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Abstract: In this paper, we construct the SV1V2EIR model to reveal the impact of two-dose 
vaccination on COVID-19 by using Caputo fractional derivative. The feasibility region of the 
proposed model and equilibrium points is derived. The basic reproduction number of the model is 
derived by using the next-generation matrix method. The local and global stability analysis is 
performed for both the disease-free and endemic equilibrium states. The present model is validated 
using real data reported for COVID-19 cumulative cases for the Republic of India from 1 January 
2022 to 30 April 2022. Next, we conduct the sensitivity analysis to examine the effects of model 
parameters that affect the basic reproduction number. The Laplace Adomian decomposition method 
(LADM) is implemented to obtain an approximate solution. Finally, the graphical results are 
presented to examine the impact of the first dose of vaccine, the second dose of vaccine, disease 
transmission rate, and Caputo fractional derivatives to support our theoretical results. 
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1. Introduction 

Mathematical models are the foremost technique to investigate the transmission dynamics of 
COVID-19 to control and develop a new strategy or policy to prevent the spread of the disease. 
Several mathematical models have been developed and formulated in the last two years to 
understand the novel infection surge by COVID-19 such as understanding the transmission 
dynamics [1–10], the efficiency of lockdown [11,12], the impact of social distancing [13,14], the 
effect of isolation and quarantine [15–21], the impact of facemask [22,23], media effect [24,25], the 
impact of the environment [26,27].  

A vaccine is a kind of medicine that develops a body’s immune system before catching the 
disease. Clinically there are four types of COVID-19 vaccine as follows: 1) whole virus, 2) protein 
subunit, 3) viral vector, and 4) RNA and DNA (Nucleic acid). The entire world is taken a challenge 
to prepare a vaccine to prevent COVID-19. In this short span, various vaccinations are developed 
and approved for emergency use such as Covaxin, Moderna, Sputnik Light, Sputnik V, Covishield, 
Ad26.COV2.S, Convidecia, Zifivax, Novavax, Comirnaty, Covilo, CoronaVac, etc. At present, the 
world health organization (WHO) approved eleven vaccines for emergency use to fight or reduce the 
spread of COVID-19 [28]. Among these eleven approved vaccines, Covishield, and Covaxin are 
manufactured in India. Covishield is manufactured by the Serum Institute of India along with Oxford 
University and approved by 49 countries in the world whereas Covaxin is manufactured by Bharat 
Biotech and approved by 14 countries in the world [28]. About 61% population of India is 
vaccinated by dose-I and 44% population of India is vaccinated by dose-II up to 1 January 2022. 
According to the Indian Council of Medical Research (ICMR), two-dose of Covishield or Covaxin 
significantly mitigate the risk of COVID-19 [29].  

Mathematical models to understand the effect of vaccination, the efficiency of vaccination, and 
the vaccination campaign on COVID-19 have been developed and analyzed by the authors [30–39] 
to prevent the disease. Recently, a few mathematical models are reported to study the effect of multi-
vaccination or two-dose of vaccination on COVID-19 to control or built an efficient strategy [40–42]. 
Best of our knowledge there is none of the attempts is registered to investigate the impact of two-
dose of vaccination on COVID-19 with Caputo derivative using real data from the Republic of India. 
Hence in this attempt, we have proposed a mathematical model to study the effect of two-dose of 
vaccination on the transmission dynamics of COVID-19.  

The rest of the paper is organized as follows: Section 2 provides the preliminary of fractional 
calculus. The SV1V2EIR model formulation for dose-I and dose-II of vaccination with Caputo 
derivative is presented in Section 3. The local and global stability of the equilibrium points of the 
SV1V2EIR model and the positivity of the solution are provided in Section 4. The Laplace-Adomian 
decomposition method for the numerical solution of the proposed SV1V2EIR model is given in 
Section 5. The estimation of SV1V2EIR model parameters, sensitivity analysis, and numerical 
simulations are presented in Section 6. Finally, a conclusion of the present work is given in Section 7.  

