the world [28]. About 61% population of India is
vaccinated by dose-I and 44% population of India is vaccinated by dose-II up to 1 January 2022.
According to the Indian Council of Medical Research (ICMR), two-dose of Covishield or Covaxin
significantly mitigate the risk of COVID-19 [29].

Mathematical models to understand the effect of vaccination, the efficiency of vaccination, and
the vaccination campaign on COVID-19 have been developed and analyzed by the authors [30-39]
to prevent the disease. Recently, a few mathematical models are reported to study the effect of multi-
vaccination or two-dose of vaccination on COVID-19 to control or built an efficient strategy [40—42].
Best of our knowledge there is none of the attempts is registered to investigate the impact of two-
dose of vaccination on COVID-19 with Caputo derivative using real data from the Republic of India.
Hence in this attempt, we have proposed a mathematical model to study the effect of two-dose of
vaccination on the transmission dynamics of COVID-19.

The rest of the paper is organized as follows: Section 2 provides the preliminary of fractional
calculus. The SV1V2EIR model formulation for dose-I and dose-II of vaccination with Caputo
derivative is presented in Section 3. The local and global stability of the equilibrium points of the
SV1V2EIR model and the positivity of the solution are provided in Section 4. The Laplace-Adomian
decomposition method for the numerical solution of the proposed SViV2EIR model is given in
Section 5. The estimation of SViV2EIR model parameters, sensitivity analysis, and numerical
simulations are presented in Section 6. Finally, a conclusion of the present work is given in Section 7.

2. Preliminaries

In this section, the basic definition of fractional calculus is presented which uses to describe and
formulate the SV1V2EIR model for COVID-19 [43-45].
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Definition 2.1 Let y € L'([0,77],R), then the Riemann-Liouville fractional integral of order « is
defined by

LJ.(t —8)“" y(s) ds. (1)

I y(t) = T

Definition 2.2 The Caputo fractional derivative of a function y(¢) on the interval [0,7] is
defined by

t

CD&y(t) = ﬁj(l‘ — S)"—a—ly(n) (S) ds, (2)

where n =[a]+1 and [a ] denotes the integer part of .
Definition 2.3 The Laplace transform of Caputo fractional derivative of a function y(¢) is
defined by

n—1
LD, y(0)} =Y (s)= D s“ 'y (0), 3)
=0
where n—1<a <n and neN.
3. Mathematical model

Mathematical modelling of transmission dynamics of COVID-19 is ubiquitous to control the
spread of the disease. A series of models are reported to explore the impact of vaccines on the
treatment of disease. In this section, we propose a deterministic two-dose vaccination model to
analyze the overall dynamics of COVID-19. We divide the total population into six compartments
namely susceptible individuals S(¢), vaccinated individuals after dose-I ¥{(¢), vaccinated individuals

after dose-II V,(¢), exposed individuals E(¢), infected individuals /() , and recovered individuals
R(t). The size of the compartment class varies with time? but the total size of the population
N@)=S@O+V,()+V,(t)+E@)+I1(t)+R(t) is constant.

The susceptible individuals increase due to new birth and the inflow of vaccinated individuals
after dose-I at rates ¢&. It decreases due to an infection, acquires dose-I of vaccine, and natural death
at the rate #, p and 4 respectively. The vaccinated individuals after dose-I are increased due to a

susceptible individual who acquires dose-I of the vaccine. It decreases due to a vaccinated transfer
back to the susceptible, acquiring dose-II of vaccine, and natural death at the rate & , ¢ and

respectively. The vaccinated individuals after dose-II are increased due to an individual who acquires
dose-II of the vaccine. It decreases due to an individual who acquires two-dose of vaccines and
natural death at the rate o and u respectively. It is assumed that a two-dose of vaccine develops
hard immunity in the body and thus an individual recovers from the disease. The exposed individual
increase due to susceptible individual who carries the virus but yet not developed clinical symptoms.
It decreases due to the development of clinical symptoms in exposed individuals and natural death at
the rate77 and 4 respectively. The infected individual increased due to exposed individuals who got
the symptoms of COVID-19. It decreases due to natural recovery, death due to vaccines, and natural
death at the rate y, 6 and 4 respectively. The recovered individual is increased due to recovery of
infected individuals and an individual who acquire two-dose of vaccines at the rate } and o
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respectively and decrease due to natural death. The flow diagram of the transmission between
different individuals is shown in Figure 1. Therefore the resulting mathematical model for COVID-19 is
described by the following system of nonlinear ordinary differential equations.

il <y R
&pw pV2¢

V1
-g-0-1-3-
pS& pE& pl& &&

Figure 1. Flow diagram of the SV1V2EIR transmission model of COVID-19.
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With the initial conditions S(0) >0,¥(0)>0,%,(0) >0, E(0) >0,7(0) >0, R(0) >0 and the variables or
parameters and a description of the parameter is given in Table 1.

