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Abstract: In this paper, we propose a new mathematical model to study the epidemic and economic
consequences of COVID-19, with a focus on the interaction between the disease transmission, the pan-
demic management, and the economic growth. We consider both the symptomatic and asymptomatic
infections and incorporate the effectiveness of disease control into the respective transmission rates.
Meanwhile, the progression of the pandemic and the evolution of the susceptible, infectious and recov-
ered population groups directly impact the mitigation and economic development levels. We fit this
model to the reported COVID-19 cases and unemployment rates in the US state of Tennessee, as a
demonstration of a real-world application of the modeling framework.
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1. Introduction

The coronavirus disease 2019 (COVID-19) led to high morbidity and mortality rates throughout
the world and created unprecedented challenges in public health and the global economy. Two years
have passed since the World Health Organization (WHO) officially declared COVID-19 as a global
pandemic in March 2020, but many nations are still struggling with the spread of the infection. The
emergence of several new SARS-CoV-2 variants adds further uncertainty to the progression of the
pandemic. As of March 2022, more than 470 million cases and 6 million deaths were reported in 225
countries and territories [1].

During the first few months of the pandemic, the rapidity of how the SARS-CoV-2 spread across
the world caught most nations unawares and poorly prepared to contain the disease outbreaks and treat
the most severe cases [2,3]. The situation was compounded by the lack of widespread testing, absence
of COVID-19 vaccines, and unavailability of effective treatment modalities [2]. Furthermore, since
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the prevalence of COVID-19 among those with mild or no symptoms can be considerably high, track-
ing the transmission of the disease had proved difficult [4]. Nevertheless, fundamental public health
mitigation strategies were implemented which included, but were not limited to, personal and environ-
mental hygienic practices, isolation and quarantine of known cases, contact tracing, social distancing,
closure of non-essential businesses and services, and shelter-in-place orders [5, 6]. Such mitigation
strategies appeared effective in slowing the transmission of the virus and reducing the number of cases
in communities [7, 8].

The spread of COVID-19 also caused severe downturn and huge uncertainty for the economy
throughout the world [9–13]. In particular, during the “Stay-at-Home” period (from March to May
in 2020) in the US, non-essential businesses were shut down and the US experienced a sharp increase
in unemployment as of the end of March 2020, representing a 9.5% unemployment rate [14]. This
increase, up from 3.5% in February 2020, was just one indication on the breadth of the economic up-
heaval caused by COVID-19. Meanwhile, the US Department of Commerce reported that total retail
sales in March 2020 plunged by 8.7 percent from the previous month, the largest decline in the nearly
three decades the government had tracked the data [15]. The impact on the global economic and fi-
nancial system were estimated as being at least a 3% reduction in gross domestic product (GDP), with
global financial markets experiencing dramatic instability as seen in the stock markets, assets, and risk
markets [16].

A large body of experimental, clinical and theoretical studies have been generated to better un-
derstand COVID-19 and its consequences, and explore more effective intervention strategies (see re-
views [12,17–20] and references therein). Particularly, many mathematical and statistical models have
been published to study the transmission and spread of COVID-19 [21–33], as well as the effects of
COVID-19 vaccination [34–38]. Meanwhile, a number of computational and quantitative studies have
considered the impact of COVID-19 on the economic development. For example, de la Fuente-Mella
et al. statistically evaluated the effects of the COVID-19 pandemic on the economy of several coun-
tries [39]. Chen et al. proposed a network-based epidemic-economic model to estimate the direct
impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown [40].
Altig et al. analyzed several economic uncertainty indicators for the US and UK before and during
the COVID-19 pandemic [41]. Eichenbaum et al. combined a canonical epidemiology model with
macroeconomic models to study the interaction between economic decisions and epidemics [9]. Jena
et al. developed a multilayer artificial neural network model to forecast the impact of COVID-19 on
the GDP of eight countries including the US [42]. Xiang et al. combined economic theory with an
epidemiological model to explore the long-term impact of the pandemic on economic growth and the
effects of different policy responses [43]. Dimarco et al. proposed a wealth transfer model to compute
the Gini-index in the presence of a pandemic, with an observation of the emergence of economic in-
equalities [44]. In addition, Auld and Toxvaerd estimated behavioral responses to the global rollout
of COVID-19 vaccines and found that countries with earlier and higher vaccination coverage strongly
tended to be richer [45].

In spite of these studies, a fundamental question remains to be answered: How do the COVID-
19 transmission and spread, the disease prevention and intervention, and the economic development
impact each other within an interconnected triad? The persistence of the pandemic and the wide-
ranging slowdown of the global economy at present, long after the onset of the pandemic, underscore
the gap between the complex epidemic-economic mechanisms associated with COVID-19 and our
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current understanding of these phenomena.
In this paper, we seek to partially address this fundamental question by formulating a new mathe-

matical model to quantify the economic impact of COVID-19 and investigate the interplay between the
epidemic progression, the economic growth, and the disease management. We consider both the symp-
tomatic and asymptomatic infections in this model, and incorporate the effectiveness of disease control
into the respective transmission rates. Meanwhile, factors associated with economics and epidemiol-
ogy are both included into the model, where the level of pandemic mitigation is negatively correlated to
that of economic development. Additionally, the progression of the pandemic and the evolution of the
susceptible, infectious and recovered population groups directly impact the mitigation and economic
development levels.

To demonstrate a real-world application of this modeling framework, we study the epidemic and
economic situations in the US state of Tennessee in 2020. We utilize the unemployment rate, defined
by the number of people who are unemployed as a percentage of the labor force, as the key economic
indicator in this work. It is known that a high unemployment rate increases economic inequality,
generates redistributive pressures, drives people to poverty, and negatively affects long-run economic
growth. Our aim is to study how the unemployment rate would intertwine with the mitigation efforts
under the impact of COVID-19. We fit our model to the COVID-19 cases and the unemployment rates
reported in Tennessee [46, 47], and conduct detailed numerical simulation to examine the relationship
between the epidemic spread, the disease management, and the economic development.

The remainder of this manuscript is organized as follows. We present the model formulation in
Section 2, with detailed mathematical analysis provided in Appendices A and B. We then conduct data
fitting and numerical simulation using the epidemic and economic data from the US state of Tennessee
in Section 3. We conclude the paper with some discussion in Section 4.

2. Model formulation

We divide the human population into four compartments: the susceptible (S ), the exposed (E), the
symptomatic infectious (I), and the recovered (R). A distinctive feature of COVID-19 is that asymp-
tomatic and pre-symptomatic infection is common [18, 48], so that infected individuals could be con-
tagious even during the incubation period. We thus assume that the exposed individuals are capable of
transmitting the disease; basically, they are regarded as pre-symptomatic infectious individuals in this
study. To incorporate the impact of mitigation policies on economic development, we introduce two
additional variables: the mitigation level/effectiveness, denoted by M, and the economic development
level, denoted by C. We normalize the range of M such that 0 ≤ M ≤ 1, with M = 1 representing
the situation with the maximum disease control and M = 0 the situation with no disease control at all.
Similarly, we normalize C to the range between 0 and 1 such that C = 1 indicates the maximum level of
economic development and C = 0 indicates the worst scenario of economic development. We assume
that the transmission rates are modulated by the disease control, that the mitigation level is stimulated
by the disease prevalence, and that the economic development level depends on the available labor
supply. We additionally assume that the disease mitigation level and economic development level are
negatively correlated to each other.

The following differential equations represent our epidemic-economic model for COVID-19 trans-
mission dynamics, with descriptions for all the parameters provided in Table 1.
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dS
dt

= λ −
βE

1 + bM
S E −

βI

1 + bM
S I − µS ,

dE
dt

=
βE

1 + bM
S E +

βI

1 + bM
S I − (α + µ)E,

dI
dt

= αE − (w + γ + µ)I,

dR
dt

= γI − µR,

dM
dt

= δ + mI − pM − f0C,

dC
dt

= cS S + cEE + cRR − dC − g0M.

(2.1)

The last two equations in system (2.1) reflect the negative correlation between the mitigation level
and the economic development level; i.e., the increase of one variable would tend to decrease the
other. This assumption has been motivated by empirical observations of the pandemic management
and economic growth in the US. Figure 1 (left) shows the quarterly percentage change of the GDP
in the US from 2018 to 2020 [49]. In particular, under the impact of COVID-19, the GDP in the
first quarter of 2020 experienced a reduction of about 5% from the preceding quarter, and the second
quarter GDP plunged about 32%. Such reductions were largely due to the closure of businesses,
implementation of stay-at-home orders, and other pandemic mitigation strategies that started in March
2020 and extended to May/June 2020. Afterwards, the third quarter saw a large increase of GDP (about
33%) from the previous quarter, in parallel with the re-opening of businesses, removal of the stay-at-
home requirement, and other relaxed control measures. The fourth quarter in 2020 continued the trend
of GDP growth with a moderate 4% increase. Figure 1 (right) displays the quantification of the business
closure and stay-at-home requirement as two representative mitigation policies, where a higher number
indicates a stronger effort, for the US in 2020 [50]. We can observe that both policies had the highest
strengths in April, which then quickly decreased afterwards, reaching a low point in June/July. For
the last two quarters in 2020, the two policy curves stayed at approximately the same levels as that
in June, though occasional slight increases ( e.g., July–August, November–December) can be noticed.
These figures convey the message that a focus on pandemic management would slow down economic
development, whereas an emphasis on economic growth would necessitate policy changes which may
subsequently increase the risk of disease transmission and weaken the disease control efforts.

The basic reproduction number of the model is

R0 = RE0 + RI0 =
βES 0

(1 + bM0)(α + µ)
+

αβIS 0

(1 + bM0)(α + µ)(w + γ + µ)
, (2.2)

where S 0 and M0 are the respective values of S and M at the disease-free equilibrium. The derivation
ofR0 is provided in Appendix A. We see thatR0 includes two parts, representing the contributions from
two respective transmission routes: one starts from the exposed, or asymptomatic infectious, individu-
als (denoted as RE0), and the other starts from the symptomatic infectious individuals (denoted as RI0).
We refer to RE0 as the asymptomatic reproduction number, and RI0 as the symptomatic reproduction
number.