2. Preliminaries 

In this section, the basic definition of fractional calculus is presented which uses to describe and 
formulate the SV1V2EIR model for COVID-19 [43–45]. 
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Definition 2.1 Let 1([0, ], ),y L T   then the Riemann-Liouville fractional integral of order   is 
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where [ ] 1n    and [ ]  denotes the integer part of .  
Definition 2.3 The Laplace transform of Caputo fractional derivative of a function ( )y t  is 

defined by 
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where 1n n    and .n  

3. Mathematical model 

Mathematical modelling of transmission dynamics of COVID-19 is ubiquitous to control the 
spread of the disease. A series of models are reported to explore the impact of vaccines on the 
treatment of disease. In this section, we propose a deterministic two-dose vaccination model to 
analyze the overall dynamics of COVID-19. We divide the total population into six compartments 
namely susceptible individuals ( )S t , vaccinated individuals after dose-I 1( )V t , vaccinated individuals 

after dose-II 2( )V t , exposed individuals ( )E t , infected individuals ( )I t , and recovered individuals 

( )R t . The size of the compartment class varies with time t  but the total size of the population 

1 2( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t V t V t E t I t R t       is constant.  

The susceptible individuals increase due to new birth and the inflow of vaccinated individuals 
after dose-I at rates  . It decreases due to an infection, acquires dose-I of vaccine, and natural death 
at the rate  , p  and   respectively. The vaccinated individuals after dose-I are increased due to a 

susceptible individual who acquires dose-I of the vaccine. It decreases due to a vaccinated transfer 
back to the susceptible, acquiring dose-II of vaccine, and natural death at the rate   , q  and 
respectively. The vaccinated individuals after dose-II are increased due to an individual who acquires 
dose-II of the vaccine. It decreases due to an individual who acquires two-dose of vaccines and 
natural death at the rate   and   respectively. It is assumed that a two-dose of vaccine develops 

hard immunity in the body and thus an individual recovers from the disease. The exposed individual 
increase due to susceptible individual who carries the virus but yet not developed clinical symptoms. 
It decreases due to the development of clinical symptoms in exposed individuals and natural death at 
the rate and   respectively. The infected individual increased due to exposed individuals who got 

the symptoms of COVID-19. It decreases due to natural recovery, death due to vaccines, and natural 
death at the rate  ,   and   respectively. The recovered individual is increased due to recovery of 
infected individuals and an individual who acquire two-dose of vaccines at the rate   and   
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respectively and decrease due to natural death. The flow diagram of the transmission between 
different individuals is shown in Figure 1. Therefore the resulting mathematical model for COVID-19 is 
described by the following system of nonlinear ordinary differential equations. 

 

Figure 1. Flow diagram of the SV1V2EIR transmission model of COVID-19. 
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With the initial conditions 1 2(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0S V V E I R       and the variables or 

parameters and a description of the parameter is given in Table 1. 
The susceptible individuals in transmission of COVID-19 use their memory to prevent or 

reduce infection. But an integer-order derivative is not able to acquire it due to its local behaviour. 
Fractional-order derivatives acquire the information of present and past due to their non-local nature 
and are involved to prevent infection [43–48]. Motivated by the importance of fractional calculus, 
we converted the classical model to the fractional SV1V2EIR transmission model of COVID-19. First, 
we replace the classical derivative in the system (4) with the Caputo fractional derivative of order  , 
where   can take any value in the interval (0,1]. Thus, the dimension of a newly developed Caputo 
SV1V2EIR model does not remain the same. In this situation, we use the auxiliary parameter   to 

adjust the inconsistency that arises in the dimensions of the left and right sides of the system. By 
applying these a balance fractional SV1V2EIR transmission model of COVID-19 is given by  
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with the initial conditions 

1 2(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0.S V V E I R       (6) 

Table 1. Description of biological parameters of the SV1V2EIR model. 