The susceptible individuals in transmission of COVID-19 use their memory to prevent or
reduce infection. But an integer-order derivative is not able to acquire it due to its local behaviour.
Fractional-order derivatives acquire the information of present and past due to their non-local nature
and are involved to prevent infection [43—48]. Motivated by the importance of fractional calculus,
we converted the classical model to the fractional SV1V2EIR transmission model of COVID-19. First,
we replace the classical derivative in the system (4) with the Caputo fractional derivative of order «,
where a can take any value in the interval (0,1]. Thus, the dimension of a newly developed Caputo
SV1V2EIR model does not remain the same. In this situation, we use the auxiliary parameter y to

adjust the inconsistency that arises in the dimensions of the left and right sides of the system. By
applying these a balance fractional SV1V2EIR transmission model of COVID-19 is given by
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X GDS = uN — BIS — pS — uS + &V,
2DV, = pS =&V, —qV, — uV,,
2DV, =gV, — oV, —uV,,

5
7! gD,“E = IS —nE — ukE, )
1D =nE -yl —51—ul,
7 CD*R=yl+0V,— uR.
with the initial conditions
S(0)>0,7;(0) >0,V,(0)>0,E(0) >0,1(0) >0, R(0) > 0. (6)

Table 1. Description of biological parameters of the SViV2EIR model.

Parameter Description of parameter

Susceptible individuals
Vaccinated individuals after dose-I
Vaccinated individuals after dose-11
Exposed individuals

Infected individuals

Recovered individuals

Total population

Natural death rate

Disease transmission rate

Rate of dose-I of vaccine
Progression rate form/V; to §

Rate of dose-II of vaccine

Recovery rate due to the second dose of vaccine
Progression rate form £ to/

Natural recovery rate

Vaccines-related death rate

UNIQRU ™R Z R NS S g

4. Model analysis

In mathematical epidemiology, we ensure that the solutions of the model (5) are nonnegative
and bounded at all future times. In model (5), all the individual populations are independent of the
recovery population so we focus only on susceptible, vaccinated after dose-I, vaccinated after dose-II,
exposed, and infected. Hence for this reason we consider the following feasible region for system (5)
as Q={(S.V,.V,,E.I) e R} | S.V,.V,,E,1 2 0}.

Theorem-1 The closed set Q is a positive invariant with respect to the fractional model (5).
Proof: From the first equation of the system (5), we have

2 OD!S |5 g= uN + &V, 20, (7)

as M4 and ¢ are natural death rate and progression rate form V, to § respectively, and both

parameters are non-negative.
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Similarly, we observed that
)(DH thaVl |V1:o= pS 20,
e SD;ZVZ |V2:(): qV, 20,
2 SDYE|,_y= PIS >0,
2D |, =nE20.

(8)

The Eqgs (7)—~(8) hold for any point of the region Q. Thus the set Q is positive invariant with
respect to the fractional model (5).

Basic reproduction number :the number of infections spread by a single individual is referred to
as a basic reproduction number and it plays a vital role in controlling the spread of disease. The
disease-free equilibrium point of the SV1V2EIR model (5) is given by E’ =(S",V/",;,0,0), where

g0 __ MN(E+g+u) o _ upN
(p+m)E+q+u)—Ep’ " (p+u)NE+q+u)—Ep’
0 upgN ©)
V.

2 T oA (p+)EHqr ) —Ep)

To compute the basic reproduction number using the next generation method [49], we consider

0
the right-hand side of the infected class £ and [ at E° as F and V where F :(g P g ] and

—(n+ 0
Vz[ (1+4) j The basic reproduction number is the spectral radius of the next
n ~y+o+p)

BS'n ps’
generation matrix FV ™' =| (n+u)(y+0+u) (y+5+u) |
0 0

Hence the basic reproduction number is defined as

Ro_ BSm  _ BupN(E+q+ 1) |
Dy +o+p) )y + S+ u)(p+ pu)E+q+ ) —Ep)

(10)

Theorem-2 The disease-free equilibrium point E° of the SViV2EIR model (5) is locally
asymptotically stable if R, <I.