We have also conducted an equilibrium analysis of system (2.1) by assuming that all the parameters
are constants. The details are provided in Appendix B. In particular, the analysis indicates that in
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Figure 1. Data suggest a negative correlation between the economic growth and pandemic
management in the US. Left: Percent change of the GDP from preceding quarter (source:
U.S. Bureau of Economic Analysis [49]); Right: Strength of business closure and stay-at-
home requirement (source: Our World in Data [50]).

such a homogeneous setting, the disease will persist and become endemic in the long run if R0 > 1.
In practical applications, however, public health and economic policies typically change with time,
and disease control strategies are adjusted accordingly. These variations, subsequently, impact the
progression of the epidemic and lead to more complex situations than a homogeneous scenario. In the
next section, we will use numerical simulation to explore such time-dependent behaviors of the system
dynamics.

3. Simulation results

We apply our model to the COVID-19 epidemic in the US state of Tennessee. We use the unemploy-
ment rate as the key economic indicator to infer the economic development level. Specifically, we set
C(t) = 1 − U(t) in our model, where U(t) denotes the unemployment rate at time t. We have collected
daily and weekly data for the COVID-19 cases and the unemployment rates in Tennessee [46, 47],
from March 28, 2020 to December 31, 2020. We fit our model to such data and conduct numerical
simulation to examine the interaction between the epidemic spread, the disease management, and the
economic development.

Since the epidemic progression of COVID-19 exhibits very different behaviors at different times,
we divide the entire time interval (from March 28 to December 31, 2020) into five consecutive periods:

• Period 1: From March 28 to April 30
• Period 2: From May 1 to May 21
• Period 3: From May 22 to July 20
• Period 4: From July 21 to September 30
• Period 5: From October 1 to December 31
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Table 1. Definitions of model parameters.

Parameter Description Value Unit Source

µ Natural death rate 2.74 × 10−5 per day [46]
λ Influx rate of human population 187.1146 person/day [46]
ω Disease-induced death rate 0.01 per day [1]
γ Recovery rate 1/14 per day [1]
α Reciprocal of the incubation period 1/7 per day [51]
βE Transmission rate from E to S - /person/day Estimated
βI Transmission rate from I to S - /person/day Estimated
δ Influx rate of disease mitigation - per day Estimated
m Mitigation strength stimulated by I - /person/day Estimated
p Natural reduction rate of mitigation - per day Estimated
f0 Decline rate of mitigation due to economic activities - per day Estimated
cS Labor contribution rate from S - /person/day Estimated
cE Labor contribution rate from E - /person/day Estimated
cR Labor contribution rate from R - /person/day Estimated
d Natural reduction rate of economic development - per day Estimated
g0 Decline rate of economic growth due to mitigation - per day Estimated
b Implementation rate of disease mitigation - - Estimated

S̄ j0 Initial value of the susceptible in Period j - person [46]
Ē j0 Initial value of the exposed in Period j - person Estimated
Ī j0 Initial value of the infected in Period j - person [46]
R̄ j0 Initial value of the recovered in Period j - person [46]
M̄ j0 Initial value of the mitigation level in Period j - - Estimated
C̄ j0 Initial value of the economic level in Period j - - [47]

For each period, we conduct separate data fitting, with model parameters and initial conditions defined
in Table 1. A gradient-based nonlinear constrained optimization procedure, implemented through the
Matlab function fmincon, is employed to fit all the model parameters except the population influx rate
λ, the recovery rate γ, the incubation period α−1, and the natural and disease-induced death rates µ
and ω, whose values are prescribed from the literature. We have found that this approach performs
sufficiently well in our study. Nevertheless, we mention that many other data fitting techniques can
be possibly applied, including some more sophisticated approaches such as a two-level fitting method
presented in [52].

The fitting in different periods results in different estimates of parameter values in the model. All
these fitted parameter values are listed in Table 2. We focus our attention on the data fitting and
numerical simulation in Period 1, with details provided in Section 3.1. The analysis and discussion can
be similarly applied to the other periods. A summary of the fitting and simulation results for Periods
2–5 is provided in Section 3.2.
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Table 2. Parameter values fitted from Period j (1 ≤ j ≤ 5) and the entire time interval.

Parameter j = 1 j = 2 j = 3 j = 4 j = 5 entire interval

βE 8.99 × 10−9 7.0 × 10−10 7.39 × 10−9 6.32 × 10−9 6.30 × 10−9 6.05 × 10−9

βI 3.99 × 10−8 3.0 × 10−9 1.85 × 10−8 1.13 × 10−8 1.35 × 10−8 1.49 × 10−8

δ 0.59 0.3 0.23 0.16 0.23 0.17

m 9.0 × 10−10 5.0 × 10−10 2.50 × 10−10 2.88 × 10−7 2.34 × 10−10 1.64 × 10−7

p 0.68 0.5 0.61 0.31 0.63 0.81

f0 1.23 × 10−9 3.0 × 10−9 5.35 × 10−9 3.34 × 10−6 6.28 × 10−9 4.21 × 10−4

cS 2.99 × 10−8 3.0 × 10−8 3.16 × 10−8 3.36 × 10−8 3.64 × 10−8 2.05 × 10−8

cE 1.50 × 10−8 2.0 × 10−9 4.62 × 10−9 8.34 × 10−9 5.06 × 10−9 1.73 × 10−8

cR 2.91 × 10−8 3.0 × 10−7 2.37 × 10−8 2.15 × 10−8 2.95 × 10−8 3.99 × 10−8

d 0.228648 0.23172 0.233404 0.221 0.2484 0.15292

g0 1.44 × 10−5 2.59 × 10−6 2.80 × 10−4 3.28 × 10−2 2.51 × 10−4 1.42 × 10−5

b 0.99 0.5 0.34 0.73 0.10 0.87

S̄ j0 6, 829, 000 6,818,747 6,817,479 6, 761, 941 6, 688, 381 6, 829, 000

Ē j0 442 3233 542 12, 689 5958 442

Ī j0 883 4640 2802 13, 882 12, 178 883

R̄ j0 551 7733 16,359 67, 257 180, 990 551

M̄ j0 0.8 0.88256 0.6 0.375779 0.516058 0.8

C̄ j0 0.9885 0.896 0.8985 0.9215 0.9542 0.9885
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3.1. Fitting and simulation in Period 1

3.1.1. Data fitting

Period 1, from March 28, 2020 to April 30, 2020, represents an initial phase of the COVID-19
epidemic in Tennessee (as well as in the entire US), with the number of infections fast increasing.
Figure 2(a) shows our model fitting to the number of daily active cases reported by the Tennessee
Department of Health [46], where we see that the number of active infections increased from below
1000 in the beginning to above 4000 at the end of the period. We observe a reasonably good match
between our simulation result and the reported data.
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Figure 2. (a) Data fitting for active COVID-19 cases in Tennessee during Period 1 (from
March 28, 2020 to April 30, 2020): circles represent the reported data and solid line repre-
sents the fitting result. (b)–(d): Curves of S , E, I, R, M and C from numerical simulation.

Based on the estimated parameter values from Table 2, we evaluate the basic reproduction number
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from Eq (2.2):
R10 = R1E0 + R1I0 = 0.23 + 1.78 = 2.01 , (3.1)

where the subscript ‘1’ indicates the association with Period 1. Clearly, R10 > 1, which accounts for the
fast increase of infections in this period. We note that the contribution from the symptomatic infectious
individuals (I) is much higher than that from the asymptomatic infectious individuals (E) in shaping
the disease risk in this period.

We plot the numerical curves of S , E, I, R, M and C in Figure 2(b)–(d). In particular, we observe that
the value of the mitigation level M quickly increases in the first five days (March 28 to April 2) and then
remains steady afterwards. The initial increase of M is obviously stimulated by the ascending phase of
the epidemic. The stabilization afterwards is partly explained by the implementation of the state-wide
Stay-at-Home order in Tennessee from April 1 to April 30. The Stay-at-Home order represents a high
level of disease mitigation and outbreak management, and our model variable M reaches and stays at
this high level after April 2, as shown in Figure 2(d). Meanwhile, we note that even under the Stay-
at-Home regulation, essential businesses (such as grocery stores, pharmacies, convenience stores, mail
and shipping services, home repair, and automotive sales and repair) were still open in the US, and this
mitigation policy is doubtlessly weaker than a complete lock-down. This may explain that the value of
M is stabilized at somewhere around 88% but not higher.

In parallel with the fast initial increase of the mitigation level M, there is a decrease of the eco-
nomic development level C that starts from March 28 and continues until April 12, before it is finally
stabilized. The economic development is negatively impacted by the disease control and management,
and the reduction in the value of C accompanies the growth of M. Figure 2(d) shows that the rate of
decrease for C (i.e., the downward slope) is smaller than the rate of increase for M (i.e., the upward
slope), indicating some sort of resistance of the economic system in response to adverse conditions.
The extended reduction of C beyond the increasing phase of M represents a delayed effect of the high
mitigation level on the economic development. The curve of C is finally stabilized around 89.5%,
consistent with the unemployment rate of 10.4% reported in Tennessee for the last week of April [47].

3.1.2. Special cases

A major difference between our model (2.1) and a conventional epidemic model is the incorporation
of two variables, M and C, related to economics. We now examine the impact of these two variables
on the dynamics of system (2.1). To that end, we consider three special (and extreme) cases: M = 0,
C = 0, and M = C = 0, with the same epidemic and economic datasets in Period 1 as described before.

For the first case, we remove the equation for M from system (2.1), and set M = 0 in the remaining
equations for S , E, I, R, and C. Similarly, for the second case, we remove the equation for C from
(2.1), and set C = 0 in the remaining equations for S , E, I, R, and M. For the third case, we remove
the equations for M and C from (2.1), and set M = C = 0 in the remaining equations for S , E, I, and
R. In each of these cases, we conduct data fitting for the corresponding reduced system and present the
fitted parameter values in Table 3.

In order to compare the goodness-of-fit in different cases, we calculate the normalized root-mean-
square error (NRMSE): √

n Σn
k=1(Yk − Ik)2

Σn
k=1Yk

(3.2)
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Table 3. Parameter values fitted from Period 1 for three special cases.