Parameter Description of parameter 
S   Susceptible individuals 

1V   Vaccinated individuals after dose-I 

2V   Vaccinated individuals after dose-II 

E   Exposed individuals 
I   Infected individuals 
R   Recovered individuals 
N   Total population 
   Natural death rate 
   Disease transmission rate 
p   Rate of dose-I of vaccine 
   Progression rate form 1V  to S   
q  Rate of dose-II of vaccine 
   Recovery rate due to the second dose of vaccine 
  Progression rate form E  to I  
   Natural recovery rate  
   Vaccines-related death rate 

4. Model analysis  

In mathematical epidemiology, we ensure that the solutions of the model (5) are nonnegative 
and bounded at all future times. In model (5), all the individual populations are independent of the 
recovery population so we focus only on susceptible, vaccinated after dose-I, vaccinated after dose-II, 
exposed, and infected. Hence for this reason we consider the following feasible region for system (5) 
as  5

1 2 1 2( , , , , ) | , , , , 0 .S V V E I R S V V E I     

Theorem-1 The closed set   is a positive invariant with respect to the fractional model (5). 
Proof: From the first equation of the system (5), we have  

1
0 0 1| 0,C

t SD S N V   
     (7) 

as   and   are natural death rate and progression rate form 1V  to S  respectively, and both 

parameters are non-negative. 
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Similarly, we observed that  
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The Eqs (7)–(8) hold for any point of the region  . Thus the set   is positive invariant with 
respect to the fractional model (5). 

Basic reproduction number :the number of infections spread by a single individual is referred to 
as a basic reproduction number and it plays a vital role in controlling the spread of disease. The 
disease-free equilibrium point of the SV1V2EIR model (5) is given by 0 0 0 0

1 2( , , ,0,0),E S V V  where  
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To compute the basic reproduction number using the next generation method [49], we consider 

the right-hand side of the infected class E  and I  at 0E  as F  and V  where 
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Hence the basic reproduction number is defined as  
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Theorem-2 The disease-free equilibrium point 0E  of the SV1V2EIR model (5) is locally 
asymptotically stable if 0 1.R   

Proof: The Jacobian matrix of the model (5) is obtained as follows 

1

0 0

0 0 0

.0 0 0

0 0

0 0 0

I p S

p q

J q

I S



   
 

  
   

   



    
    
   
   
    

 (11) 

So the Jacobian matrix at 0E  is  
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The characteristic equation of the Jacobian matrix at the disease-free equilibrium point 0( )J E  is 
1 0det( ( ) ) 0.J E I       

The third column suggests that one of the eigenvalues is ( )    and the remaining four 
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The characteristic equation of the block matrix 0
1( )J E  is given by  
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Hence it is clear that 4( ) 0Det B   if 0 1.R   

Thus by the Routh-Hurwitz criteria of stability, the disease-free equilibrium point of the 

SV1V2EIR model (5) is locally asymptotically stable if 0 1R 
 otherwise unstable. 
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Theorem-3 The SV1V2EIR model (5) possesses at most two equilibrium points, 1) A disease-

free equilibrium point 0 0 0 0
1 2( , , ,0,0),E S V V  where  
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Proof: To find the equilibrium points of the model (5), we solve the following equations 
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By simple algebraic manipulation, we obtain two solutions to the system (20). The first is a 
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0
2

( )
, ,

( )( ) ( )( )

.
( )(( )( ) )

N q pN
S V

p q p p q p

pqN
V

p q p

   
       


     

 
 

       


    

 

and the second is an endemic equilibrium point * * * * * *
1 2( , , , , )E S V V E I , 

* * *
1 2

2
* 0

* 0

( )( ) ( )( ) ( )( )
, , ,

( ) ( )( )

( 1)( )( ) (( )( ) )
,

(( )( ))( )

( 1)( )( )(( )( ) )
.

(( )( ))( )

p pq
S V V

R p q p
E

q

R p q p
I

q

              
          
        
       

        
      

        
  

    

       


    
       


    
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Theorem-4 The endemic equilibrium point *E  of the SV1V2EIR model (5) is locally 

asymptotically stable if 0 1.R   

Proof: The Jacobian matrix of the model (5) is obtained as follows 

1

0 0

0 0 0

.0 0 0

0 0

0 0 0

I p S

p q

J q

I S



   
 

  
   

   



    
    
   
   
    

 (21) 

So the Jacobian matrix at *E  is  

* *

* 1

* *

0 0

0 0 0

( ) .0 0 0

0 0

0 0 0

I p S

p q

J E q

I S



   
 

  
   

   



    
    
   
 

  
    

 (22) 

The third column suggests that one of the eigenvalues is ( )   and the remaining four 

eigenvalues can be obtained from the following sub matrix of *( )J E defined as 

* *

* 1
1 * *

0

0 0
( ) .