Proof: The Jacobian matrix of the model (5) is obtained as follows

—Bl-p-pu S 0 0 W
p —S—q-pu O 0 0
J=x" 0 q —o-p 0 0o | (11)
Pl 0 0 -n-u BS
i 0 0 0 n —y—0—u|

So the Jacobian matrix at E° is
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-p-u & 0 0 -pS°
p  —S—q-u 0 0 0
JEEDY=47" 0 q —o—-u 0 0 : (12)
0 0 0 -—n-u pS°
.0 0 0 n o —y—=6—u]

The characteristic equation of the Jacobian matrix at the disease-free equilibrium point J (E%) is
77 -det(J(E®°)—- A1) =0.
The third column suggests that one of the eigenvalues is —(o + x) and the remaining four

eigenvalues can be obtained from the following submatrix of J(E) defined as

—p—H ¢ 0 -ps’
—£—q- 0 0
J(EY= i« P S—q—H
(ET)=x 0 0 eu S (13)
0 0 n o -y-o-u
The matrix J,(E’) can be rewritten in block form as
B B
J EO — -« 1 2
(EY)=x [83 BJ’ (14)
where
—p— —BS° 0 0 —n-— 0
Blz[p H 3 }32{0 ﬁS}BF{ }and&{ﬂ uoo pst |
P Eq-H 0 0 00 n —y-8-u
The characteristic equation of the block matrix J,(E”) is given by
7' {det(B, - AI)-det((B, - A1)~ B,(B, - AI)"'B,)} = 0. (15)
: : 00 - : :
Since block matrix, B, = 0 0 the characteristic equation of JI(E0 ) is reduced as
2 {det(B, — AI)-det(B, — AI)} =0. (16)
For block matrix B,, Trace(B)=—(p+pu+E+q+ ) <0, and
Det(B)) = (p+ )& +q+ )= pS = pg+p)+u(S +q+u)>0.
For block matrix B, Trace(B,))=—(n+u+y+o+u)<0, and
nps’

Det(B,)= (7 + )y +6+p)—npS’ =1~

-k,

7+ m)(7+5+p)
Hence it is clear that Det(B,) >0 if R, <l.

Thus by the Routh-Hurwitz criteria of stability, the disease-free equilibrium point of the
SV1V2EIR model (5) is locally asymptotically stable if R, <1 otherwise unstable.
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Theorem-3 The SViV2EIR model (5) possesses at most two equilibrium points, 1) A disease-

free equilibrium point E° :(SO,VIO,V;),O, 0), where

oo MN(E+g+u) o _ u#pN
(p+m)(E+q+u)—ép’ " (p+u)E+q+u)-Ep’
0 upgN

> T oA (p+)E+qrp)—Ep)

2) An endemic equilibrium point £ =(S",V,V;,E ,I") where

s =G +o+1) o PO+ PG +0+ 1) e pan+ )y +0+ 1)
np L npEHsr) T nPlotuN S+ p)

E*:(Ro—1)(77+ﬂ)(y+5+ﬂ)2((p+u)(cf+q+ﬂ)—§p)
n((n+ )y +6+ )G +q+ 1)

B Do+ )y + o+ W((p+pS+g+1)—Ep)
((n+ (7 +0+ NS +q+ 1)

b

Proof: To find the equilibrium points of the model (5), we solve the following equations

2NDIS) = 2 DMV () = T ODV, () = T ODFE(6) = ¢ (D I(t) = 0.
Thus, we get the following algebraic system

UN = BIS —pS—uS+E&V, =0,
pS—=&Vi—qV,—uV, =0,
qV,—oV,—uV, =0,

PIS —nE—uE =0,
nE—-yl—-061—-ul =0.

(17)

(18)

(19)

(20)

By simple algebraic manipulation, we obtain two solutions to the system (20). The first is a

disease-free equilibrium point E =(S0 ,VIO,V;,O,O), where

oo MNE+g+u) o _ upN
(p+u)E+q+m)—¢p” " (p+u)E+q+u)—Ep’
7o UpgN

2 T oA (pra)E+qrp)—Ep)

and the second is an endemic equilibrium point E = (S*, Vl*, V;,E*,I *),

s =G H0+4) o pOH G +0+ 1) (e paUn+ (7 +0+ 1)
np l nBE+5+u) 7 nBlo+pNE+S+ )

g = R =D+ 1)y ++1) (p+ K& +q+ 1) = Ep)
n((n+ )y +6+ )G +q+ 1)

- R D@+ )y +6+ w(p+ u)(E+q+1)—Ep)
((n+ )y +6+ ) +q+ 1)

5
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Theorem-4 The endemic equilibrium point £~ of the SViV2EIR model (5) is locally
asymptotically stable if R, > 1.

Proof: The Jacobian matrix of the model (5) is obtained as follows

—pl-p-u & 0 0 -BS ]
p —$—q-u 0 0 0
J=y 0 q —o—-u 0 0 . (21)
pl 0 0  —n-p  pS
i 0 0 0 n —y—0— |

So the Jacobian matrix at £ is

—pI' —p-u 4 0 0 -pS
p —s—q-u 0 0 0
J(E)=y"" 0 q —o-u 0 0 . 22)
pr 0 0  -n-u pS
i 0 0 0 no —y—0-u]

