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Abstract: Arrhythmia is one of the common cardiovascular diseases. Nowadays, many methods 

identify arrhythmias from electrocardiograms (ECGs) by computer-aided systems. However, 

computer-aided systems could not identify arrhythmias effectively due to various the morphological 

change of abnormal ECG data. This paper proposes a deep method to classify ECG samples. Firstly, 

ECG features are extracted through continuous wavelet transform. Then, our method realizes the 

arrhythmia classification based on the new lightweight context transform blocks. The block is proposed 

by improving the linear content transform block by squeeze-and-excitation network and linear 

transformation. Finally, the proposed method is validated on the MIT-BIH arrhythmia database. 

The experimental results show that the proposed method can achieve a high accuracy on 

arrhythmia classification. 

Keywords: continuous wavelet transform; Squeeze-and-Excitation network; lightweight context 

transform; arrhythmia classification 

 

1. Introduction 

In recent years, the global incidence of cardiovascular diseases (CVDs) has increased significantly, 
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and arrhythmia is one of the main causes of CVDs [1]. Parts of arrhythmias are harmful and even life-

threatening. Therefore, the early detection of arrhythmias is necessary, which is also considered as an 

effective intervention for CVDs. In clinical practice, arrhythmias are usually diagnosed by analyzing 

the heartbeat of electrocardiogram (ECG) signals [2]. When arrhythmias occur, the ECGs will show 

abnormal electrical activity, mainly manifested as changes in the morphology of the P wave, QRS 

wave, and T wave [3]. However, the ECG diagnosis is time-consuming and laborious. With the help 

of computer-aided intelligent diagnosis [4,5], the identification of ECG can be greatly improved, which 

is helpful for the treatment of cardiovascular diseases. Therefore, computer-aided tools have great 

potential to help doctors provide better and faster diagnosis of arrhythmias. 

Recent, many studies focus on arrhythmia classification by automatic ways. Study [6] used short-

time Fourier transform to convert ECG recordings into two-dimensional spectrograms to obtain 

frequency and energy information in ECG recordings. Study [7] by calculating RR interval features, 

morphological features and statistical features based on wavelet packet decomposition. With the 

development of deep learning, deep models were beginning to be used in arrhythmia classification. 

Study [8] proposed a deep ventricular tachycardia and ventricular fibrillation classification scheme 

based on mixed time-frequency features, using wavelet transform, empirical mode decomposition and 

variable mode decomposition methods to decompose the signal. 

In order to capture the multiple morphological change of ECG waves, attention mechanism is 

used in this paper. The attention mechanism has made great progress in computer vision and natural 

language processing [9,10]. It has the ability to focus on local patterns, and learn the global information 

of data, which could help models to learn the small local changes of ECG waves. For example, the 

Squeeze-and-Excitation network (SENet) [11,12] based on channel attention and aims to selectively 

emphasize informative channels and suppress trivial channels by explicitly modeling dependencies 

across channels. 

In this paper, we proposed a deep model for arrhythmia classification based on SENet and 

lightweight context transform (LCT). Firstly, continuous wavelet transform (CWT) are used to 

preprocess the input ECG sequence as the feature extraction. Then, a new LCT block is proposed to 

context information of ECG data with Squeeze-and-Excitation (SE) blocks. Here, the SE blocks are 

improved from SENet by the feature transformation module [13], changing the fusion mode [14], and 

integrating the spatial attention mechanism [15]. Finally, a classification model with convolution, batch 

normalization (BN), max pooling layers is used to recognize the arrhythmia. The results on benchmark 

dataset shows our proposed model has strong ability to classify arrhythmia on ECG. 

2. Materials and methods 

2.1. Overview 

This paper proposes an arrhythmia classification method, which is based on CWT for feature 

extraction, and then passes the extracted features through the improved SENet method based on LCT, 

and finally outputs the results. An overview of the method is shown in Figure 1 and will be described 

in detail below. 
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Figure 1. The overall flow of the method. 

2.2. Feature extraction 

CWT is a widely used method for time-frequency analysis of signals, which overcomes the 

limitations of Fourier transform (FT), which uses a set of wavelet functions to decompose signals in 

the time-frequency domain. It differs from (Short-time Fourier Transform, STFT) in that CWT 

separates the signal components by adjusting the scale and translation parameters [16], resulting in a 

time-frequency representation of the signal that is more accurate than traditional STFT using a fixed-

length sliding time window. CWT is a suitable choice for non-stationary signals such as ECG signals 

and can replace STFT. 