Parameter M = 0 C = 0 M = C = 0

βE 6.0 × 10−9 8.86 × 10−9 1.0 × 10−9

βI 2.20 × 10−8 2.74 × 10−8 2.67 × 10−8

δ - 0.40 -

m - 9.19 × 10−9 -

p - 0.90 -

cS 9.0 × 10−8 - -

cE 1.0 × 10−8 - -

cR 1.07 × 10−8 - -

d 0.90 - -

b - 0.80 -

where n is the number of days in this fitting period, Yk is the reported number of active cases on the
k-th day, and Ik is the numerical value of I on the k-th day. The values of the NRMSE for the three
special cases M = 0, C = 0, M = C = 0, and the original case M,C , 0, are found as 0.2036, 0.1287,
0.2218, and 0.1297, respectively. We see that, in particular, the first and third cases both lead to a lower
quality of fitting than that associated with the original system (2.1).

We plot the result for the first case M = 0 in Figure 3. Comparing the parameter values in Table 3
to those in Table 2, we notice that the removal of the variable M leads to a significant over-estimate of
the parameter d, the natural reduction rate of the economic development. This results in a rapid (and
unrealistic) decrease of C to a level around 68%, as shown in Figure 3(b).

Meanwhile, we plot the result for the second case C = 0 in Figure 4. Comparing Table 3 to Table 2,
we observe that the removal of the variable C leads to an over-estimate of the parameter p, the natural
reduction rate of the mitigation level, and an under-estimate of the parameter b, the implementation
rate of the mitigation. These similarly result in a rapid (and unrealistic) decrease of M to a level around
45%, as shown in Figure 4(b).

Figure 5 displays a histogram to compare the reproduction numbers in the three special cases
(M = 0, C = 0, M = C = 0) and the original case with nonzero M and C for Period 1. In each
case, we observe that the component RI0 is much higher than the other component RE0, showing that
symptomatic infections contribute to most part of the disease risk in this period. Overall, the basic
reproduction number R0 takes a lower value when C = 0 than that in the original case M,C , 0,
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indicating a lower disease risk in the extreme scenario where economic development is completely
disregarded. On the other hand, R0 takes a higher value when M = 0 and M = C = 0 than that in the
original case, indicating a higher disease risk in the extreme scenario where mitigation strategies are
totally abandoned.
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Figure 3. (a) Data fitting for active COVID-19 cases from March 28, 2020 to April 30, 2020
in Tennessee when M = 0. (b) The solutions of C from numerical simulation when M = 0.
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Figure 4. (a) Data fitting for active COVID-19 cases from March 28, 2020 to April 30, 2020
in Tennessee when C = 0. (b) The solutions of M from numerical simulation when C = 0.
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and M = C = 0, based on data in Period 1.

3.1.3. Sensitivity analysis

To quantify the influence of model parameters on disease dynamics, we conduct a sensitivity analy-
sis [53] for the parameters in system (2.1) using the data in Period 1. Table 4 displays the results for the
relative sensitivity of the basic reproduction numbers, R10 in Period 1, in terms of model parameters.
The relative sensitivity of R10 with respect to βE, for example, is computed by

∂R10

∂βE
·
βE

R10
=

βE

βE +
αβI

ω+γ+µ

, (3.3)

where Eq (2.2) has been used. Similar calculation applies to other parameters.

Figure 6 illustrates the variations of R10 in terms of the eight most sensitive parameters ranked
in Table 4. Practically, among these eight parameters, at least five could be controlled through public
health management: the transmission rates βI and βE, the mitigation influx rate δ, the mitigation decline
rate p, and the mitigation implementation rate b. In particular, social distancing, mask wearing, and
isolation of infected individuals would bring down the transmission rates βI and βE and could be most
effective in reducing the disease risk. Meanwhile, strengthening epidemic management would increase
the mitigation influx rate δ and implementation rate b, and promoting public awareness of the infection
would weaken the mitigation decline rate p. These could also effectively reduce the value of the
basic reproduction number. Additionally, improved treatment modalities, such as discovery of more
effective therapeutic drugs for SARS-CoV-2, may be able to enlarge the recovery rate γ (i.e., decrease
the length of the average recovery period for COVID-19 patients) and help to reduce the overall risk of
the epidemic.

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9658–9696.



9670

150 200 250 300 350 400
1.5

2

2.5

3

3.5

4

4.5

R
10

1 2 3 4 5 6 7 8

I
10-8

0.5

1

1.5

2

2.5

3

3.5

4

R
10

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

R
10

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

R
10

0 0.2 0.4 0.6 0.8 1

p

0

0.5

1

1.5

2

2.5

R
10

0 0.2 0.4 0.6 0.8 1

b

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

R
10

0 0.5 1 1.5 2

E
10-8

1.7

1.8

1.9

2

2.1

2.2

2.3

R
10

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

R
10

Figure 6. Variations of R10 , the basic reproduction number in Period 1, in terms of the eight
most sensitive parameters.

Using the method described in [33], we have also computed the relative sensitivity of all the six
state variables in model (2.1) with respect to these parameters, and the results are presented in Figure
7. In particular, the relative sensitivity of a state variable, Y , with respect to βE is given by ∂Y

∂βE
·
βE
Y . To

obtain the partial derivative ∂Y
∂βE

, we differentiate it with respect to t to obtain

∂

∂t

( ∂Y
∂βE

)
=

∂

∂βE

(∂Y
∂t

)
, where Y = S , E, I, R, M, C. (3.4)

We then numerically solve for each ∂Y
∂βE

by connecting Eqs (2.1) and (3.4). The sensitivity computation
for other parameters is similar.

We observe from Figure 7 that the variables S , E, I and R are all very sensitive to the parameters
βI , b, γ and δ. Meanwhile, all the state variables except C have a high level of sensitivity with respect
to p. Additionally, the variable M is highly sensitive to δ. On the other hand, C is highly sensitive to
d, the natural reduction rate of economic development, and cS , the economic contribution rate from
the susceptible individuals that would account for the major labor supply. These parameters, except
d and cS , are also ranked among the most sensitive parameters for the basic reproduction number in
Table 4. The fact that the variable C and the basic reproduction number R10 have different sensitivity
dependence on parameters is a reflection of the different focuses between economic development and
public health mitigation.
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Figure 7. Sensitivity of model parameters for the six state variables in system (2.1): (a) S ;
(b) E; (c) I; (d) R; (e) M; and (f) C.
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Table 4. Ranked parameter sensitivity (from the highest to the lowest) for R10.

Rank Parameter Sensitivity Rank Parameter Sensitivity

1 λ 1.000000001 9 ω -0.1088
2 βI 0.8863 10 d 4.02 × 10−5

3 γ -0.7772 11 cS 8.5884 × 10−10

4 δ -0.46875 12 f0 8.588 × 10−10

5 p 0.46875 13 g0 5.312 × 10−14

6 b -0.468749 14 m 0
7 βE 0.1137 15 cE 0
8 α -0.1135 16 cR 0

3.1.4. Simulated scenarios

Our sensitivity analysis in Section 3.1.3 has identified seven parameters: βI , b, γ, δ, p, d, and cS ,
which are highly sensitive for the model outcome. We now conduct a detailed simulation to quantify
the change of the model variables when the values of these parameters vary. We do not consider here
the population influx rate λ since it is a demographic characteristic that is largely independent of public
health management and short-term economic development. We focus on the three state variables I, M
and C in the discussion below. For comparison, we refer to the parameter values provided in Table 2
for Period 1 as their base values, and the simulation result presented in Figure 2 as the base scenario.

Variation of βI . We first examine the impact of the symptomatic transmission rate βI . We consider
a scenario where βI is reduced to 10% of its base value given in Table 2, and another scenario where
βI is increased by 10 times of its base value. Figure 8 displays the curves of M, C and I in these two
hypothetical scenarios, where all the other parameters are fixed at values given in Table 2. The left
panel of Figure 8 shows that, although the reduction of βI does not have much impact on M and C, it
substantially changes the behavior of I. As a result, the curve of I keeps decreasing throughout Period
1 due to the significant reduction of disease transmission. On the other hand, the right panes shows that
the 10-fold increase of βI leads to a dramatic increase in the number of infections, up to 3 × 106 which
is more than 43% of the total population in Tennessee. Consequently, this causes a sharp decrease in
the economic development C, down to a level around 40%, due to the significant loss of labor supply.

Variation of γ. Next, we consider the impact of the recovery rate γ. Figure 9 shows the simulation
results when γ is hypothetically reduced to 10% (left panel), and hypothetically increased by 10 times
(right panel), in reference to its base value provided in Table 2. All other parameters are fixed. As can
be naturally expected, the lower value of γ leads to an increase of the number of active infections due to
the prolonged disease recovery, while the higher value of γ leads to a reduction of the number of active
infections due to the shortened recovery period. In contrast, the variation of γ has little influence on
M and C, indicating their low sensitivity on the recovery rate, which is consistent with the sensitivity
results presented in Figure 7(e),(f).
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Figure 8. Numerical solutions of M, C and I when the symptomatic transmission rate βI varies, while all
other parameters are fixed. Left panel: βI is reduced to 10%; Right panel: βI is increased by 10 times.
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Figure 9. Numerical solutions of M, C and I when the recovery rate γ varies, while all other parameters are
fixed. Left panel: γ is reduced to 10%; Right panel: γ is increased by 10 times.
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Variation of δ. We plot the simulation result with respect to the variation of the mitigation influx
rate δ in Figure 10. As observed in Figure 7, M and I are positively and negatively correlated to δ,
respectively, and both M and I are highly sensitive to δ, whereas C has a low sensitivity level for δ.
The left panel of Figure 10 demonstrates that when δ is reduced to 10% of its base value, M rapidly
decreases to a level around 9%, and I quickly increases to a number about 5 times of the base scenario
in Figure 2(c). The right panel illustrates that when δ is just increased by 10% from its base value, M
would rise to a very high level (around 97%) and I would be at a level lower than the base scenario in
Figure 2(c).
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Figure 10. Numerical solutions of M, C and I when the influx rate of mitigation δ varies,
while all other parameters are fixed. Left panel: δ is reduced to 10%; Right panel: δ is
increased to 110%.

Variation of cS . We learn from Figure 7(f) that C is positively correlated and highly sensitive to the
labor contribution rate cS . Figure 11 illustrates the two hypothetical scenarios when cS is reduced to
10% of its base value (left panel), where C dramatically decreases to a level around 9%, and when cS

is increased to 110% of its base value (right panel), where C reaches a very high level (around 98%).
There is little change in the M and I curves when cS varies.