0

0 0

I p S

p q
J E

I S


   
 


   

   



    
    
  
 

   

 (23) 

The characteristic equation of the sub matrix *
1( )J E  is defined as 1 *

1det( ( ) ) 0.J E I      

Thus we have  

1 4 3 2
1 2 3 4( ) 0.a a a a           (24) 

where 
*

1 ( ) ( ) ( ) ( ),a I p q                    
* * *

2

*

( )( ) ( )( ) ( )( ) ( )( )

        ( )( ) ( )( ) ,

a I p q I p q I p

q p S

                

           

                 

          
 

The simplification gives 
* * *

2

*

( ) ( )( ) ( )( ) ( )( )

        ( )( ) ( )( ),

a I I p q I p q

I p q

             

         

              

        
 

* *
3

*

* * * 2 * *

( )( )( ) ( )( )( )

        ( )( )( ) ( )( )( ) ( ) ( )

        ( ) ( ) ,

a I p q I p q

I p q p p

S I p S q S I

            

                    

      

             

               

      

 

the simplification gives 
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* * *
3

* *

( )( ) ( )( )( ) ( )( )

        ( )( )( ) ( )( ) ,

a I I p q I

I p q I

               

           

            

        
 

and  
* * 2 * *

4

* *

( )( )( )( ) ( )( ) ( )

        ( )( ),

a I p q p S p S I q

S I p q

                   

    

               

    

 the simplification gives 

*
4 ( )( )( ).a I q              

Now, it is easily seen that 0, 1,2,3,4ia i   provided * 0.I   Also, from Eq (18) it is clear that
* 0I   if 0 1.R    

Thus by the Routh-Hurwitz criteria of stability, the endemic equilibrium point of the SV1V2EIR 

model (5) is locally asymptotically stable if 0 1R   otherwise unstable. 

Theorem-5 The disease-free equilibrium point 0E  of the SV1V2EIR model (5) is globally 

asymptotically stable if 0 1.R    

Proof: We consider the appropriate positive definite Lyapunov function 1 2( , , , , ):L S V V E I 
defined as 

1 2( , , , , ) ( ) .L S V V E I E I      (25) 

The Caputo fractional derivative of the Lyapunov function is  

0 0 0( ) ( ) ( ) ( ).C C C
t t tD L t D E t D I t        (26) 

From (5) we get,  

   1
0 ( ) ( ) ( ) ( ) .C

tD L t IS E E I                      (27) 

The simplification gives  

 1
0

1

( ) ( )( ) ,

             ( )( ) 1 .
( )( )

C
tD L t IS I

S
I

 



      

     
    





    

  
          

 (28) 

Since 0 ,S S N   it follows that  

0
1

0 ( ) ( )( ) 1 .
( )( )

C
t

S
D L t I       

    
   

          
 (29) 

Therefore  

 1
0 0( ) ( )( ) 1 .C

tD L t I R              (30) 
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Hence if 0 1,R  then 0 ( ) 0C
tD L t   and 0 ( ) 0C

tD L t   when 0.I   Thus by LaSalle’s extension to 

Lyapunov’s principle [50], the disease-free equilibrium point of the SV1V2EIR model (5) is globally 
asymptotically stable if 0 1R   otherwise unstable. 

Next, to prove the global stability of an endemic equilibrium point *E  of the SV1V2EIR model (5) 
we use the following result.  

Lemma: 6 [51] Let ( )g t   be a differentiable and continuous function then for any *g   
and (0,1)  it satisfies, 

*
* *

0 0*

( )
( ) ln 1 ( ).

( )
C C

t t

g t g
D g t g g D g t

g g t
   

     
   

 (31) 

Theorem-7 The endemic equilibrium point *E  of the SV1V2EIR model (5) is globally 
asymptotically stable if 0 1.R   

Proof: We consider the appropriate positive definite Lyapunov function 1 2( , , , , ):L S V V E I 
defined as  

* * * * * *
1 2 3* * *

( ) ln ln ln ,
S E I

L t W S S S W E E E W I I I
S E I

                                      
 (32) 

where 1

1
W

p 



, 0

2

( 1)R
W

 





,  0 1R   and 
3

1
W

  


 
 are positive constants. 

