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Abstract: When formulating countermeasures to epidemics such as those generated by COVID-19, 

estimates of the benefits of a given intervention for a specific population are highly beneficial to policy 

makers. A recently introduced tool, known as the “dynamic-spread” SIR model, can perform 

population-specific risk assessment. Behavior is quantified by the dynamic-spread function, which 

includes the mechanisms of droplet reduction using facemasks and transmission control due to social 

distancing. The spread function is calibrated using infection data from a previous wave of the infection, 

or other data felt to accurately represent the population behaviors.  The model then computes the rate 

of spread of the infection for different hypothesized interventions, over the time window for the 

calibration data. The dynamic-spread model was used to assess the benefit of three enhanced 

intervention strategies – increased mask filtration efficiency, higher mask compliance, and elevated 

social distancing – in four COVID-19 scenarios occurring in 2020:  the first wave (i.e. until the first 

peak in numbers of new infections) in New York City; the first wave in New York State; the spread 

aboard the Diamond Princess Cruise Liner; and the peak occurring after re-opening in Harris County, 

Texas.  Differences in the efficacy of the same intervention in the different scenarios were estimated.  

As an example, when the average outward filtration efficiency for facemasks worn in New York City 

was increased from an assumed baseline of 67% to a hypothesized 90%, the calculated peak number 

of new infections per day decreased by 40%.  For the same baseline and hypothesized filtration 

efficiencies aboard the Diamond Princess Cruise liner, the calculated peak number of new infections 

per day decreased by about 15%.  An important factor contributing to the difference between the two 

scenarios is the lower mask compliance (derivable from the spread function) aboard the Diamond Princess.   

Keywords:  COVID-19; SIR model; Infection-spread model; facemask; dynamic-spread model; risk-

assessment model 
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1.  Introduction 

In designing intervention strategies to combat future waves of an infection, such as those occurring 

in the COVID-19 pandemic, it is advantageous to incorporate known behavioral tendencies of the 

affected population into the analysis.  Relevant behaviors include willingness to deploy a certain type 

of personal protective equipment (PPE), and level of compliance with social-distancing (quarantines, 

isolations, lockdowns…) mandates. Of particular value are tools that can translate a given level of 

change in behavior to changes in infection rate.  Such information can enable policy makers to estimate 

the public-health benefit obtainable from resources spent on PPE acquisition and stockpiling, public 

education, and enforcement of legal orders.   

SIR (Susceptible-Infected-Removed) type models represent a family of possible tools for 

assessing the influence of behavioral characteristics on infection dynamics.  SIR models have been 

used throughout the COVID-19 crisis for predicting various effects of intervention strategies [1–8].  

To incorporate behavioral characteristics into the model, one could adjust the model parameters to best 

reproduce infection curves that are already available for the scenario of interest, e.g. from a first wave 

of the infection.  One challenge to such an approach is that data available to inform the model is often 

limited, and parameter selections are sometimes “educated guesses” or values from other infection 

scenarios (e.g. different type of pathogen) [3]. Another challenge to such an approach is that different 

sets of parameter values can yield the same quality of fit with the recorded data (infection rates, death 

rates, hospitalization rates…).  When the chosen parameter values are varied to model behavioral 

changes, the outcome can be dependent upon the particular set [2].  That is, the sensitivity of the model 

to changes in the parameters varies for different parameter selections.   

An alternative approach that reduces these difficulties was recently introduced by Osborn et al.  

[8]. In that approach, the population behavior as a function of time is governed by a differential 

equation, along with the standard S, I, and R dependent variables.  The “dynamic spread function”, 

which contains the transmission rate (influenced by social distancing) and production rate (influenced 

by PPE’s adopted) is determined from published infection curves for previous waves of the infection.  

In the governing equation for the dynamic spread function, the published curves (for the infected 

population, and the number of new infections) enter as variable coefficients.  To study the effect of 

behavioral changes away from the baseline behaviors exhibited in the previous wave, the spread 

function can be modified in a systematic way, and the system of equations can be solved to provide 

estimates of the change in infection rate (over the time course of the previous waves) realizable from 

the proposed interventions.  An advantage of the dynamic-spread approach is that parameters that are 

common to both the baseline and modified scenarios do not need to be specified.  The dynamic-spread 

approach also captures in a natural manner the gradual way in which behavioral changes (e.g. gradual 

adoption of facemasks) by a population occur. 