Variations of p, d and b. Furthermore, we plot the simulation results for the variation of p (the
natural reduction rate of disease mitigation) in Figure 12, for the variation of d (the natural reduction
rate of economic development) in Figure 13, and for the variation of b (the mitigation implementation
rate) in Figure 14. The behaviors of M, C and I with respect to the variations of these parameters are
consistent with the sensitivity results in Figure 7.
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Figure 11. Numerical solutions of M, C and I when the labor contribution rate cS varies,
while all other parameters are fixed. Left panel: cS is reduced to 10%; Right panel: cS is
increased to 110%.

Additionally, we have combined the solution curves of I in most of these simulated scenarios and
presented the results in Figure 15, so that we may easily observe the quantitative impacts of these
parameter variations on the number of active infections in Period 1. Among these presented scenarios,
the reduction of I is most significant with the (hypothetical) increase of the recovery rate γ and the
decrease of the transmission rate βI . Note that a few off-the-scale scenarios are not included in this plot.
Moreover, a histogram for the changes of the reproduction numbers under most of these parameter
variations is presented in Figure 16, which provides a quantitative demonstration of the sensitivity
prediction in Table 4. Consistent with the result in Figure 15, the decrease of βI and increase of γ
appear most effective in reducing the value of the basic reproduction number.

3.2. Fitting and simulation in Periods 2–5

We have presented and discussed our detailed simulation results for Period 1 in Section 3.1. For
completeness, we summarize the data fitting and numerical results for Periods 2–5 in Figures 17–20.
These four periods represent the time from May 1, 2020 to December 31, 2020. The values of fitted
parameters for each period are listed in Table 2. We observe several ups and downs for the curves
of I, M and C throughout these periods, in accordance with the evolution of the infected cases and
unemployment rates reported in Tennessee and the varied disease risk levels at different times. Based
on the fitted parameters, the basic reproduction number for each of these periods is found as follows:

• Period 2: R20 = 0.22
• Period 3: R30 = 1.69
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• Period 4: R40 = 0.91
• Period 5: R50 = 1.38
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Figure 12. Numerical solutions of M, C and I when the natural reduction rate of mitigation p varies, while
all other parameters are fixed. Left panel: p is reduced to 90%; Right panel: p is increased by 1.3 times.
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Figure 13. Numerical solutions of M, C and I when the natural reduction rate of economic
development d varies, while all other parameters are fixed. Left panel: d is reduced to 90%;
Right panel: d is increased by 2 times.
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Figure 14. Numerical solutions of M, C and I when the mitigation implementation rate b varies, while all
other parameters are fixed. Left panel: b is reduced to 10%; Right panel: b is reduced to 50%.
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Figure 15. Combined numerical solutions of I in Period 1 with respect to several parameter
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Mathematical Biosciences and Engineering Volume 19, Issue 9, 9658–9696.



9678

Comparing the basic reproduction numbers for all the five periods, we see that R10 = 2.01 is the
highest, which is associated with the initial ascending phase of the epidemic where the infections are
typically increasing exponentially. The substantially reduced value of R20 for Period 2 is a result of the
stay-at-home order in Tennessee that was implemented in April 2020, leading to a very low level of
social contacts and disease transmission risk at the beginning of Period 2. As the stay-at-home order
expired, businesses were re-opened, and people gradually resumed most of the their normal activities,
our model shows that R30 bounces back to a high value for Period 3. This is followed by another
reduction of the basic reproduction number for Period 4, where R40 is slightly below unity, possibly
due to the improved public awareness and health management stimulated by the high disease risk in
Period 3. Finally, the rebound of R50 for Period 5 is a reflection of the second COVID-19 wave that
swept through the US during the last few months of 2020. Our simulation result for the evolution of
the mitigation level M shows a pattern consistent with that of the policy curves in Figure 1 (right).

In addition, we present the result of data fitting for the entire time interval (from March 28, 2020 to
December 31, 2020) in Figure 21, where the values of fitted parameters are given by the last column
in Table 2. We see that for several timeframes, some of which even span 1–2 months, our simulation
curve is unable to well catch the behavior of the reported data, which provides a justification for our
separated fitting and simulation in different periods.
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Figure 16. Changes of the reproduction numbers in Period 1 with respect to several param-
eter variations. The red bars represent the base scenario.
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Figure 17. (a) Data fitting for active COVID-19 cases in Tennessee during Period 2 (from
May 1, 2020 to May 21, 2020): circles represent the reported data and solid line represents
the fitting result. (b)–(d): Curves of S , E, I, R, M and C from numerical simulation.
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Figure 18. (a) Data fitting for active COVID-19 cases in Tennessee during Period 3 (from
May 22, 2020 to July 20, 2020): circles represent the reported data and solid line represents
the fitting result. (b)–(d): Curves of S , E, I, R, M and C from numerical simulation.
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Figure 19. (a) Data fitting for active COVID-19 cases in Tennessee during Period 4 (from
July 21, 2020 to September 30, 2020): circles represent the reported data and solid line rep-
resents the fitting result. (b)–(d): Curves of S , E, I, R, M and C from numerical simulation.
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Figure 20. (a) Data fitting for active COVID-19 cases in Tennessee during Period 5 (from
October 1, 2020 to December 31, 2020): circles represent the reported data and solid line
represents the fitting result. (b)–(d): Curves of S , E, I, R, M and C from numerical simula-
tion.
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Figure 21. Data fitting for active COVID-19 cases in Tennessee over the entire time interval
(from March 28, 2020 to December 31, 2020): circles represent the reported data and solid
line represents the fitting result.

4. Discussion

We have presented a new mathematical model to study the interaction between the disease transmis-
sion and spread, the epidemic management, and the economic development associated with COVID-
19. We have also fitted our model to the reported COVID-19 cases and unemployment rates in the
US state of Tennessee to illustrate the application of our modeling framework. We have focused our
attention on the model fitting and simulation during the initial period of the COVID-19 epidemic in
Tennessee (from March 28 to April 30, 2020), though our simulation study for the remainder of the
year 2020 (until December 31) is also summarized. We have considered a few special cases, including
the extreme scenarios where there is no mitigation activity (M = 0) or there is no economic develop-
ment (C = 0), and compared the different dynamics between those and the realistic scenario where
both disease control and economic growth are present. Meanwhile, we have conducted a thorough
sensitivity analysis of the model parameters, and utilized detailed simulation results to examine the
impact on the model outcome when the values of several sensitive parameters are varied.

Our study represents an application of mathematical modeling and simulation at the interface be-
tween epidemiology and economics. The main contributions of this work can be summarized as fol-
lows.

Contribution to economics. Our findings could provide useful insight into economic development
under the impact of COVID-19. Although our model is coarse-grained, simplifying the many factors in
disease management and economic development to two variables (M and C), the simulation results dis-
play a rich set of dynamics that highlight the complex interaction involved. Specifically, our numerical
findings show several typical patterns: (i) increased disease prevalence stimulates stronger mitigation
strategies; (ii) a higher level of disease control leads to reduced economic growth (measured by a
higher unemployment rate); (iii) a lower level of economic development could help to slow down the
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epidemic spread, but the demand for economic recovery would tend to weaken the pandemic manage-
ment and increase the risk of infection; (iv) within the triad of the epidemic progression, public health
management, and economic development, the change of any single component will impact the other
two, though such an impact may not be immediately noticeable and may often be seen in a delayed
manner. These observations indicate the importance of striking a balance between the disease control
and economic growth during the pandemic era, and could provide useful guidelines toward decision
making and policy development.

Contribution to epidemic modeling. Our work represents a new modeling study in the epidemiol-
ogy of COVID-19. Under a homogeneous setting, our mathematical analysis (presented in Appendix
B) indicates that if R0 > 1, the disease would persist in the long term and the stable endemic equi-
librium could potentially have a basin of attraction in the entire domain. Practically, however, public
health management and change of human behavior could reduce the value of R0 below unity, so that
the disease may be eradicated in a population. Even if this is not possible, strategical control measures
could minimize the impact of the endemism, which, mathematically, corresponds to a decrease in the
magnitude of the endemic equilibrium and/or a reduction of its basin of attraction to a small region.
Furthermore, the interaction between economic growth and disease control may strongly impact the
epidemic progression and lead to time-dependent system dynamics, so that the assumption of a homo-
geneous setting is no longer valid. Specifically, the number of reported COVID-19 cases in Tennessee
(and possibly in the entire US as well) from March 2020 to December 2020 exhibits a few distinct fea-
tures at different times, which has motivated us to divide the whole time interval (which is more than 9
months) into five different periods for data fitting and simulation. This allows us to better fit our model
to the real data within each time frame. The simulation results at the end of each time period naturally
provide initial conditions to the next period. Though we have focused on the first period, this sepa-
rated fitting approach would enable us to conduct a detailed investigation of the epidemic-economic
dynamics in each different period when needed, and the method can be easily extended to the fitting
and simulation in other places and/or times.

Additionally, this modeling study builds a foundation for deeper predictive investigations into the
relationship between the pandemic progression, disease control, and economic development. In par-
ticular, an interesting and practically meaningful task is to explore the ‘best’ balance between the
pandemic management and economic growth. This can be formulated as an optimal control prob-
lem [54–56], and several epidemic-economic optimal policy studies have already been performed with
various focuses [57–60]. For our modeling investigation, mathematical theory and numerical simula-
tion can be applied to find a possible optimal control solution that could minimize the costs associated
with the infection (morbidity and mortality), the control measures (prevention, tests, diagnosis, vacci-
nation, treatment, etc.), and the reduction in economic development (increased unemployment rates,
in particular). Such a result would provide helpful guidelines to the government, the public health
administration, and other policy makers.

Acknowledgments

Research of JB is partially supported by Natural Science Youth Project of the Educational Depart-
ment of Liaoning Province under grant number LQN202004, Research Project of Economic and Social
Development in Liaoning Province under grant number 2022lslqnwzzkt-013, Young Women’s Applied

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9658–9696.



9685

Mathematics Support Research Project of China Society for Industrial and Applied Mathematics. Re-
search of XW is partially supported by Faculty Research and Creative Activity (RCA) Grant awarded
by College of Arts and Sciences at the University of Tennessee at Chattanooga. Research of JW is
partially supported by the National Institutes of Health under grant number 1R15GM131315.