The prototype wavelet used for wavelet transform of ECG signal in this paper is defined as [17]: 
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where a is the scale parameter, b is the translation parameter, and φ(t) is the wavelet function (call the 

mother wavelet). The scale can be converted to frequency by 
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𝐹𝑐 is the center frequency of the mother wavelet, 𝑓𝑠 is the sampling frequency of the sample 𝑥(𝑡). 

The choice of mother wavelet is often the fundamental to time-frequency analysis. The study [18] 

chooses the wavelet Mexican hat (mexh) as the wavelet base, and we will compare the case of Morlet 

(morl) and Gaussian wavelet bases in experiments. Using different scale factors of wavelet transform, 

the wavelet coefficients of the signal at different scales are obtained. These wavelet coefficients can 

be viewed as two-dimensional scales of the ECG signal in the time-frequency domain. 

2.3. Squeeze-and-Excitation blocks 

For convolutional neural network, the core computation is the convolution operator, which learns 

new feature maps from the input feature map through the convolution kernel. Essentially, convolution 

is a feature fusion of a local region, which includes spatial (H × W) and inter-channel (C) feature fusion. 

A large part of the convolution operation is to improve the receptive field, that is, to integrate more 

feature fusion in space, or to extract multi-scale spatial information. Feature fusion of channel 

dimension, the convolution operation basically fuses all channels of the input feature map by default. 

The SENet [11] is a feature fusion in the channel dimension. It mainly focuses on the relationship 

between channels, and can automatically learn the importance of features between different channels 

in the network layer of the model, as shown in Figure 2. 
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Figure 2. A Squeeze-and-Excitation block. 

Squeeze-and-Excitation (SE) is an improved presentation power for the network by establishing 

interdependencies between convolutional feature channels. By subjecting the network to feature 

recalibration, it can learn to use global information, selectively emphasizing informative features and 

suppressing less useful ones. The SE module mainly includes two operations, Squeeze and Excitation, 

which can be applied to any mapping. For any given transformation, 

 :        H W C H W C

trF X U X R U R
       ， ，  (3) 

Taking convolution as an example, the convolution kernel is 𝑉 = [𝑣1, 𝑣2, ⋯ , 𝑣𝑐  ] , where 

𝑣𝑐  represents the c-th convolution kernel. Then the output is 𝑈 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑐]. 
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where * represents the convolution operation, 𝑉 = [𝑣𝑐
1, 𝑣𝑐

2, ⋯ , 𝑣𝑐
𝐶′

 ]and 𝑋 = [𝑋1, 𝑋2, ⋯ , 𝑋𝐶′
], while 

𝑣𝑐
𝑠 represents a 2-D convolution kernel of a s channel, which inputs a spatial feature on a channel, and 

it learns the feature space relationship. However, since the convolution results of each channel are 

summed, the feature relationships of the channel are mixed with the spatial relationships learned by 

the convolution kernels. In order to extract this confusion, the SE module enables the model to directly 

learn the channel feature relationship. 

2.3.1. Squeeze operation 

Since convolution only operates in a local space, it is difficult for U to obtain enough information 

to extract the relationship between channels. Therefore, SE encodes the entire spatial feature on a 

channel into a global feature through the Squeeze operation, which is implemented by global average 

pooling (in principle, a more complex aggregation strategy can also be used) as follows: 
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2.3.2. Excitation operation 

The squeeze operation obtains the global description feature, and another operation is required to 
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capture the relationship between channels. This operation needs to meet two criteria: first, it must be 

flexible, and it must be able to learn the nonlinear relationship between each channel; the second point 

is that the learned relationship is not mutually exclusive, because multi-channel features are allowed 

here. Based on this, the gating mechanism in the form of sigmoid is as follows, according to [11]: 

        2 1, , Reexs F z W g z W W LU W z     (6) 

where 𝑊1 ∈ 𝑅
𝐶

𝑟
×𝐶 , 𝑊2 ∈ 𝑅𝐶×

𝐶

𝑟 . In order to reduce the complexity of the model and improve the 

generalization ability, a structure consisting of two fully connected layers is adopted, in which the first 

FC layer plays the role of dimensionality reduction. The second FC layer restores the original 

dimension. Finally, the learned activation value of each channel is multiplied by the original feature 

on U: 

 𝑥�̃� = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐 , 𝑠𝑐) = 𝑢𝑐 · 𝑠𝑐 (7) 

The entire operation process can be seen as learning the weight coefficients of each channel, so 

that the model has more ability to distinguish the characteristics of each channel, which is also an 

attention mechanism. 