The following sections summarize the dynamic-spread formulation derived in [8]. Calculations 

are then made to illustrate the significance of the dynamic spread function. Subsequently, four COVID-

19 scenarios are considered, and common modifications to the baseline behaviors are imposed.  The 

resulting change in the COVID-19 infection rate is then estimated.  The scenarios considered are the 

COVID-19 outbreaks in New York City, New York State, the Diamond Princess cruise ship, and 
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Harris County, Texas.  The effectiveness of different strategies for the different scenarios is discussed 

in the final section. 

2.  Methods 

2.1. Basic methodology 

In [8], the dynamic-spread methodology is derived from a 4-equation SIR model ([9], [10], [11]), 

which tracks the susceptible, infected, and removed populations, along with the droplet transmission.  

In the formulation, the transmission rate 𝛽  and the production rate 𝜅 are allowed to vary with time.  

The resulting system of equations can be written as [8]:  

𝑑𝑈

𝑑𝑡
= 𝛿 𝐼 −  𝜆 𝑈 + 

𝑈

𝛿

𝑑𝛿

𝑑𝑡
                                                                                                         (1a) 

𝑑𝐼

𝑑𝑡
= 𝑈 − 𝛾  𝐼                                                                                                                                (1b) 

𝑑𝛿𝑏

𝑑𝑡
= − 

𝐼𝑏

𝑈𝑏
 𝛿𝑏

2 + (𝜆 + 
1

𝑈𝑏
 
𝑑𝑈𝑏

𝑑𝑡
) 𝛿𝑏                       (1c) 

In the equations, all the variables are made dimensionless based on a scheme discussed in [8].  

Time is normalized by the temporal window of interest , which we often take to be the time from the 

first lockdown order to the first maximum in the recorded number of new infections per day. U is the 

number of new infections per day, normalized by . We note that Osborn et al. [8] derived the 

governing equations in terms of T = dS/dt = -U, where S is the susceptible population. For 

convenience, we work here in terms of U rather than T, since T is always negative, i.e. the negative of 

the number of new infections per day.  I is the infected population, scaled by (   ).   =   is the 

dimensionless droplet removal rate, and 𝛾 = 𝛥𝜇𝐼 is the dimensionless infection recovery rate,  𝜇𝐼 

being the dimensional infection recovery rate.  The function (t) is the dynamic spread function, 

defined by 

𝛿(𝑡) = 𝛽 (𝑡) 𝜅(𝑡) 𝛥2      .               (1d) 

The functions Ib(t) and Ub(t) are the published infected population and number of new infections for 

the baseline scenario (denoted by subscript “b”).  If the baseline spread function δb(t) is used as the 

spread function in the governing equations (3a, b), the published baseline profiles Ub(t) and Ib(t) are 

recovered (within numerical tolerances). The utility of δ(t) derives from modifying it to model 

alternative intervention strategies and solving Eqs. (3a, b) to determine the new infection curves (i.e., 

U(t) and I(t) profiles).  Modifications to account for new strategies, derived in [8], are presented below. 

2.2. Modeling alternative intervention strategies 

Three types of enhanced intervention strategies were investigated. 

2.2.1.  Enhanced outward filtration efficiency 

We assume that the infected population initially deploys a barrier of outward filtration efficiency, 

FEout,b, where the subscript “b” denotes baseline.  If a different mask design characterized by an 
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enhanced efficiency FEout,mod  is then deployed by the infected population, then the modified spready 

function becomes [8] 

                  𝛿𝑚𝑜𝑑(𝑡) =   
[1−

𝐹𝐸𝑜𝑢𝑡,𝑚𝑜𝑑 
𝐹𝐸𝑜𝑢𝑡,𝑏 

 (1− [𝛿𝑏(𝑡)/𝛿(0)]𝜖𝜅)]

[𝛿𝑏(𝑡)/𝛿(0)]𝜖𝜅
𝛿𝑏(𝑡)    (2a)  

Here ϵκ is the fraction of the change in (t) due to changes in droplet production [8]. 