The third column suggests that one of the eigenvalues is —(o + ) and the remaining four

eigenvalues can be obtained from the following sub matrix of J(E")defined as

~pl' —p-p g 0 -ps
—£—q- 0 0
J(E) = p S—q—Hu
(E)=x BI 0 eu B (23)
0 0 no -y-0-u
The characteristic equation of the sub matrix J,(E") is defined as »'™ -det(J,(E")—Al) =0.
Thus we have
7 ‘(A +a A’ +a, A’ +ad+a,)=0. (24)

where
a,=(BI + p+ )+ (E+q+ )+ + 1) +(y +6+ 1),
ay =(BI +p+)E+q+m)+(BI +p+ )+ )+ E+q+ )0+ )+ (B +p+u)y+6+p)
H(E+q+ )y +8+ )+ + )y +6+ 1) = p&—nps”,
The simplification gives
ay, =E(BI + 1)+ (B + p+u)q+m)+(BL + p+ )0+ 1) +(E+q+ 1) n+ 1)+
(BI + p+p)(y+6+ 1) +(E+q +u)(y +5+ ),
ay=(BI" + p+ )& +q+ )+ )+ (B + p+ p)E+q+u)(y+6+ 1)+
(BI + p+ )0+ 1)y + 6+ @) +(E+q+ )+ 1)y + 6+ 1) —(n+ ) pé = (y + 6+ w) pé
—npS (I +p+pm)-npS (E+q+w)+np’ST,
the simplification gives
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a,=&(BI + )+ 1)+ (BI + p+u)g+ )0+ 1)+ E(BL + )y +3+u)+
(BI +p+p)q+ i)y +8+p)+ B+ u)(y +3+ )l
and
a,=(BI +p+ & +q+m)n+ )y +8+m) =+ )y +8+ ) ps+npS pE+np ST (E+q+u)
—nBS"(BI +p+p)&+q+p),
the simplification gives
a,=BI(n+p)&+q+p)(y+8+ p).
Now, it is easily seen that @, >0,i=1,2,3,4 provided I" >0. Also, from Eq (18) it is clear that
I'>0if Ry>1.
Thus by the Routh-Hurwitz criteria of stability, the endemic equilibrium point of the SViV2EIR
model (5) is locally asymptotically stable if &, >1 otherwise unstable.
Theorem-5 The disease-free equilibrium point E° of the SViV2EIR model (5) is globally
asymptotically stable if R, <.
Proof: We consider the appropriate positive definite Lyapunov function L(S,V,V,,E,[):Q—>R"
defined as

LSV, V,,E,I)=nE+(n+ ). (25)

The Caputo fractional derivative of the Lyapunov function is

o DY L(t) =176 DF E(6) +(n+ ) s DI 1(0). (26)
From (5) we get,
CDIL() = 77 [ n{BIS—(+ WE} +(n+ ) {nE—(y + 5+ p)1}]. 27)

The simplification gives

oDIL(@) = 2 [nPIS — ( + 1)y + 6 + )1 ],

_ el 5 nps _IH' (28)
X { (7 + )y + +ﬂ){(f7+u)(7+5+u)
Since S=S" <N, it follows that
‘DEL(1)< 4| 1 5 nps - 1H
CL) < x [ (n+ )y + +ﬂ){(77+/1)(7+5+ﬂ) (29)
Therefore
CDFL() < 2 [I(n+ p)(y + S+ ) { Ry~ 1} |. (30)
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Hence if R, <l,then {D?L(¢)<0 and {D*L(t)=0 when /=0. Thus by LaSalle’s extension to
Lyapunov’s principle [50], the disease-free equilibrium point of the SV1V2EIR model (5) is globally
asymptotically stable if R, <1 otherwise unstable.

Next, to prove the global stability of an endemic equilibrium point £ of the SViV2EIR model (5)
we use the following result.

Lemma: 6 [51] Let g(f) R’ be a differentiable and continuous function then for any g €R"
and « € (0,1) it satisfies,

oD {g(t)_g*_g*mg(?}g(l_g_*j WDIg(0). Gh
g g(t)

Theorem-7 The endemic equilibrium point £ of the SViV2EIR model (5) is globally
asymptotically stable if R, >1.

Proof: We consider the appropriate positive definite Lyapunov function L(S,V,V,,E,I):Q—R’

defined as

e i (S .« (E oo (1
L(t)—Wl{S—S -S ln(S*HH/V{E—E ~E 1n(FH+W3[1—1 -1 m(l—ﬂ (32)

=B R and
pP+H n+u r+o+u
The Caputo fractional derivative of the Lyapunov function is

. o (S . (E e (1
L(t):VI{S—S -S ]n(S*ﬂH/V{E—E —E ln(E*ﬂH/V{]—I ~1 h{?ﬂ' (33)

Then by using Lemma 6 we have

where W, = are positive constants.