Conflict of interest

The three authors, JB, XW and JW, declare that there is no conflict of interest in this work.

References

1. World Health Organization: Coronavirus Disease (COVID-19) Pandemic, Available from: https:
//www.who.int/emergencies/diseases/novel-coronavirus-2019.

2. N. Chow, K. Fleming-Dutra, R. Gierke, A. Hall, M. Hughes, T. Pilishvili, et al., Preliminary esti-
mates of the prevalence of selected underlying health conditions among patients with coronavirus
disease 2019-United States, February 12 – March 28, 2020, Morb. Mortal. Wkly. Rep., 69 (2020),
382–386. https://doi.org/10.15585/mmwr.mm6913e2

3. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan,
China, of novel coronavirus-infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207.
https://doi.org/10.1056/nejmoa2001316

4. S. Garg, L. Kim, M. Whitaker, A. O’Halloran, C. Cummings, R. Holstein, et al., Hospitalization
rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease
2019-COVID-NET, 14 States, March 1 – 30, 2020, Morb. Mortal. Wkly. Rep., 69 (2020), 458–
464. https://doi.org/10.15585/mmwr.mm6915e3

5. A. Pan, L. Liu, C. Wang, H. Guo, X. Hao, Q. Wang, et al., Association of public health interven-
tions with the epidemiology of the COVID-19 outbreak in Wuhan, China, J. Am. Med. Assoc.,
323 (2020), 1915–1923. https://doi.org/10.1001/jama.2020.6130

6. CDC, Coronavirus Disease 2019 (COVID-19): People Who Need to Take Extra Precau-
tions, Acess date: Mar. 25, 2022, Available from: https://www.cdc.gov/coronavirus/2019-ncov/

need-extra-precautions/index.html.

7. A. Lasry, D. Kidder, M. Hast, J. Poovey, G. Sunshine, K. Winglee, et al., Timing of community
mitigation and changes in reported COVID-19 and community mobility—four U.S. metropoli-
tan areas, February 26 – April 1, 2020, Morb. Mortal. Wkly. Rep., 69 (2020), 451–457.
https://doi.org/10.15585/mmwr.mm6915e2

8. CDC, Implementation of Mitigation Strategies for Communities with Local COVID-
19 Transmission, Available from: https://www.cdc.gov/coronavirus/2019-ncov/community/

community-mitigation.html.

9. M. S. Eichenbaum, S. Rebelo, M. Trabandt, The macroeconomics of epidemics, NBER Work-
ing Paper No. 26882, National Bureau of Economic Research, March 2020, Revised April 2021.
https://doi.org/10.3386/w26882

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9658–9696.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
http://dx.doi.org/https://doi.org/10.15585/mmwr.mm6913e2 
http://dx.doi.org/https://doi.org/10.1056/nejmoa2001316 
http://dx.doi.org/https://doi.org/10.15585/mmwr.mm6915e3 
http://dx.doi.org/https://doi.org/10.1001/jama.2020.6130 
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.html
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.html
http://dx.doi.org/https://doi.org/10.15585/mmwr.mm6915e2 
https://www.cdc.gov/coronavirus/2019-ncov/community/community-mitigation.html
https://www.cdc.gov/coronavirus/2019-ncov/community/community-mitigation.html
http://dx.doi.org/https://doi.org/10.3386/w26882


9686

10. S. R. Baker, R. A. Farrokhnia, S. Meyer, M. Pagel, C. Yannelis, How does household spending re-
spond to an epidemic? Consumption during the 2020 COVID-19 pandemic,NBER Working Paper
No. 26949, National Bureau of Economic Research, April 2020. https://doi.org/10.3386/w26949

11. J. Bartash, U.S. Leading Economic Indicators Sink Record 6.7% in March as Coro-
navirus Spreads, MarketWatch, Acess Date: April 17, 2020, Available from:
https://www.marketwatch.com/story/us-leading-economic-indicators-post-record-67-plunge-
in-march-as-covid-19-pandemic-broke-out-2020-04-17.

12. The Becker Friedman Institute for Economics: Key Economic Facts about COVID-19, Available
from: https://bfi.uchicago.edu/insight/blog/key-economic-facts-about-covid-19/.

13. The Federal Reserve Bank of St. Louis: Tracking the U.S. Economy and Financial Markets During
the COVID-19 Outbreak, Available from: https://fredblog.stlouisfed.org/2020/03/tracking-the-u-
s-economy-and-financial-markets-during-the-covid-19-outbreak/.

14. The U.S. Bureau of Labor Statistics (BLS), Available from: https://data.bls.gov/timeseries/
LNS14000000.

15. The U.S. Department of Commerce: Advance Monthly Sales for Retail and Food Services March
2020, Release Number: CB20-56, April 15, 2020. Available from: https://www.census.gov/retail/
marts/www/marts current.pdf.

16. The International Monetary Fund: World Economic Outlook, April 2020, Available from: https:
//www.imf.org/en/Publications/WEO/Issues/2020/04/14/weo-april-2020.

17. Z. J. Cheng, J. Shan, 2019 Novel coronavirus: where we are and what we know, Infection, 48
(2020), 155–163. https://doi.org/10.1007/s15010-020-01401-y

18. A. Sahin, A. Erdogan, P. M. Agaoglu, Y. Dineri, A. Cakirci, M. Senel, R. Okyay, A. Tasdogan,
2019 Novel coronavirus (COVID-19) outbreak: A review of the current literature, Eurasian J.
Med. Oncol., 4 (2020), 1–7. https://doi.org/10.14744/ejmo.2020.12220

19. A. Vespignani, H. Tian, C. Dye, J. O. Lloyd-Smith, R. M. Eggo, M. Shrestha, et al., Modelling
COVID-19, Nat. Rev. Phys., 2 (2020), 279-281. https://doi.org/10.1038/s42254-020-0178-4

20. A. Afzal, C. A. Saleel, S. Bhattacharyya, N. Satish, O. D. Samuel, I. A. Badruddin, Merits and
limitations of mathematical modeling and computational simulations in mitigation of COVID-
19 pandemic: A comprehensive review, Arch. Comput. Methods Eng., 29 (2022), 1311–1337.
https://doi.org/10.1007/s11831-021-09634-2

21. C. Anastassopoulou, L. Russo, A. Tsakris, C. Siettos, Data-based analysis, mod-
elling and forecasting of the COVID-19 outbreak, PLOS ONE, 15 (2020), e0230405.
https://doi.org/10.1371/journal.pone.0230405

22. J. Bai, J. Wang, A two-patch model for the COVID-19 transmission dynamics in China, J. Appl.
Anal. Comput., 11 (2021), 1982–2016. https://doi.org/10.11948/20200302

23. N. Imai, A. Cori, I. Dorigatti, M. Baguelin, C. A. Donnelly, S. Riley, et al., Report 3: Transmis-
sibility of 2019-nCoV, Acess date: January 25, 2020, Available from: https://www.imperial.ac.uk/

mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/.

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9658–9696.

http://dx.doi.org/https://doi.org/10.3386/w26949
https://bfi.uchicago.edu/insight/blog/key-economic-facts-about-covid-19/
https://data.bls.gov/timeseries/LNS14000000
https://data.bls.gov/timeseries/LNS14000000
https://www.census.gov/retail/marts/www/marts_current.pdf
https://www.census.gov/retail/marts/www/marts_current.pdf
https://www.imf.org/en/Publications/WEO/Issues/2020/04/14/weo-april-2020
https://www.imf.org/en/Publications/WEO/Issues/2020/04/14/weo-april-2020
http://dx.doi.org/https://doi.org/10.1007/s15010-020-01401-y
http://dx.doi.org/https://doi.org/10.14744/ejmo.2020.12220
http://dx.doi.org/https://doi.org/10.1038/s42254-020-0178-4
http://dx.doi.org/https://doi.org/10.1007/s11831-021-09634-2
http://dx.doi.org/ https://doi.org/10.1371/journal.pone.0230405
http://dx.doi.org/ https://doi.org/10.1371/journal.pone.0230405
http://dx.doi.org/ https://doi.org/10.11948/20200302
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/


9687

24. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, et al., Substantial undocumented infection
facilitates the rapid dissemination of novel coronavirus (SARS-CoV2), Science, 368 (2020),
489–493. https://doi.org/10.1126/science.abb3221

25. K. Liang, Mathematical model of infection kinetics and its analysis for COVID-19, SARS and
MERS, Infect. Genet. Evol., 82 (2020), 104306. https://doi.org/10.1016/j.meegid.2020.104306

26. J. M. Read, J. R. E. Bridgen, D. A. T. Cummings, A. Ho, C. P. Jewell, Novel coronavirus 2019-
nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates,
Philos. Trans. R. Soc. B, 376 (2021), 20200265. https://doi.org/10.1098/rstb.2020.0265

27. B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission
risk of 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020),
462. https://doi.org/10.3390/jcm9020462

28. A. R. Tuite, D. N. Fisman, Reporting, epidemic growth, and reproduction numbers for the
2019 novel coronavirus (2019-nCoV) epidemic, Ann. Intern. Med., 172 (2020), 567–568.
https://doi.org/10.7326/m20-0358

29. J. Wang, Mathematical models for COVID-19: applications, limitations, and potentials, J. Public
Health Emergency, 4 (2020), 9. https://doi.org/10.21037/jphe-2020-05

30. J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and interna-
tional spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet,
395 (2020), 689–697. https://doi.org/10.1016/s0140-6736(20)30260-9

31. C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China,
Math. Biosci. Eng., 17 (2020), 2708–2724. https://doi.org/10.3934/mbe.2020148

32. C. Yang, J. Wang, Modeling the transmission of COVID-19 in the US—A case study, Infect. Dis.
Model., 6 (2021), 195–211. https://doi.org/10.1016/j.idm.2020.12.006

33. C. Yang, J. Wang, COVID-19 and underlying health conditions: A modeling investigation, Math.
Biosci. Eng., 18 (2021), 3790–3812. https://doi.org/10.3934/mbe.2021191

34. K. M. Bubar, K. Reinholt, S. M. Kissler, M. Lipsitch, S. Cobey, Y. H. Grad, et al., Model-informed
COVID-19 vaccine prioritization strategies by age and serostatus, Science, 371 (2021), 916–921.
https://doi.org/10.1126/science.abe6959