The Caputo fractional derivative of the Lyapunov function is  

* * * * * *
1 2 3* * *

( ) ln ln ln
S E I

L t W S S S W E E E W I I I
S E I

                                      
. (33) 

Then by using Lemma 6 we have  

* *
0

0 0 0

*

0

( 1)1
( ) 1 ( ) 1 ( )

1
                   1 ( ).

C C C
t t t

C
t

RS E
D L t D S t D E t

p S E

I
D I t

I

  



  

  

   
          

 
     

 (34) 

From (5) we get,  

*
1

0 1

* *
1 10

1
( ) 1 ( ( ) )

( 1) 1
1 ( ( ) ) 1 ( ( ) ).

C
t

S
D L t N IS p S V

p S

R E I
IS E E I

E I

 

 

    


        
    



 

 
        
   

                

 (35) 

From the endemic equilibrium points, we get the following relationship  
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* * *
1

* * *

* *

( ) ,

( ) ,

( ) .

N V I S p S

I S E

E I

   

  

   

   

 

  

 (36) 

Substitute the values of Eq (36) in Eq (35) then we obtain  

* 2 * 2 * 2
1

0 0

( ) ( ) ( )
( ) ( 1) .C

t

S S E E I I
D L t R

S E I
      

     
 

 (37) 

It follows that if 0 1R   then we have 0 ( ) 0,C
tD L t  and if * *,S S E E   and *I I then we have 

0 ( ) 0.C
tD L t  Thus by LaSalle’s extension to Lyapunov’s principle [50], the endemic equilibrium point 

of the SV1V2EIR model (5) is globally asymptotically stable if 0 1R   otherwise unstable. 

5. Solution of the SV1V2EIR model by the Laplace-Adomian Decomposition method 

The LADM is an efficient technique to obtain an approximate solution for non-linear systems of 
differential equations [52–59].  

5.1. Numerical method 

The present section shows the general procedure to provide a numerical solution of the 
SV1V2EIR model (5) with the initial condition  

1 1 2 2 3 4 5(0) , (0) , (0) , (0) , (0) ,S n V n V n E n I n     and 6(0) .R n  By applying the Laplace 

transform to both sides of the model (5) we have  

   
   
   
   
   
 

1
0 1

1
0 1 1

1
0 2 1 2

1
0

1
0

1
0

( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

( )

C
t

C
t

C
t

C
t

C
t

C
t

L D S t L N I t S t p S t V t

L D V t L pS t q V t

L D V t L qV t V t

L D E t L I t S t E t

L D I t L E t I t

L D R t

 

 

 

 

 



    

  

  

   

    













    

   

  

  

   

  2( ) ( ) ( ) .L I t V t R t     

 (38) 

Now by using the property of Laplace transform, we have  
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 
 
 
 

1 1
1

1 1
1 1 1

1 1
2 2 1 2

1 1

{ ( )} (0) ( ) ( ) ( ) ( ) ( ) ,

{ ( )} (0) ( ) ( ) ( ) ,

{ ( )} (0) ( ) ( ) ( ) ,

{ ( )} (0) ( ) ( ) ( ) ( ) ,

{ ( )}

s L S t s S L N I t S t p S t V t

s L V t s V L pS t q V t

s L V t s V L qV t V t

s L E t s E L I t S t E t

s L I t s

  

  

  

  

 

    

  

  

   

 

 

 

 



     

    

   

   

  
 

1 1

1 1
2

(0) ( ) ( ) ( ) ,

{ ( )} (0) ( ) ( ) ( ) .

I L E t I t

s L R t s R L I t V t R t



  

    

   



 

   

   

 (39) 

Then by simple rearrangement of the system (39) we have 

 

 

 

 

1

1

1
1

1 1

1
2

2 1 2

1

1

(0)
{ ( )} ( ) ( ) ( ) ( ) ( ) ,

(0)
{ ( )} ( ) ( ) ( ) ,

(0)
{ ( )} ( ) ( ) ( ) ,

(0)
{ ( )} ( ) ( ) ( ) ( ) ,

(0)
{ ( )} (

S
L S t L N I t S t p S t V t

s s

V
L V t L pS t q V t

s s

V
L V t L qV t V t

s s

E
L E t L I t S t E t

s s

I
L I t L E t

s s





















    

  

  

   

 











     

    

   

   

   

 
1

2

) ( ) ( ) ,

(0)
{ ( )} ( ) ( ) ( ) .