*

CDIL(1) < ! [1—‘%] CDS(1) +M(1—EEJ CDYE(t)

ptu n+u
. (34)
1 I\,
+—[1——J oDEI(2).
y+0+u 1
From (5) we get,
C na 1 S* l-a
DAL S ——| 1= | (uN = BIS —~(p+ 1S +EW})
p+u S
R E 1 . (35)
+R°—(1——JW([HS—(n+u>E)+—[1——jﬁ(nE—(yww)n.
n+u E y+o+u I

From the endemic equilibrium points, we get the following relationship
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uUN +&V, = pI'S" =(p+m)S°,
IS =(n+mwE', (36)
nE =(y+8+ul .

Substitute the values of Eq (36) in Eq (35) then we obtain

(37)

(S-5V (E-EV p ), (1—1*)2}_
S E 1

—

It follows that if R, >1 then we have SDL(f)<0,and if S=S,E=E and I =1"then we have
CDFL(1)=0.Thus by LaSalle’s extension to Lyapunov’s principle [50], the endemic equilibrium point
of the SVIV2EIR model (5) is globally asymptotically stable if R, >1 otherwise unstable.

5. Solution of the SV{V:EIR model by the Laplace-Adomian Decomposition method

The LADM is an efficient technique to obtain an approximate solution for non-linear systems of
differential equations [52-59].

5.1. Numerical method

The present section shows the general procedure to provide a numerical solution of the
SV1V2EIR model (5) with the initial condition
S$0)=n,V(0)=n,,V,(0)=n,, E(0)=n,,[(0)=n, and R(0)=n,. By applying the Laplace

transform to both sides of the model (5) we have

L{SDS(t)} = “L{uN - BI()S(t) - (p+ 1)S() + EV,(1)},
L{SDIV,(0)) = 2 ™“L{pS(®)— (& +q+ p)V, (1)},
{SDEV,(0) = 2 L{qV, ()~ (o + )V, (1)},
{SDIE@®)} = 2" L{BIOS)~(n+ WE®)}, C9
(0D} = 7 L{nE@®) ~(y +5+ w1 (1)},
{[SDIR(O)} = 7 “L{y1(t)+ oV, (t)— uR(t)}.

Now by using the property of Laplace transform, we have
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S“L{S()} —=s""'S(0) =y “L{uN - BI(S(t)~ (p+ )S(O) + &V, (1)},
S“LL ()} =5V (0) = x “L{pS() — (£ +q + )V, (1],

S“L, (0} =s",(0) = x“L{gV ()~ (o + )V, (1)},

S"L{E(t)} =s""E(0) = x “L{BI()S(t) — (n + E(1)},

S“LU®)} —s"1(0) =y “L{nEW0)—(r +6 + mI(1)},

s“L{R(0)} —s“"R(0) = x “L{yI(t) + oV, (t) - uR(t)}.

(39)

Then by simple rearrangement of the system (39) we have

Lis(ry =2 (O)

{ﬂN BLOS)~(p+w)S(t) +EV (1)},

V(O) Z L{

LN} = pS()=(&+q+ )V, (1)},

V(O) Z L{

LV, = AGECEINAGIE

(0) (40)
LiE@y =20 L L{ﬂl(t)S(t) (7+ WE®)},
_ Q z° _
L)} = . T e LInE@)~(y+6+ i)},
LR} =224 L L{p1(0)+ 0Va(0) - R0}
It is clear that the LADM gives the solution in the form of an infinite series given by

SO =38, V:0) =SV () =3 Vo E0)= Y B, 1) =Y 1. Rt) = S R.. 1)

And the nonlinear term /(¢)S(¢) involved in the model are decomposed by the Adomian
polynomial given by

1050=3 4, )
where
1 d* ; ;
A = PrT {2/1 I, ZZ S L_O. (43)

Substitution of Eqgs (41) and (42) to Eq (40) yields the following results
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© S O l-a o © 0
L{ZSk}: 0,z L{yN—ﬂZAk —(p+1)).5, +§ZVM},
k=0 S s k=0 k=0 k=0
© V 0 1-a © ©
L{ZVlk} AUN la L{pZSk —(§+Q+ﬂ)ZV1k},
k=0 S S k=0 k=0
© V 0 l-a © ©
L{ZVzk}: 2( ) + Za L{QZI/Ik _(O-+IU)ZI/2k}7
k=0 N N k=0 k=0
o | _EO) 4 [ y e
L{ZEk}z +5— L{ﬂZAk—(nw)ZEk},
k=0 N s k=0 k=0
© [ 0 l-a © 0
L{Zlk} =Q+Z—HL{nZEk —<y+a‘+u>zlk},
k=0 N N k=0 k=0
© R O l-a £ © )
L{ZRk} =Q+Z—QL{y21k 1oV, —yZRk}.
k=0 N s k=0 k=0 k=0
Next matching the two sides of Eq (44) yields the following iterative algorithm
S0
1s)="9,
s
ol UN +
L(S)=x' {%—él(%)—@—ﬁl(%ﬂéﬂ%)}
s s s s
L) =7 A - Lray -0 usy £ ay | )
ol UN +
L(S,) =7 [ =L 1) L(Sk)+s%L<Vm>}.
For vaccinated class after dose-1 we have
s
,a +qg+
L) =7 L%L(S@—@L(Vm)}
L) =4 L%L(Sl) —Wum} (40)

LV =1" L%L(Sk ) —WL(VM)}.