2.4. Lightweight context transform blocks 

It can be known from reference [11], SE performs nonlinear transformations to learn the negative 

correlation between global context and attention values by explicitly capturing dependencies across 

channels. However, this negative correlation is learned from all channels, which may introduce 

irrelevant information for each channel from other channels and destabilize global context modeling, 

leading to incorrect mappings. To solve this problem, a new LCT block is proposed based on SE blocks 

and the linear context transform. According to [13], the LCT also mainly includes two operation 

modules, context aggregation and context feature transform, its frame is shown in Figure 3. 

×

Global average 

pooling Normalization

Transform

SigmoidX

Context aggregation

Context feature 

transform

 

Figure 3. Architecture of our proposed LCT block. Where × denotes broadcast element-

wise multiplication. 
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2.4.1. Context aggregation 

The purpose of context aggregation is to help the network capture long-term dependencies by 

leveraging information beyond each filter's local receptive fields. The method adopted by context 

aggregation is the same as the squeeze operation in SE, which adopts global average pooling. 

2.4.2. Context feature transform 

LCT introduces a pair of lightweight operators in context feature transform: a normalization 

operator and a transformation operator. The normalization operator normalizes the global context 

features in each group, and the transformation operator takes the normalized results as inputs to output 

the importance scores. That is, the context aggregation is first divided into groups and then normalized 

along the channel dimension. We define 𝑣𝑖 = {𝑧𝑚𝑖+1, ⋯ , 𝑧𝑚(𝑖+1)}  as the i-th local context group, 

where 𝑖 ∈ {0, ⋯ , 𝐺 − 1} and G are the index and the number of groups, respectively. 𝑚 =  
𝐶

𝐺
 is the 

number of channels per group. The normalization operator 𝜑 formula is as follows: 

    
1

ˆi i i i

i
v v v 


    (8) 

where 𝜇𝑖 and 𝜎𝑖 are as follows: 
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and 𝜀 is a small constant, 𝑆𝑖 is the set of the i-th group of channel index. 

Next, a transformation operator 𝜙 is used, which is defined as follows: 

  ˆ ˆa z w z b     (10) 

where �̂� = [�̂�0, �̂�1, ⋯ , �̂�𝐺−1], w and b are trainable gain and bias parameters in the same dimension 

as �̂� . The transformation operator 𝜙  is a linear transformation of one channel, which does not 

consider information from other channels during context transformation. Furthermore, it only 

introduces the parameters of w and b, which are almost negligible compared to the entire network. 

Finally, the feature fusion module adjusts the input features according to the transformed context 

conditions. Specifically, the output 𝑌 ∈ 𝐶 × 𝐻 × 𝑊  of the LCT block is obtained by scaling the 

original response X according to the attention activation 𝜎(𝑎) and can be expressed as: 

  Y X a   (11) 

Both LCT and SE use the same context aggregation module and feature fusion module. However, 

SE uses the global information of other channels to model global features. In contrast, LCT is more 

lightweight and simplifies global feature modeling by independently transforming the information of 

each channel. 
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2.5. Classification model 

Convolutional neural network (CNN) is the most common type of deep nonlinear network 

structure, which can obtain transformation-invariant features when applying neurons with the same 

parameters to different positions in the previous layer [19]. The two main features of CNN are: sparse 

connection and parameter sharing. Sparse connections are achieved by making the kernel size and 

filter smaller than the input, which reduces the computational complexity of the model. Parameter 

sharing refers to using the same parameters in the multiplication operation, that is, the parameters of 

each convolution kernel are the same when processing different positions of the input. Other layers 

commonly used in CNNs are ReLU, BN, and pooling layers. The ReLU acts as an activation function 

to implement nonlinear functions. The BN is usually located between the convolutional layer and the 

ReLU layer, and normalizes the feature maps of each channel, reducing the sensitivity of training time 

and network initialization. The pooling layer, also known as the subsampling layer, is used to reduce 

the feature dimension and speed up the training process, the role of this layer is to calculate the average 

or maximum convolutional features of adjacent neurons in the previous convolutional layer [17]. The 

last layer of the CNN is usually connected to a fully connected layer (FC), which is used to integrate 

the feature representations extracted by the CNN together. 