I t

R
L R t L I t V t R t

s s





  

   


  

   

 (40) 

It is clear that the LADM gives the solution in the form of an infinite series given by 

1 1 2 2
0 0 0 0 0 0

( ) , ( ) , ( ) , ( ) , ( ) , ( ) .k k k k k k
k k k k k k

S t S V t V V t V E t E I t I R t R
     

     

            (41) 

And the nonlinear term ( ) ( )I t S t  involved in the model are decomposed by the Adomian 

polynomial given by  

0

( ) ( ) ,k
k

I t S t A




  (42) 

where  

0 0 0

1
.

!

k k k
j j

k j jk
j j

d
A I S

k d


 
   

 
  

 
   (43) 

Substitution of Eqs (41) and (42) to Eq (40) yields the following results  
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 (44) 

Next matching the two sides of Eq (44) yields the following iterative algorithm  
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For vaccinated class after dose-I we have  
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For the vaccinated class after dose-II we have 
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For exposed class we have 
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For infected class we have 
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For recovered class we have  
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Then by inverting the Laplace transform of Eqs (45)–(50) along with the initial condition we 
have an iterative formula as   
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Therefore the approximate solution of the SV1V2EIR model (5) is 
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(52) 

5.2. Convergence analysis of LADM 

The solution of the SV1V2EIR model (5) is obtained in infinite series (52), which rapidly and 
uniformly converge to the exact solution. To check the convergence of the series solution we use the 
classical technique [60,61]. For this purpose, the obtained solution (52) can be recast as 
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Next, we present Theorem 8 to prove the convergence of LADM. 
Theorem 8 Let X  be a Banach space and :F X X  a contractive map with 0 1k   then F  
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Proof: We used mathematical induction to prove the result. For 1,n   we have  
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This completes the proof. 

6. Numerical results 

6.1. Estimation of SV1V2EIR model parameters  

To investigate a numerical simulation of the model (5) for India in the Caputo sense we have 
considered a few parametric values from the literature and the rest are estimated or fitted by the 
least-squares curve fitting method. We have to use the total population of India N = 1,408,044,253 as 
of 1 January 2022 [63]. The birth rate in India for the year 2022 is 17.163 births per 1000 people [64], 

so we estimate a new recruitment rate  *

365

Birth rate N . The mortality rate for India in 2022 is 27.695 

deaths per 1000 live births [65], so we estimate a natural death rate 
 

27.695
0.0277

1000
 . The goal is 

to estimate the remaining parameters of the SV1V2EIR model to approximate our numerical results 
to fit real data. For this purpose, we have considered real data of cumulative covid-19 cases in India 
from 1 January 2022 to 30 April 2022 provided by worldometer [62] and grouped them as weekly in 
Table 2. 
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The model (5) was fitted to the daily cumulative covid-19 cases for India to minimize the 
summation of square error given by the model solution over a considered period and reported real 
data. We have taken t = 1 day as of 1 January 2022 and t = 120 days as of 30 April 2022. Figure 2 
shows the model fitting of daily cumulative confirmed cases of COVID-19 in India. 

Table 2. Number of cumulative confirmed cases of COVID-19 in India from 1 January 
2022 to 30 April 2022 [62]. 

Month 
Cumulative confirmed cases 
of COVID-19 in India 

Month 
Cumulative confirmed cases 
of COVID-19 in India 

01 January 2022 34,889,132 05 March 2022 42,967,315 
08 January 2022 35,528,004 12 March 2022 42,993,494 
15 January 2022 37,122,164 19 March 2022 43,007,841 
22 January 2022 39,237,264 26 March 2022 43,019,453 
29 January 2022 41,092,522 02 April 2022 43,028,131 
05 February 2022 42,188,138 09 April 2022 43,035,271 
12 February 2022 42,631,421 16 April 2022 43,042,097 
19 February 2022 42,822,473 23 April 2022 43,057,545 
26 February 2022 42,924,130 30 April 2022 43,079,188 

 

Figure 2. Reported COVID-19 cumulative data for India from 1 January 2022 to 30 
April 2022 (blue line) and the corresponding best fit (red line). 