35. N. E. Dean, A. Pastore Y Piontti, Z. J. Madewell, D. A.T. Cummings, M. D. T. Hitchings, K. Joshi,
et al., Ensemble forecast modeling for the design of COVID-19 vaccine efficacy trials, Vaccine,
38 (2020), 7213–7216. https://doi.org/10.1016/j.vaccine.2020.09.031

36. B. H. Foy, B. Wahl, K. Mehta, A. Shet, G. I. Menon, C. Britto, Comparing COVID-19 vaccine
allocation strategies in India: A mathematical modelling study, Int. J. Infect. Dis., 103 (2021),
431–438. https://doi.org/10.1016/j.ijid.2020.12.075

37. C. M. Saad-Roy, C. E. Wagner, R. E. Baker, S. E. Morris, J. Farrar, A. L. Graham, et al., Immune
life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years, Science, 370
(2020), 811–818. https://doi.org/10.1126/science.abd7343

38. E. Shim, Optimal allocation of the limited COVID-19 vaccine supply in South Korea, J. Clin.
Med., 10 (2021), 591. https://doi.org/10.3390/jcm10040591

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9658–9696.

http://dx.doi.org/https://doi.org/10.1126/science.abb3221
http://dx.doi.org/https://doi.org/10.1016/j.meegid.2020.104306
http://dx.doi.org/https://doi.org/10.1098/rstb.2020.0265
http://dx.doi.org/https://doi.org/10.3390/jcm9020462
http://dx.doi.org/https://doi.org/10.7326/m20-0358 
http://dx.doi.org/https://doi.org/10.21037/jphe-2020-05 
http://dx.doi.org/https://doi.org/10.1016/s0140-6736(20)30260-9 
http://dx.doi.org/https://doi.org/10.3934/mbe.2020148 
http://dx.doi.org/https://doi.org/10.1016/j.idm.2020.12.006 
http://dx.doi.org/https://doi.org/10.3934/mbe.2021191
http://dx.doi.org/https://doi.org/10.1126/science.abe6959
http://dx.doi.org/https://doi.org/10.1016/j.vaccine.2020.09.031 
http://dx.doi.org/https://doi.org/10.1016/j.ijid.2020.12.075
http://dx.doi.org/https://doi.org/10.1126/science.abd7343 
http://dx.doi.org/https://doi.org/10.3390/jcm10040591


9688

39. H. de la Fuente-Mella, R. Rubilar, K. Chahuan-Jimenez, V. Leiva, Modeling COVID-19 cases
statistically and evaluating their effect on the economy of countries, Mathematics, 9 (2021),
1558. https://doi.org/10.3390/math9131558

40. J. Chen, A. Vullikanti, J. Santos, S. Venkatramanan, S. Hoops, H. Mortveit, et al., Epi-
demiological and economic impact of COVID-19 in the US, Sci. Rep., 11 (2021), 20451.
https://doi.org/10.1038/s41598-021-99712-z

41. D. Altig, S. Baker, J. M. Barrero, N. Bloom, P. Bunn, S. Chen, et al., Economic uncer-
tainty before and during the COVID-19 pandemic, J. Public Econ., 191 (2020), 104274.
https://doi.org/10.1016/j.jpubeco.2020.104274

42. P. R. Jena, R. Majhi, R. Kalli, S. Managi, B. Majhi, Impact of COVID-19 on GDP of major
economies: Application of the artificial neural network forecaster, Econ. Anal. Policy, 69 (2021),
324–339. https://doi.org/10.1016/j.eap.2020.12.013

43. L. Xiang, M. Tang, Z. Yin, M. Zheng, S. Lu, The COVID-19 pandemic and
economic growth: theory and simulation, Front. Public Health, 9 (2021), 741525.
https://doi.org/10.3389/fpubh.2021.741525

44. G. Dimarco, L. Pareschi, G. Toscani, M. Zanella, Wealth distribution under the spread of infectious
diseases, Phys. Rev. E, 102 (2020), 022303. https://doi.org/10.1103/PhysRevE.102.022303

45. M. C. Auld, F. Toxvaerd, The Great COVID-19 Vaccine Rollout: Behavioral and Policy Re-
sponses, Centre for Economic Policy Research Discussion Paper, 18271–1619079393, 2021.

46. The Tennessee Department of Health, Available from: https://www.tn.gov/health.html.

47. The Tennessee Department of Labor and Workforce Development, Available from: https://www.
tn.gov/workforce.html.

48. C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, et al., Transmission of
2019-nCoV infection from an asymptomatic contact in Germany, N. Engl. J. Med., 382 (2020),
970–971. https://doi.org/10.1056/NEJMc2001468

49. The U.S. Bureau of Economic Analysis, Available from: https://www.bea.gov/.

50. Our World in Data: Policy Responses to the Coronavirus Pandemic, Available from: https:
//ourworldindata.org/policy-responses-covid.

51. J. A. Spencer, D. P. Shutt, S. K. Moser, H. Clegg, H. J. Wearing, H. Mukundan, C. A. Manore,
Epidemiological parameter review and comparative dynamics of influenza, respiratory syncytial
virus, rhinovirus, human coronavirus, and adenovirus, Available from: https://doi.org/10.1101/

2020.02.04.20020404.

52. G. Albi, L. Pareschi, M. Zanella, Control with uncertain data of socially structured compartmental
epidemic models, J. Math. Biol. , 82 (2021), 63. https://doi.org/10.1007/s00285-021-01617-y

53. N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of
Malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008),
1272–1296. https://doi.org/10.1007/s11538-008-9299-0

54. W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York,
1975.

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9658–9696.

http://dx.doi.org/https://doi.org/10.3390/math9131558
http://dx.doi.org/https://doi.org/10.1038/s41598-021-99712-z
http://dx.doi.org/https://doi.org/10.1016/j.jpubeco.2020.104274
http://dx.doi.org/https://doi.org/10.1016/j.eap.2020.12.013
http://dx.doi.org/https://doi.org/10.3389/fpubh.2021.741525
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.102.022303
https://www.tn.gov/health.html
https://www.tn.gov/workforce.html
https://www.tn.gov/workforce.html
http://dx.doi.org/https://doi.org/10.1056/NEJMc2001468
https://www.bea.gov/
https://ourworldindata.org/policy-responses-covid
https://ourworldindata.org/policy-responses-covid
https://doi.org/10.1101/2020.02.04.20020404
https://doi.org/10.1101/2020.02.04.20020404
http://dx.doi.org/ https://doi.org/10.1007/s00285-021-01617-y 
http://dx.doi.org/https://doi.org/10.1007/s11538-008-9299-0


9689

55. S. Lenhart, J. Workman, Optimal Control Applied to Biological Models, Chapman Hall/CRC,
2007.

56. L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelize, E. F. Mishchenko, The Mathematical
Theory of Optimal Processes, Wiley, New York, 1967.

57. T. Kruse, P. Strack, Optimal Control of An epidemic through Social Distancing, Cowles
Foundation Discussion Papers, 214, (2020), Available from: https://elischolar.library.yale.edu/

cowles-discussion-paper-series/214.

58. L. Miclo, D. Spiro, J. Weibull, Optimal epidemic suppression under an ICU constraint: An ana-
lytical solution, J. Math. Econ., (2022), 102669. https://doi.org/10.1016/j.jmateco.2022.102669

59. R. Rowthorn, F. Toxvaerd, The Optimal Control of Infectious Diseases via Prevention and Treat-
ment, Cambridge-INET Working Paper WP2013, 2020. https://doi.org/10.17863/CAM.52481

60. T. Andersson, A. Erlanson , D. Spiro, R. Ostling, Optimal trade-off between economic activity and
health during an epidemic, Working Papers, Lund University, Department of Economics, 2020.

61. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
https://doi.org/10.1016/s0025-5564(02)00108-6

62. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math.
Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361

Appendix A: Domain and reproduction number

We first determine a feasible domain for our mathematical model (2.1). If we add up the first four
equations in system (2.1), we easily obtain

S + E + I + R ≤
λ

µ
. (A.1)

Meanwhile, adding the first two equations yields

S + E ≥
λ

α + µ
. (A.2)

Next, we derive conditions to ensure 0 ≤ M ≤ 1 and 0 ≤ C ≤ 1. For M ≥ 0, we need dM
dt ≥ 0 when

M = 0. This yields δ + mI − f0C ≥ 0, which holds for all I ≥ 0 and C ≤ 1 if

δ − f0 ≥ 0 . (A.3)

To ensure M ≤ 1, we need dM
dt ≤ 0 when M = 1. This leads to δ + mI − p − f0C ≤ 0, which holds for

all I ≤ λ
µ

and C ≥ 0 if

δ + m
λ

µ
− p ≤ 0 . (A.4)

With similar arguments, we can make certain C ≥ 0 if

cm
λ

α + µ
− g0 ≥ 0 , where cm = min(cS , cE, cR), (A.5)
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by using condition (A.2), and ensure C ≤ 1 if

cM
λ

µ
− d ≤ 0 , where cM = max(cS , cE, cR), (A.6)

by using condition (A.1).
Thus, under conditions (A.3)–(A.6), the biologically feasible domain

Γ = {(S , E, I,R,M,C) : S , E, I,R ≥ 0, S + E + I + R ≤
λ

µ
, 0 ≤ M ≤ 1, 0 ≤ C ≤ 1} (A.7)

is invariant with respect to the vector field of system (2.1).
Obviously, there is a unique disease-free equilibrium (DFE) of system (2.1) which is given by

x0 =
(
S 0, 0, 0, 0,M0,C0

)
=

(λ
µ
, 0, 0, 0,

dδ − f0cS S 0

dp − g0 f0
,

pcS S 0 − g0δ

dp − g0 f0

)
. (A.8)

Using conditions (A.3) and (A.6), we have dδ− f0cS S 0 ≥ f0(d−cS
λ
µ
) ≥ f0(cM

λ
µ
−cS

λ
µ
) ≥ 0. Meanwhile,

conditions (A.3) and (A.4) yield p > δ ≥ f0, and conditions (A.5) and (A.6) yield d ≥ cM
λ
µ
> cm

λ
α+µ
≥

g0. Hence, dp−g0 f0 > 0, and pcS S 0−g0δ > δ(cS S 0−g0) > δ(cm
λ
α+µ
−g0) ≥ 0. These ensure that M0 ≥ 0

and C0 > 0 in equation (A.8). Moreover, conditions (A.4) and (A.5) yield dδ − f0cS S 0 < dp − g0 f0, or
M0 < 1, and conditions (A.3) and (A.6) yield pcS S 0 − g0δ ≤ dp − g0 f0, or C0 ≤ 1. Therefore, the DFE
x0 is within the domain Γ.