Study [20] has already demonstrated the effectiveness of Focal Loss in dealing with the imbalance 

of ECG data, so the loss function of model training adopts the Focal Loss function, and the 

hyperparameters of the Focal Loss function also refer to [20]. To directly compare the performance of 

SENet and LCT, we refer to paper [18] to build a simple convolutional neural network classification 

model. As shown in Figure 4, we combine the convolutional layer, batch normalization layer, ReLU 

layer and pooling layer into a convolutional unit, and continuously use three convolutional unit 

operations to extract features, then input to the fully connected layer, and finally softmax output result. 

 

Figure 4. The structure of classification model. 

3. Experimental setting 

3.1. Dataset 

The ECG data used to train the model in this study were obtained from the MIT-BIH arrhythmia 

database, which randomly selected 23 representative samples of clinical routine and 25 records 

containing rare but clinically significant arrhythmias from 4000 24-hour ambulate records at a 

sampling rate of 360 Hz. The dataset consisted of 48 annotated half-hour dual-lead ECG recordings 

collected by 47 subjects [21]. Each record consists of two leads (lead I and lead II). Lead I (MLII) is 

modified and is common in the above records, so the ECG data of lead I is used for the evaluation of 

this method. 
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MIT-BIH Arrhythmia Database records also contain 15 arrhythmia types labeled by two or more 

professional physicians. We further classify these arrhythmias into five categories according to 

ANSI/AAMI EC57-2012 criteria [22]. Four records (102, 104, 107 and 217) were also removed, as 

shown in Table 1. In addition, since class Q has no application value, it is ignored in the experimental 

process and does not participate in the evaluation of the method in this paper [23,24]. 

In order to make a direct comparison with the existing work, the data partition method proposed 

by [25] is used to segment the database. MIT-BIH arrhythmia database was divided into DS1 and DS2 

datasets [25]. Both DS1 and DS2 were composed of 22 records with similar proportions of heart beat 

types. DS1 is used to train the model, and DS2 is used to test the performance of the method. The 

specific sample numbers of DS1 and DS2 are shown in Table 2. 

Before the ECG is input into the model, we first segment the temporal sequence into the form of 

individual beats, which are input as samples. In this paper, the position of the R peak that has been 

marked in the MIT-BIH arrhythmia database is used as the reference point, and the ECG signal is 

divided into a series of heart beats, which is also convenient for directly comparing the performance 

of other methods. For each heartbeat, we obtained an ECG signal with a fixed size of 300 sample 

points by collecting 100 sample points before the R peak and 200 sample points after the R peak, and 

these sample points contained enough informative features of the waveform. 

Table 1. MIT/BIH data set 5 heart beats according to ANSI/AAMI EC57-2012 standard. 

N S V F Q 

Normal beat 

(N) 

Atrial premature beat 

(A) 

Premature 

ventricular 

contraction 

(V) 

Fusion of 

ventricular and 

normal beat 

(F) 

Paced beat 

(/) 

Left bundle branch 

block beat 

(L) 

Aberrated atrial 

premature beat 

(a) 

Ventricular escape 

beat 

(E) 

 fusion of paced 

and normal beat 

(f) 

Right bundle branch 

block beat 

(R) 

Nodal (junctional) 

premature beat 

(J) 

  Unclassifiable 

beat  

(Q) 

Atrial escape beat 

(e) 

Premature or ectopic 

supraventricular beat  

(S) 

   

Nodal (junctional) 

escape beat 

(j) 

    

Table 2. ECG samples in train set (DS1) and test set (DS2). 