6.2. Sensitivity analysis 

We have performed the sensitivity analysis of the reproduction number 0R  of the SV1V2EIR 

model (5) to provide a good strategy and prevent the spread of the disease. A sensitivity index 
measure provides the proportion that relative changes that may occur in a parameter lead to the 

relative change in a variable. The normalized forward sensitivity index of 0R  with a parameter x  is 

defined as follows [66]  
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For the basic reproduction number 0,R  we compute the following sensitivity index as  

0 0

0

1.R R
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

 (59) 

From the Eq (59), we note that as there is an increase or decrease in transmission rate   by a 

certain percentage say k then the reproduction number 0R  also increases or decreases by the same 

percentage k. The sensitivity indices of 0R  with parameters of the SV1V2EIR model were evaluated 

at the parameter values listed in Table 3 and reported in Table 4. 

Table 3. Values of biological parameters of the SV1V2EIR model and their sources. 

Parameter Values  Source  
   0.0277 [65]  
   8.25*10-8 Fitted    
p  0.94  Fitted 
   0.6 Fitted 
q  0.62 Fitted 
   0.84 Fitted  
  0.012 Fitted 
   0.125 Fitted 
  0.61 Fitted  

Table 4. A sensitivity indices of 0R with parameters of the SV1V2EIR model. 

Parameters      N    q    p  

Values 1 0.1928 0.6977 1 0.4551 −0.4356 −0.7998 −0.1639 −0.9463 

Figure 3 shows the graphical analysis of the sensitivity indices of 0R  with respect to the model 

parameters. This analysis suggests that the transmission rate of disease, mortality rate, progression 
rate form E  to I , the total population of India, and progression rate form 1V  to S  are in positive 

correlation with 0R  whereas the rate of dose-I of vaccine, rate of dose-II of vaccine, vaccines related 

death rate, and the natural recovery rate are in negative correlation with 0.R  Also, the sensitivity 

analysis suggests that the most influential parameter are disease transmission rate and rate of dose-I 
of vaccine, and the least influential parameter is vaccines related death rate. Hence based on this 
analysis we can develop a suitable strategy to control and prevent the spread of disease. 
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Figure 3. Sensitivity indices of 0R  with respect to the SV1V2EIR model parameters. 

6.3. Numerical simulation 

In this subsection, we have employed the LADM scheme to obtain a numerical simulation of 
the SV1V2EIR model (5). To analyze the model (5) we simulate it for various biological parameters 
mentioned in Table 3.  

First, we performed a numerical simulation for various values of the rate of dose-I of the 
vaccine ( )p  to explore its impact on the infected population. In Figure 4, the values of p  taken into 
consideration are 0, 0.30, 0.60p   and 0.94.  In the absence of dose-I of vaccine, there is a giant 

peak in a number of an infected population near to 20,190,000. As values of rate of dose-I of vaccine 
increase then there is dramatically declined in a number of an infected population. The estimated 
value of 0.94p   and the number of an infected population is around 7,570,000. The model is also 

simulated for 0.9   and 0.8   to analyze the impact of rate of dose-I of the vaccine on the infected 
population. For 0.9   and 0p   the number of an infected population is around 19,410,000 whereas it 
is dramatically decreased for 0.94p   around 7,378,000 For 0.8  and 0p   the number of an 
infected population is around 18,730,000 whereas it is dramatically decreased for 0.94p   around 

7,365,000. Thus there is a strong negative correlation between the rate of dose-I of vaccine and 
infected population. 