Using the DFE, we can evaluate the basic reproduction number of model (2.1) based on the standard
next-generation matrix approach [61]. The new infection matrix F and the transition matrix V are

F =

( βES 0
1+bM0

βIS 0
1+bM0

0 0

)
, and V =

(
α + µ 0
−α w + γ + µ

)
. (A.9)

Thus, the next-generation matrix is given as

FV−1 =

(
a11 a12

0 0

)
, (A.10)

where a11 =
βES 0

(1+bM0)(α+µ) +
αβIS 0

(1+bM0)(α+µ)(w+γ+µ) and a12 =
βIS 0

(1+bM0)(w+γ+µ) .
The basic reproduction number is then computed by the spectral radius of the next-generation ma-

trix: R0 = ρ(FV−1); i.e.,

R0 =
βES 0

(1 + bM0)(α + µ)
+

αβIS 0

(1 + bM0)(α + µ)(w + γ + µ)
. (A.11)

Appendix B: Equilibrium analysis

Here we analyze the equilibrium points of system (2.1) and their stability properties. We have
determined the unique disease-free equilibrium in Appendix A. Now we establish the following result
regarding the existence and uniqueness of the endemic equilibrium.

Theorem B.1. Assume mλ − f0γ ≥ 0. When R0 > 1, there exists a unique endemic equilibrium
x∗ = (S ∗, E∗, I∗,R∗,M∗,C∗) defined by Eqs (B.7)–(B.12).
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Proof. At an endemic equilibrium of system (2.1), we have

λ −
βE

1 + bM∗
S ∗E∗ −

βI

1 + bM∗
S ∗I∗ − µS ∗ = 0, (B.1)

βE

1 + bM∗
S ∗E∗ +

βI

1 + bM∗
S ∗I∗ − (α + µ)E∗ = 0, (B.2)

αE∗ − (w + γ + µ)I∗ = 0, (B.3)
γI∗ − µR∗ = 0, (B.4)

δ + mI∗ − pM∗ − f0C∗ = 0, (B.5)
cS S ∗ + cEE∗ + cRR∗ − dC∗ − g0M∗ = 0. (B.6)

Adding (B.1) to (B.2), we obtain
S ∗ = S 0 −

α + µ

µ
E∗ . (B.7)

By Eqs (B.3) and (B.4), we have
I∗ =

α

w + γ + µ
E∗ (B.8)

and
R∗ =

γ

µ

α

w + γ + µ
E∗ . (B.9)

Using Eqs (B.5) and (B.6), we have

M∗ =
mdI + dδ − f0(cS S ∗ + cEE∗ + cRR∗)

pd − f0g0
(B.10)

and
C∗ =

p(cS S ∗ + cEE∗ + cRR∗) − g0mI − g0δ

pd − f0g0
. (B.11)

Substituting Eqs (B.7)–(B.11) to (B.2), we obtain a unique non-trivial solution for E∗:

E∗ =
βES 0 + βIS 0 ·

α
w+γ+µ

+
b(α+µ)( f0cS S 0−δd)

dp− f0g0
− (α + µ)

βE ·
α+µ
µ

+ βI ·
α

w+γ+µ
·
α+µ
µ

+
(α+µ)bdm· α

w+γ+µ+(α+µ)b f0(cS ·
α+µ
µ −cE−cR·

γ
µ ·

α
w+γ+µ )

dp− f0g0

=
(1 + bM0)(R0 − 1)

(α+µ)
λ

(1 + bM0)(R0 − 1) + b
dp− f0g0

(md · α
w+γ+µ

− f0cE − f0cR ·
γ
µ
· α

w+γ+µ
) +

α+µ
λ

(1 + bdδ
dp− f0g0

)

=
(1 + bM0)(R0 − 1)

(α+µ)
λ

(1 + bM0)(R0 − 1) +
α+µ
λ

+ A
, (B.12)

where we may re-write A as

A =
b

dp − f0g0

(
dδ
α + µ

λ
− f0cE

)
+

b
dp − f0g0

α

w + γ + µ

(
md − f0cR

γ

µ

)
. (B.13)

We know dp − f0g0 > 0 from Eq (A.8) and the analysis afterwards. Using conditions (A.3) and (A.6),
we have dδα+µ

λ
− f0cE ≥ cM

λ
µ
· δα+µ

λ
− f0cE > cMδ − f0cE ≥ 0. Meanwhile, using the assumption

mλ− f0γ ≥ 0, we obtain md − f0cR
γ

µ
≥ mcM

λ
µ
− f0cR

γ

µ
≥

cR
µ

(mλ− f0γ) ≥ 0. Hence, A > 0, which yields
E∗ > 0 when R0 > 1. Consequently, there is a unique endemic equilibrium x∗ when R0 > 1.
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Next, we consider the stability properties of the DFE and endemic equilibrium. Based on the stan-
dard theory of the basic reproduction number [61], the DFE is locally asymptotically stable when
R0 < 1 and becomes unstable when R0 > 1. We proceed to study the stability of the endemic equi-
librium near the bifurcation point R0 = 1 using local bifurcation analysis [62]. We first introduce the
following lemma.

Lemma B.1. ( [61], Theorem 4) Consider the disease transmission model defined by ẋ = f (x, µ),
where µ is a bifurcation parameter such that R0 < 1 for µ < 0 and R0 > 1 for µ > 0 and such that x0 is
a DFE for all values of µ. Assume that the zero eigenvalue of Dx f (x0, 0) is simple, where Dx f (x0, 0) is
the partial derivative of f with respect to x evaluated at the point x = x0, µ = 0, and let v and ω be the
corresponding left and right nullvectors chosen such that vω = 1. Let a and b be defined as follows:

a =
v
2

Dxx f (x0, 0)ω2 =
1
2

n∑
i, j,k=1

viω jωk
∂2 fi

∂x j∂xk
(x0, 0), (B.14)

b = vDxµ f (x0, 0)ω =

n∑
i, j=1

viω j
∂2 fi

∂x j∂µ
(x0, 0), (B.15)

and assume that b , 0. Also assume that the DFE is stable when µ < 0. Then b > 0, and there exists
ε > 0 such that

(i) if a < 0, there are locally asymptotically stable endemic equilibria near x0 for 0 < µ < ε;
(ii) if a > 0, there are unstable endemic equilibria near x0 for −ε < µ < 0.

We utilize Lemma B.1 to prove the result below.

Theorem B.2. When R0 > 1 and R0−1 is sufficiently small, the endemic equilibrium x∗ of system (2.1)
is locally asymptotically stable.

Proof. Let us re-write system (2.1) as ẋ = f (x,R0), where x = [x1, x2, x3, x4, x5, x6]T =

[S , E, I, R, M, C]T and f = [ f1, f2, f3, f4, f5, f6]T = [Ṡ , Ė, İ, Ṙ, Ṁ, Ċ]T .
The Jacobian matrix of system (2.1) at (x0, 1) is given by

Dx f (x0, 1) =



−µ −βES 0
1+bM0

−βIS 0
1+bM0

0 0 0
0 βES 0

1+bM0
− (α + µ) βIS 0

1+bM0
0 0 0

0 α −(ω + γ + µ) 0 0 0
0 0 γ −µ 0 0
0 0 m 0 −p − f0

cS cE 0 cR −g0 −d


.

Let R0 = 1. We manipulate the characteristic polynomial as follows:

det
[
λI − Dx f (x0, 1)

]
= − [λ2 + (p + d)λ + pd − f0g0](λ + µ)2

·
{[
λ −

βES 0

1 + bM0
+ (α + µ)

]
(λ + w + γ + µ) −

αβIS 0

1 + bM0

}
= − [λ2 + (p + d)λ + pd − f0g0](λ + µ)2
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·
{
λ2 − λ

[ βES 0

1 + bM0
− (α + µ) − (w + γ + µ)

]
− (w + γ + µ)(α + µ)(R0 − 1)

}
= − [λ2 + (p + d)λ + pd − f0g0](λ + µ)2 · λ

{
λ −

[ βES 0

1 + bM0
− (α + µ) − (w + γ + µ)

]}
.

Note that R0 is defined in Eq (A.11). We define

R01 =
βES 0

(1 + bM0)(α + µ)
, R02 =

αβIS 0

(1 + bM0)(α + µ)(w + γ + µ)
.

Since R01 < R0 = 1, we have
βES 0

1 + bM0
− (α + µ) − (w + γ + µ) = (α + µ)

[
R01 − 1 −

w + γ + µ

α + µ

]
< 0.

Since pd − f0g0 > 0, we see that the zero eigenvalue of Dx f (x0, 1) is simple and all other eigenvalues
of Dx f (x0, 1) have negative real parts.

All the second derivatives of fi in (B.14) are zero at the DFE except the following:
∂2 f1
∂S ∂E (x0, 1) =

−βE
1+bM0

, ∂2 f1
∂S ∂I (x0, 1) =

−βI
1+bM0

, ∂2 f1
∂E∂S (x0, 1) =

−βE
1+bM0

, ∂2 f1
∂I∂S (x0, 1) =

−βI
1+bM0

,
∂2 f1
∂E∂M (x0, 1) =

βES 0b
(1+bM0)2 , ∂2 f1

∂I∂M (x0, 1) =
βIS 0b

(1+bM0)2 , ∂2 f1
∂M∂E (x0, 1) =

βES 0b
(1+bM0)2 , ∂2 f1

∂M∂I (x0, 1) =
βIS 0b

(1+bM0)2 ,
∂2 f2
∂S ∂E (x0, 1) =

βE
1+bM0

, ∂2 f2
∂S ∂I (x0, 1) =

βI
1+bM0

, ∂2 f2
∂E∂S (x0, 1) =

βE
1+bM0

, ∂2 f2
∂I∂S (x0, 1) =

βI
1+bM0

,
∂2 f2
∂E∂M (x0, 1) =

−βES 0b
(1+bM0)2 , ∂2 f2

∂I∂M (x0, 1) =
−βIS 0b

(1+bM0)2 , ∂2 f2
∂M∂E (x0, 1) =

−βES 0b
(1+bM0)2 ,

∂2 f2
∂M∂I (x0, 1) =

−βIS 0b
(1+bM0)2 .