For the vaccinated class after dose-1I we have
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L(Vzo) = VZLEO) >

L) =7 L%L(Vm)— s L(Vzo)},

a

L) =1 L%L(m—(‘””) L(Vn)}

LVy)= 2" L%L(Vlk)—(";;“) L(Vzkﬂ.

For exposed class we have

L(Eo)=@,

L(E)= 4" L@L(Ao)—ws%”)wso)}

L(E) = 4" [ p L(AJ—%L(EJ]

=
—u +
L(E.)=x {S%L(Ak) - (ﬂsaﬂ) L(Ek):|'
For infected class we have

L(Io):@,

L(1)= 7 L%L(E())—Wwo)]

L(L)= 4" L%L(El) —Ww‘)}

L) =7 [%L(Ek) —Wum}

For recovered class we have
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LR =2,

LR)= 2" V L(I)+= L(Vzo)—ﬁL(m}

o

L(R,)= 7" L%L(11)+S—G,L(Vzl)—s%L(R1)} (50)

LR.,)=1"" L%L(I,{H;%L(VZQ—S%L(R»}.

Then by inverting the Laplace transform of Eqs (45)—~(50) along with the initial condition we
have an iterative formula as

o N +
S =1" Ll[’i By~ 15,y 42 L(Vlk)}

S S S

— +q+

Vien —Zl L 1[%L(Sk) (E+a+p) L(Vlk)i|

S S

o (o+

Vi = 2" L‘L%L(V;»— 4 L(m}
(51)
B =20 | L) - 1, )}

S

o +0+

L =20 | L og) -0 1, )}
S S
R =xL" [ L)+ LWL LR, )} k=0,1,2,3,..
Therefore the approximate solution of the SV1V2EIR model (5) is
SO S, Vi =D Vi, V()= D Vo EQ =D EL I =D 1, RO~ R,.
k=0 k=0 k=0 k=0 k=0 k=0
where
(52)

lim Z S, =5(»), lim 2 Vie =V(0), lim 2 Ve =V, (),

lim > E, =E(), lim DI =1(n), lim D> R, =R().
k=0 k=0 k=0

5.2. Convergence analysis of LADM
The solution of the SV1V2EIR model (5) is obtained in infinite series (52), which rapidly and

uniformly converge to the exact solution. To check the convergence of the series solution we use the
classical technique [60,61]. For this purpose, the obtained solution (52) can be recast as
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n

x =Fx_,,x =le., n=123,.. (53)
i=1

Next, we present Theorem 8 to prove the convergence of LADM.
Theorem 8 Let X be a Banach space and F: X — X a contractive map with 0 <k <1 then F

has a unique point X such that F(x)= x, where x=(S,V,V,,E,I,R). Let x,€B.(x), where
B (x)={x"e X:||x'—x||<r} then we have x, €B.(x) and lim x, = x.

Proof: We used mathematical induction to prove the result. For n = 1, we have
1% =x [H £06) = F) <k [ 5 —x]]. (54)

Let’s assume the result is true for n — 1, then

%, =<K | x=xll. (55)

We get
1, =x|=[ £1x, ) = FO ISk 2, = [I<A” | =] (56)

That is
| x —x||<Kk" | x, —x||<k'r<r. (57)

It means that x, € B (x).
Moreover, ||X, —x|<k"||x,—x|| and lim |x,—x|=0 as lim k" =0, therefore we have
n—»o0 n—ow

lim x, =x.

n—o0

This completes the proof.
6. Numerical results
6.1. Estimation of SViV:EIR model parameters

To investigate a numerical simulation of the model (5) for India in the Caputo sense we have
considered a few parametric values from the literature and the rest are estimated or fitted by the
least-squares curve fitting method. We have to use the total population of India N = 1,408,044,253 as

of 1 January 2022 [63]. The birth rate in India for the year 2022 is 17.163 births per 1000 people [64],

/ *
so we estimate a new recruitment rate Bzrthr—ateN. The mortality rate for India in 2022 is 27.695

365

27.695 _ 0.0277 . The goal is

deaths per 1000 live births [65], so we estimate a natural death rate

to estimate the remaining parameters of the SV1V2EIR model to approximate our numerical results
to fit real data. For this purpose, we have considered real data of cumulative covid-19 cases in India
from 1 January 2022 to 30 April 2022 provided by worldometer [62] and grouped them as weekly in
Table 2.
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The model (5) was fitted to the daily cumulative covid-19 cases for India to minimize the
summation of square error given by the model solution over a considered period and reported real
data. We have taken t = 1 day as of 1 January 2022 and t = 120 days as of 30 April 2022. Figure 2
shows the model fitting of daily cumulative confirmed cases of COVID-19 in India.