Data Set N S V F Sum 

DS1 45,824 3788 943 414 50,969 

DS2 44,218 3219 1836 388 49,661 
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3.2. Experimental environment and hyper-parameter setting 

In this paper, the G of the LCT block is set as 32. Moreover, the CNN classification model adopts 

Keras as the deep learning platform, TensorFlow as the backend, NVIDIA GeForce RTX 3090 as the 

hardware platform, and Ubuntu 18.04.5 as the operating system. For the network parameter of the 

classification model, the filter number is 16 and kernel size is 7 × 7 at the first CNN; In the second 

CNN layer, the filter number is 32 while the kernel size is 3 × 3. At the third CNN layer, the filter 

number is 64 and kernel size is 3 × 3. Among them, cross entropy and focal loss were used to compare 

the loss function respectively, and both optimizers were Adam. The data was input into the network in 

batches, and the batch size was set to 32. The weights were initialized randomly before the training 

began. The learning rate was set to 0.001, decreasing by 0.1 times every 2 epochs. The maximum 

epoch is set to 30. If the training effect is not significantly improved after training 10 epochs, the 

training will be terminated in advance. 

3.3. Evaluation criterion 

This paper uses multiple evaluation metrics to measure the classification performance of the 

model. Accuracy, precision, recall and F-Score (F1) were used to evaluate the performance of the 

proposed method. The four indicators (accuracy, precision, recall, F1) are defined as follows: 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (12) 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (13) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14) 

 𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (15) 

where TP is the correct prediction number of positive samples, TN is the correct prediction number of 

negative samples, FN is the wrong prediction number of positive samples, FP is the wrong prediction 

number of negative samples. 

4. Experimental results and discussion 

4.1. Feature extraction 

In this paper, Mexican hat (Mexh), Morlet (Morl) and Gaussian (Gaus) wavelets could be used as 

the wavelet base of continuous transformation to extract CWT features of original ECG signal and 

LCT features. For data visualization, we employ Mexh wavelet to show the signals as samples in this 

section. Figure 6 shows the original ECG signals of N, S, V and F, respectively. Figure 5 shows the 

CWT features extracted from ECG signals, and Figure 7 shows the features of CWT features processed 

by LCT. It can be seen from the figure that the time-frequency feature map of the N-type samples has 

the highest energy at the R peak, and then gradually decreases, and the energy on both sides of the R 
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peak will suddenly become zero; the time-frequency energy distribution of the S-type samples is 

similar to the N-type samples, and their biggest difference is that the high frequency of the N-type 

samples is larger than that of the S-type samples; the time-frequency energy of the V-type samples is 

more average than that of the N-type samples, and the energy of the R-peak is less, but the energy on 

both sides of the R-peak of the heart beat is the most, while the F-type samples have more energy. 

There is more low-frequency energy in the samples, and it can be seen that the time-frequency energy 

maps of different types of samples are obviously different. 

As shown in Figures 5–7, the S-type sample features extracted by continuous wavelet transform 

are similar to those of N-type samples, and the number of N-type samples is much higher than that of 

S-type samples. Therefore, most S-type samples are wrongly classified into N labels for the model. 

 

(a)                                (b) 

 

(c)                               (d) 

Figure 5. (a)–(d) are the original ECG signals of N, S, V and F, respectively. 
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(a)                                 (b) 

      

(c)                                 (d) 

Figure 6. (a)–(d) are the CWT Time-frequency features of N, S, V and F, respectively. 

 

(a)                               (b) 

 

(c)                               (d) 

Figure 7. (a)–(d) are the features of N, S, V and F by LCT method, respectively. 
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4.2. Arrhythmia classification 

To verify the validity of the experiments, we separately verify the performance of the following 

three methods. These three methods are not using any method to process features, only use CNN 

classification model (denoted as CNN), use SE method to process features and then input CNN 

classification model (denoted as SE + CNN) and use LCT method to process features and then input 

CNN Classification model (denoted as LCT + CNN). 

Table 3. Comparison of evaluation indexes of different wavelet families using different methods. 