Corresponding first derivatives of fi in (B.15) are listed as follows:
∂ f1
∂E (x0, 1) =

−βES 0
1+bM0

= −(α + µ)R01 = −(α + µ)(R0 − R02),
∂ f1
∂I (x0, 1) =

−βIS 0
1+bM0

= −
(α+µ)(w+γ+µ)

α
R02 = −

(α+µ)(w+γ+µ)
α

(R0 − R01),
∂ f2
∂E (x0, 1) =

βES 0
1+bM0

− (α + µ) = (α + µ)(R01 − 1) = (α + µ)(R0 − R02 − 1),
∂ f2
∂I (x0, 1) =

βIS 0
1+bM0

=
(α+µ)(w+γ+µ)

α
R02 =

(α+µ)(w+γ+µ)
α

(R0 − R01).

The non-zero second derivatives of fi in (B.15) are
∂2 f1
∂E∂R0

(x0, 1) = −(α + µ), ∂2 f1
∂I∂R0

(x0, 1) = −
(α+µ)(w+γ+µ)

α
,

∂2 f2
∂E∂R0

(x0, 1) = α + µ, ∂2 f2
∂I∂R0

(x0, 1) =
(α+µ)(w+γ+µ)

α
.

We choose v and ω such that they are orthogonal to Dx f (x0, 1) (i.e., v · Dx f (x0, 1) = 0,
Dx f (x0, 1) · ω = 0), and v · ω = 1. With some algebraic manipulation, we obtain

v = (0, v2, v3, 0, 0, 0), where v2 = 1
1+

αβI S 0
1+bM0

> 0, v3 =

βE S 0
1+bM0

−(α+µ)

−α
v2 =

βIS 0
(1+bM0)(w+γ+µ)v2 due to

R0 = 1; and ω = (ω1, ω2, ω3, ω4, ω5, ω6), where ω1 = −
α+µ

µ
< 0, ω2 = 1, ω3 = α

w+γ+µ
> 0,

ω4 =
γα

µ(w+γ+µ) ,

ω5 =
f0cS

α+µ
u

pd− f0g0
+

md· α
w+γ+µ− f0cE− f0cR·

γ
µ ·

α
w+γ+µ

pd− f0g0
> 0, ω6 =

−pcS
α+µ
µ −g0

mα
w+γ+µ+pcE+pcR

γα
µ(w+γ+µ)

pd− f0g0
.

Hence, Eq (B.14) yields

a = v2

[
ω1ω2

βE

1 + bM0
+ ω1ω3

βI

1 + bM0
+ ω2ω5

−βES 0b
(1 + bM0)2 + ω3ω5

−βIS 0b
(1 + bM0)2

]
< 0. (B.16)
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Based on Eq (B.15), we can also verify that b = v2(α + µ)(ω2 + ω3
w+γ+µ

α
) > 0. Therefore, we con-

clude that when R0 − 1 changes from negative to positive, a positive and locally asymptotically stable
equilibrium x∗ occurs.

Due to the high dimension and strong nonlinearity of system (2.1), we have not fully resolved the
global stability of the DFE and the endemic equilibrium. Nevertheless, for a special case where the
variable M is fixed at any value between 0 and 1, we are able to prove the global asymptotic stability
of the simplified system. For illustration, let us substitute M = M∗ into system (2.1). Consequently,
the basic reproduction number for the reduced system is given by

R0 = ρ(F∗V−1
∗ ) =

βES 0

(1 + bM∗)(α + µ)
+

αβIS 0

(1 + bM∗)(α + µ)(w + γ + µ)
, (B.17)

where

F∗ =

( βES 0
1+bM∗

βIS 0
1+bM∗

0 0

)
, and V∗ =

(
α + µ 0
−α w + γ + µ

)
. (B.18)

Theorem B.3. Let M = M∗. When R0 < 1, the DFE x0 of the reduced system from (2.1) is globally
asymptotically stable.

Proof. When M = M∗, the second and third equations of (2.1) imply that

dE
dt
≤

βES 0E
1 + bM∗

+
βIS 0I

1 + bM∗
− (α + µ)E,

dI
dt
≤ αE − (w + γ + µ)I.

(B.19)

Let Y = (E, I). Then system (B.19) yields

dY
dt
≤ (F∗ − V∗)Y, (B.20)

where the matrices F∗ and V∗ are given in Eq (B.18).
By the Perron-Frobenius theorem, there exists a positive left eigenvector u of the positive matrix

V−1
∗ F∗ with respect to the eigenvalue R0 = ρ(F∗V−1

∗ ) = ρ(V−1
∗ F∗). Define the Lyapunov function

L = uT V−1
∗ Y .

Note that L ≥ 0, and L = 0 if and only if Y = 0. Differentiating L along the solution of the reduced
system from (2.1), we obtain

L′ = uT V−1
∗

dY
dt
≤ uT V−1

∗ (F∗ − V∗)Y = (R0 − 1)uT Y .

If R0 < 1, then L′ ≤ 0. Furthermore, L′ = 0 leads to uT Y = 0, which yields E = I = 0. Hence, the
largest invariant set where L′ = 0 is the DFE x0. By LaSalle’s Invariance Principle, the DFE is globally
asymptotically stable.
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Theorem B.4. Let M = M∗. When R0 > 1, the unique endemic equilibrium x∗ of the reduced system
from (2.1) is globally asymptotically stable.

Proof. When M = M∗, we consider the first three equations of (2.1):

dS
dt

= λ −
βES E

1 + bM∗
−

βIS I
1 + bM∗

− µS ,

dE
dt

=
βES E

1 + bM∗
+

βIS I
1 + bM∗

− (α + µ)E,

dI
dt

= αE − (w + γ + µ)I.

(B.21)

We introduce the following Lyapunov function:

L1(S , E, I) =

∫ S

S ∗

u − S ∗
u

du +

∫ E

E∗

u − E∗
u

du +
βIS ∗I∗

(1 + bM∗)αE∗

∫ I

I∗

u − I∗
u

du . (B.22)

It is easy to verify that L1 ≥ 0 and L1 = 0 if and only if (S , E, I) = (S ∗, E∗, I∗). Meanwhile, the
following equations hold:

λ −
βES ∗E∗
1 + bM∗

−
βIS ∗I∗

1 + bM∗
− µS ∗ = 0, (B.23)

βES ∗E∗
1 + bM∗

+
βIS ∗I∗

1 + bM∗
− (α + µ)E∗ = 0, (B.24)

αE∗ − (w + γ + µ)I∗ = 0. (B.25)

Using Eqs (B.23)–(B.25), we calculate the derivative of L1 along the solution of the subsystem (B.21)
in what follows:

L′1|(B.21) = (1 −
S ∗
S

)[λ −
βE

1 + bM∗
S E −

βI

1 + bM∗
S I − µS − (λ −

βES ∗E∗
1 + bM∗

−
βIS ∗I∗

1 + bM∗
− µS ∗)]

+ (1 −
E∗
E

){[
βE

1 + bM∗
S E +

βI

1 + bM∗
S I − (α + µ)E] − [

βES ∗E∗
1 + bM∗

+
βIS ∗I∗

1 + bM∗
− (α + µ)E∗]}

+
βIS ∗I∗

(1 + bM∗)αE∗
(1 −

I∗
I

){[αE − (w + γ + µ)I] − [αE∗ − (w + γ + µ)I∗]}

=
βE

1 + bM∗
S ∗E∗(1 −

S E
S ∗E∗

−
S ∗
S

+

︷︸︸︷
E
E∗

) +
βI

1 + bM∗
S ∗I∗(1 −

S I
S ∗I∗︸    ︷︷    ︸−S ∗

S
+

Î
I∗

)

+ µS ∗(2 −
S
S ∗
−

S ∗
S

) +
βE

1 + bM∗
S ∗E∗(−1 +

S E
S ∗E∗

−
S
S ∗

+

︷︸︸︷
E∗
E

)

+
βI

1 + bM∗
S ∗I∗(−1 +

S I
S ∗I∗︸      ︷︷      ︸− E∗S I

ES T
∗ I∗

+
E∗
E

) +
βE

1 + bM∗
S ∗ET

∗ (2

︷      ︸︸      ︷
−

E∗
E
−

E
E∗

)

+
βI

1 + bM∗
S ∗I∗(2−

E∗
E
−

E
E∗

)
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+
βI

1 + bM∗
S ∗I∗(

E
E∗
− 1 −

EI∗
E∗I

+
Î∗
I

) +
βI

1 + bM∗
S ∗I∗(2

̂
−

I
I∗
−

I∗
I

)

=
βE

1 + bM∗
S ∗E∗(2 −

S
S ∗
−

S ∗
S

) + µS ∗(2 −
S
S ∗
−

S ∗
S

)

+
βI

1 + bM∗
S ∗I∗(3 −

S ∗
S
−

EI∗
E∗I
−

E∗S I
ES ∗I∗

)

≤ 0,

where those terms marked with the same type of symbols are canceled out. It is clear that L′1|(B.21) = 0
if and only if (S , E, I) = (S ∗, E∗, I∗). Hence, according to LaSalle’s Invariance Principle, the endemic
equilibrium (S ∗, E∗, I∗) of subsystem (B.21) is globally asymptotically stable.

Through substitution of (S ∗, E∗, I∗) into the equations for R and C:

dR
dt

= γI∗ − µR,

dC
dt

= cS S ∗ + cEE∗ + cRR − dC − g0M∗,
(B.26)

it is straightforward to observe that (R∗, C∗) of subsystem (B.26) is globally asymptotically stable. The
proof is then completed by combining the results for subsystems (B.21) and (B.26).

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9658–9696.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Model formulation
	Simulation results
	Fitting and simulation in Period 1 
	Data fitting
	Special cases
	Sensitivity analysis
	Simulated scenarios

	Fitting and simulation in Periods 2–5

	Discussion