Table 2. Number of cumulative confirmed cases of COVID-19 in India from 1 January
2022 to 30 April 2022 [62].

Cumulative confirmed cases Cumulative confirmed cases

Month of COVID-19 in India Month of COVID-19 in India
01 January 2022 34,889,132 05 March 2022 42.967.315
08 January 2022 35,528,004 12 March 2022 42,993 494
15 January 2022 37,122,164 19 March 2022 43,007.841
22 January 2022 39,237,264 26 March 2022 43,019,453
29 January 2022 41,092,522 02 April 2022 43,028,131
05 February 2022 42,188,138 09 April 2022 43,035,271
12 February 2022 42,631,421 16 April 2022 43,042,097
19 February 2022 42,822,473 23 April 2022 43,057,545
26 February 2022 42,924,130 30 April 2022 43,079,188
44 X 107

& 4.1 i

A

>

3

40 60 80 100 120
Time (in days)

Figure 2. Reported COVID-19 cumulative data for India from 1 January 2022 to 30
April 2022 (blue line) and the corresponding best fit (red line).

6.2. Sensitivity analysis

We have performed the sensitivity analysis of the reproduction number R, of the SViV2EIR

model (5) to provide a good strategy and prevent the spread of the disease. A sensitivity index
measure provides the proportion that relative changes that may occur in a parameter lead to the

relative change in a variable. The normalized forward sensitivity index of R, with a parameter X is
defined as follows [66]
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0 X
o =L, X (58)
ox R,
For the basic reproduction number R, we compute the following sensitivity index as
H;O :%Xﬁzl. (59)
p R

From the Eq (59), we note that as there is an increase or decrease in transmission rate S by a

certain percentage say k then the reproduction number R, also increases or decreases by the same
percentage k. The sensitivity indices of R, with parameters of the SViV2EIR model were evaluated
at the parameter values listed in Table 3 and reported in Table 4.

Table 3. Values of biological parameters of the SV1V2EIR model and their sources.

Parameter Values Source
H 0.0277 [65]

B 8.25*%10°% Fitted
p 0.94 Fitted
4 0.6 Fitted
q 0.62 Fitted
o 0.84 Fitted
y 0.012 Fitted
o 0.125 Fitted
Y 0.61 Fitted

Table 4. A sensitivity indices of R, with parameters of the SV1V2EIR model.

Parameters B H Y N ¢ q Y ) p

Values 1 0.1928 0.6977 1 0.4551  —-0.4356  —0.7998 —0.1639 —0.9463

Figure 3 shows the graphical analysis of the sensitivity indices of R, with respect to the model

parameters. This analysis suggests that the transmission rate of disease, mortality rate, progression
rate form £ to / the total population of India, and progression rate form V| to S are in positive

correlation with R, whereas the rate of dose-I of vaccine, rate of dose-II of vaccine, vaccines related
death rate, and the natural recovery rate are in negative correlation with R,. Also, the sensitivity

analysis suggests that the most influential parameter are disease transmission rate and rate of dose-I
of vaccine, and the least influential parameter is vaccines related death rate. Hence based on this
analysis we can develop a suitable strategy to control and prevent the spread of disease.
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Figure 3. Sensitivity indices of R, with respect to the SV1V2EIR model parameters.

6.3. Numerical simulation

In this subsection, we have employed the LADM scheme to obtain a numerical simulation of
the SV1V2EIR model (5). To analyze the model (5) we simulate it for various biological parameters
mentioned in Table 3.

First, we performed a numerical simulation for various values of the rate of dose-I of the
vaccine (p) to explore its impact on the infected population. In Figure 4, the values of p taken into

consideration are p =0,0.30,0.60 and 0.94. In the absence of dose-I of vaccine, there is a giant
peak in a number of an infected population near to 20,190,000. As values of rate of dose-I of vaccine

increase then there is dramatically declined in a number of an infected population. The estimated
value of p =0.94 and the number of an infected population is around 7,570,000. The model is also

simulated for «=0.9 and a=0.8 to analyze the impact of rate of dose-I of the vaccine on the infected
population. For =0.9 and p = 0 the number of an infected population is around 19,410,000 whereas it

is dramatically decreased for p =0.94 around 7,378,000 For ¢=0.8 and p =0 the number of an
infected population is around 18,730,000 whereas it is dramatically decreased for p = 0.94 around
7,365,000. Thus there is a strong negative correlation between the rate of dose-I of vaccine and

infected population.
Figure 5 shows the impact of the rate of dose-II of the vaccine (¢) on the infected population.