METHOD WAVELET PRECISION RECALL ACCURACY F1 

CNN Morl 0.8634 0.8153 0.8379 0.8351 

Mexh 0.8695 0.8349 0.8505 0.8414 

Gaus4 0.8636 0.7966 0.8194 0.8302 

Gaus8 0.8690 0.8417 0.8670 0.8491 

SENET + CNN Morl 0.8617 0.8228 0.8481 0.8379 

Mexh 0.8700 0.8316 0.8533 0.8487 

Gaus4 0.8647 0.8003 0.8722 0.8296 

Gaus8 0.8653 0.8491 0.8732 0.8544 

LCT + CNN Morl 0.8690 0.8319 0.8553 0.8490 

Mexh 0.8735 0.8523 0.8757 0.8596 

Gaus4 0.8633 0.8228 0.8751 0.8412 

Gaus8 0.8751 0.8558 0.8770 0.8633 

We first use continuous wavelet transform to extract features, and we choose several commonly 

used wavelet families (Morl, Mexh, Gaus4 and Gaus8) to do experiments. The influence of features 

extracted from different wavelets on model classification was verified by CNN, SENET + CNN and 

LCT + CNN respectively, as shown in Table 3. It can be found that Mexh has better precision in 

extracting features from samples, but recall and F1 have better performance by Gaus8. In the case of 

gaus8 wavelet, compared with CNN and CNN + SENET, CNN + LCT used in this paper has improved 

precision by 0.0061 and 0.0098, recall by 0.0141 and 0.0067, accuracy by 0.01 and 0.0038. F1 

increased by 0.0142 and 0.0089. 

The confusion matrix illustrates the inconsistency between predicted labels and ground truth 

labels, row labels indicate the ground truth labels in each row, column labels indicate the predicted 

labels in each column, and colors indicate the proportion of the above records to all records in the 

same row. 

Figures 8–10 show the confusion matrices of the three classification methods. Due to the small 

number of F samples, the results of model classification are easily affected by other types of samples, 

but the LCT method proposed in this paper is less affected. On the whole, the CNN + SENET method 

has no significant improvement compared with the method directly adopted by CNN, and the effect is 

even worse in the V, S and F classes with fewer data samples. However, the CNN + LCT proposed in 

this paper achieves the best average performance compared with the previous two methods. Meanwhile, 

although the number of samples of class V is also small, the confusion matrix shows that the 

classification effect of class V of the three methods is very good, almost reaching the classification 

accuracy of class N. 
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Figure 8. CNN confusion matrix of Gaus8 wavelet families. 

 

Figure 9. CNN + SENET confusion matrix of Gaus8 wavelet families. 

 

Figure 10. CNN + LCT confusion matrix of Gaus8 wavelet families. 
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Figure 11 shows the change value of training Loss of the three methods. The convergence speed 

is slowest when features are directly input into CNN without any processing while the speed of 

‘SENet + CNN’ model is the second. The LCT used in this paper is the fastest, and the training loss 

value after LCT pretreatment is also the smallest. 

 

Figure 11. Loss for training. 

5. Conclusions 

In order to capture the different morphological change of abnormal ECG data, this paper focus 

on deep arrhythmia classification methods. The proposed method extracts ECG features through CWT 

firstly, and then utilize the LCT block which combine normalization, linear transformation and SENet 

to classify ECG data. Especially, the CWT is one kind of time-frequency analysis, thus the feature has 

the advantages of time-domain and frequency-domain analysis. Finally, the experimental results show 

the proposed model in this paper has strong ability to recognize arrhythmia in ECG with contribution 

of the proposed LCT block and classification model. Besides, the performance of classification on N 

and V samples is significantly improved while the classification performance of classification on F 

samples has relative less improvement. The reason may be the relative less amount of F samples. 

The limitation of this work includes: 

1) We do not compare our work and the first proposed linear context transform [13]. The 

motivation of this work is from work [13], but that work focus on image data and our work is for 

ECGs data. 

2) We do not add RR interval characteristics although it may contribute to the classification. This 

is because the RR interval may contribute to all methods and the point of this work focus on the 

improvement and application for LCT on ECGs. As for future works, firstly, we will consider the 

comparation on complex neural network of LCT + CNN model. Secondly, nowadays, the large amount 

of available ECG data is always unbalance, and the ECG data with abnormal heart rate are often small 

in amount. Thus, a large amount of clinical ECG data will be collected from the hospital in the future, 

hoping to continue to improve the current method, further try to solve the problem of data imbalance 

and improve the accuracy of the algorithm. 
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