Figure 5 shows the impact of the rate of dose-II of the vaccine ( )q  on the infected population. 
The values of q  taken into consideration are 0, 0.30, 0.62q   and 0.90.  In the absence of dose-II 

of vaccine, there is a giant peak in a number of an infected population near to 18,640,000. As 
values of rate of dose-II of vaccine increase then there is dramatically declined in a number of an 
infected population. The estimated value of 0.62q   and the number of an infected population is 

around 7,597,000. The model is also simulated for 0.9   and 0.8   to analyze the impact of 
the rate of dose-II of the vaccine on the infected population. For 0.9   and 0q   the number of an 
infected population is around 18,000,000 whereas it is dramatically decreased for 0.62q   around 

7,412,000. For 0.8   and 0q   the number of an infected population is around 17,270,000 
whereas it is dramatically decreased for 0.62q   around 7,407,000. Thus there is a strong negative 

correlation between the rate of dose-II of vaccine and infected population. 
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(a) 1   (b) 0.9   

 

 

(c) 0.8    

Figure 4. Impact of the first dose of vaccine on the infected population. 

  
(a) 1   (b) 0.9   

 

 

(c) 0.8    

Figure 5. Impact of the second dose of vaccine on the infected population. 
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Figure 6 shows the impact of disease transmission rate ( )  on the infected population for 

various transmission rates such as 9.25 × 10-8, 8.25 × 10-8, 7.25 × 10-8, and 6.25 × 10-8. As the 
disease transmission rate decrease the number of an infected population is decreased. Thus there is a 
strong positive correlation between the disease transmission rate and the infected population. The 
impact of   on the infected population is also evaluated for fractional-order 0.9   and 0.8.  The 

same strong positive correlation is observed between the disease transmission rate and the infected 
population. 

Figure 7 shows the impact of the rate of dose-I and dose-II of the vaccine on the infected 
population. Figure 7 is simulated for the estimated value of p  and q for fractional-order 1,0.9   
and 0.8.  For 1,   the infected population after getting dose-I of vaccine is around 485,100,000 
whereas after getting dose-II of vaccine is around 263,300,000. For 0.9,   the infected population 

after getting dose-I of vaccine is around 454,500,000 whereas after getting dose-II of vaccine is 
around 240,400,000. For 0.8,   the infected population after getting dose-I of vaccine is around 

432,600,000 whereas after getting dose-II of vaccine is around 219,600,000. Thus there is a 
dramatically declined in a number of an infected population after getting dose-II of vaccine as 
compare to dose-I of the vaccine. Also, we observed that as the fractional order decreased the 
number of the infected population is also gradually decreased due to a non-local property of 
fractional derivative. 

  
(a) 1   (b) 0.9   

 

 

(c) 0.8    

Figure 6. Impact of disease transmission rate on the infected population. 
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(a) 1   (b) 0.9   

 

 

(c) 0.8    

Figure 7. Impact of a first and second dose of vaccine on the infected population. 

7. Conclusions 

In this paper, we have investigated the SV1V2EIR model to reveal the impact of dose-I, and 
dose-II vaccination on COVID-19 by using the Caputo fractional derivative. The basic reproduction 
number of the model is derived by using the next-generation matrix method. The local and global 
stability analysis is investigated for both the disease-free and endemic equilibrium points. Next, we 
have to consider real data of cumulative COVID-19 cases in India from 1 January 2022 to 30 April 2022 
then the model (5) was fitted to the daily cumulative COVID-19 cases for India to minimize summation 
of square error by least-squares curve fitting method to estimate model parameters. Then we 
performed a sensitivity analysis to examine the effects of model parameters that affect the basic 
reproduction number. From a sensitivity index, we analyze that the most influential parameters are 
disease transmission rate and rate of dose-I of vaccine, and the least influential parameter is the 
vaccine-related death rate. Finally, the LADM is implemented to obtain a numerical result of an 
SV1V2EIR model. The numerical results suggest that there is a strong negative correlation between 
the rate of dose-I of the vaccine and the infected population. Thus dose-I of the vaccine is necessary 
to control the spread of COVID -19. According to numerical results, the dose-II of the vaccine is the 
most efficient to restrict the wide spread of disease. Furthermore, the numerical results suggest that 
there is a strong positive correlation between the disease transmission rate and the infected 
population. Thus by following the proper guideline declared by the WHO and the government we 
decrease the disease transmission rate and ultimately restrict the spread of the pandemic. The 
fractional-order model provides accurate results due to a non-local property and reveals the precise 
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number of infected population and hence in advanced intimate to develop a most efficient 
strategy to prevent an outbreak. 
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