The values of g taken into consideration are ¢ = 0,0.30,0.62 and 0.90. In the absence of dose-II
of vaccine, there is a giant peak in a number of an infected population near to 18,640,000. As

values of rate of dose-II of vaccine increase then there is dramatically declined in a number of an
infected population. The estimated value of ¢ = 0.62 and the number of an infected population is

around 7,597,000. The model is also simulated for «=0.9 and a=0.8 to analyze the impact of
the rate of dose-II of the vaccine on the infected population. For =09 and ¢ = 0 the number of an

infected population is around 18,000,000 whereas it is dramatically decreased for ¢ = 0.62 around
7,412,000. For ¢=0.8 and ¢ =0 the number of an infected population is around 17,270,000
whereas it is dramatically decreased for ¢ = 0.62 around 7,407,000. Thus there is a strong negative
correlation between the rate of dose-II of vaccine and infected population.
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Figure 4. Impact of the first dose of vaccine on the infected population.
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Figure 5. Impact of the second dose of vaccine on the infected population.
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Figure 6 shows the impact of disease transmission rate () on the infected population for

various transmission rates such as 9.25 x 10, 8.25 x 108, 7.25 x 10%, and 6.25 x 10®. As the
disease transmission rate decrease the number of an infected population is decreased. Thus there is a
strong positive correlation between the disease transmission rate and the infected population. The
impact of g on the infected population is also evaluated for fractional-order =09 and 0.8. The
same strong positive correlation is observed between the disease transmission rate and the infected
population.

Figure 7 shows the impact of the rate of dose-I and dose-II of the vaccine on the infected
population. Figure 7 is simulated for the estimated value of p and g for fractional-order « =1,0.9
and 0.8. For a =1, the infected population after getting dose-I of vaccine is around 485,100,000
whereas after getting dose-II of vaccine is around 263,300,000. For « =0.9, the infected population
after getting dose-I of vaccine is around 454,500,000 whereas after getting dose-II of vaccine is
around 240,400,000. For a=0.8, the infected population after getting dose-I of vaccine is around
432,600,000 whereas after getting dose-II of vaccine is around 219,600,000. Thus there is a
dramatically declined in a number of an infected population after getting dose-II of vaccine as
compare to dose-I of the vaccine. Also, we observed that as the fractional order decreased the
number of the infected population is also gradually decreased due to a non-local property of
fractional derivative.

108 Impact of disease transmission rate 10° Impact of disease transmission rate

—— (=9.25e-08 =9 25¢-08
8 — (4=8.25e-08 8r =8 250-08

=7 25e-08 =7 250-08
——5=6.25e-08 7+ —— 3=6.25¢-08

Infected Population
Infected Population

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 50 60 70 80 9 100
Time (days) Time (days)

(a) a=1 (b) =09

106 Impact of disease transmission rate

=9 25¢-08
8r =8 250-08

=7 250-08
—— 3=6.25¢-08

Infected Population

40 60 70 80 o« 100
Time (days)

(c) a=0.8

Figure 6. Impact of disease transmission rate on the infected population.
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Figure 7. Impact of a first and second dose of vaccine on the infected population.
7. Conclusions

In this paper, we have investigated the SViV2EIR model to reveal the impact of dose-I, and
dose-II vaccination on COVID-19 by using the Caputo fractional derivative. The basic reproduction
number of the model is derived by using the next-generation matrix method. The local and global
stability analysis is investigated for both the disease-free and endemic equilibrium points. Next, we
have to consider real data of cumulative COVID-19 cases in India from 1 January 2022 to 30 April 2022
then the model (5) was fitted to the daily cumulative COVID-19 cases for India to minimize summation
of square error by least-squares curve fitting method to estimate model parameters. Then we
performed a sensitivity analysis to examine the effects of model parameters that affect the basic
reproduction number. From a sensitivity index, we analyze that the most influential parameters are
disease transmission rate and rate of dose-I of vaccine, and the least influential parameter is the
vaccine-related death rate. Finally, the LADM is implemented to obtain a numerical result of an
SV1V2EIR model. The numerical results suggest that there is a strong negative correlation between
the rate of dose-I of the vaccine and the infected population. Thus dose-I of the vaccine is necessary
to control the spread of COVID -19. According to numerical results, the dose-II of the vaccine is the
most efficient to restrict the wide spread of disease. Furthermore, the numerical results suggest that
there is a strong positive correlation between the disease transmission rate and the infected
population. Thus by following the proper guideline declared by the WHO and the government we
decrease the disease transmission rate and ultimately restrict the spread of the pandemic. The
fractional-order model provides accurate results due to a non-local property and reveals the precise
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number of infected population and hence in advanced intimate to develop a most efficient
strategy to prevent an outbreak.
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