2.2.2. Increased compliance 

Eq. (2a) assumes the population compliance is unchanged when the new mask is adopted. To study 

a scenario where the mask is the same but the compliance rate changes, the following modified spread 

function applies [8]: 

𝛿𝑚𝑜𝑑(𝑡) =   
[1−𝐹  (1− [𝛿𝑏(𝑡)/𝛿(0)]𝜖𝜅)]

[𝛿𝑏(𝑡)/𝛿(0)]𝜖𝜅
𝛿𝑏(𝑡)  .    (2b)  

Here F is the factor by which the baseline compliance changes.  F can be greater than 1 or smaller 

than 1. The compliance rate itself is prescribed by [8]: 

𝑓𝑖(𝑡) =
1− [𝛿(𝑡)/𝛿(0)]𝜖𝜅

𝐹𝐸𝑜𝑢𝑡 
         (2c) 

2.2.3. Higher levels of social distancing 

To analyze changes in social distancing, say from a baseline level Lb to a modified level Lmod, the 

modified spread function is [8]  

𝛿𝑚𝑜𝑑(𝑡) =
𝐿𝑚𝑜𝑑

𝐿𝑏
𝛿𝑏(𝑡)         (2d) 

 In practice, only the ratio Lmod/Lb is important.   

Using one of the modified spread functions (Eqs. (2a,b,d)) in Eqs. (1a,b) enables estimation of the 

change in infection rate for the modified scenario of interest. Detailed examples, using different 

scenarios, are provided in Section 3. 

2.3. Solution procedure 

To solve Eqs. (1a,b,c), values of the droplet removal rate  the infection recovery rate , and initial 

value of the spread function 0 are required.  Information to assist in prescribing these parameters can 

be obtained from known features of the infection dynamics prior to the first intervention.  Prior to the 

first intervention, the standard SIR formulation given by Eqs. 1a,b with (t) set to zero, is applicable.  

Assuming exponential growth (with exponent M) in the number of new infections per day, it was 

shown in [8] that  

     2 ∗ 𝑀 = −(𝜆 + 𝛾) ± [(𝜆 − 𝛾)2 + 4𝛿0]1/2 .     (3a) 

The growth rate M can be obtained from infection rates published during the beginning of the 

epidemic (prior to any interventions).  An exponentially growing solution will occur when the 

reproduction number R0, given by [10] 
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𝑅0 =  
𝛿0

𝛾𝜆
          (3b) 

is larger than 1. Estimates of R0 for the early stages of epidemics are also published.  Details of the 

initial R0 estimates (including published literature sources) for the four scenarios are provided in the 

description of the uncertainty analysis in the Appendix section. Relations (3a,b), along with 

prescription of the recovery rate 𝜇𝐼 (with corresponding dimensionless recovery rates 𝛾) enable the 

simulations to proceed.  For the four scenarios considered in this study, a common range of recovery 

times 1/𝜇𝐼 between 2 and 10 days (or recovery rates 𝜇𝐼 between 0.1 and 0.5 per day) was assumed 

based on reported observations from the COVID-19 pandemic [1,5,12]. This range resulted in a mean 

recovery rate 𝜇𝐼 of 0.3 per day with a standard deviation of 0.1 per day (assuming a 95% confidence 

interval (CI) for the range of recovery rates). The range of recovery rates along with the mean and 

standard deviation are considered in the uncertainty analysis (outlined in the Appendix).    

The governing equations (1a,b) containing the modified spread function were solved using a 

Runge-Kutta method (Matlab ode45, Mathworks Inc.).   

2.4. Scenarios considered 

We considered four COVID-19 infection scenarios – New York City, New York State, Diamond 

Princess cruise ship, and Harris County, Texas – to investigate how differences in the behavior of the 

population affected the manner in which different intervention strategies influenced the course of the 

infection.  As noted in the previous section, computations commenced at the day of the first lockdown 

order. The day of the first lockdown order in the four scenarios was taken to be: New York City – 

March 17, 2020 [13], New York State – March 17, 2020 [14], Diamond Princess cruise ship – February 

5, 2020 ([15,16]) Harris County, Texas – March 24, 2020 [17]. Different time intervals were 

considered for the different scenarios.  For New York City, New York State, and the Diamond Princess 

cruise ship, simulations were performed until the first maximum in the profile for new infections per 

day, averaged over 7 days.  The duration was 15 days for New York State, 20 days for New York City, 

and 12 days aboard the Diamond Princess.  For Harris County, Texas, the scenario of interest begins 

on May 31, 2020, roughly the beginning of the surge in cases after Memorial Day in 2020.  The Harris 

County scenario ends 26 days later, at the first large peak in new infections (averaging over 7 days) 

after Memorial Day.  Infection data used to derive the baseline spread function was obtained from the 

following published online databases: New York City [18], New York State ([19,20]), Diamond 

Princess cruise ship [21], Harris County, Texas [22].  For all of the scenarios, we investigated the effect 

of:  i) increasing the outward filtration efficiency of the mask used by the infected population; ii) 

increasing the level of compliance for mask usage, while maintaining the baseline filtration efficiency; 

and iii) increasing the level of social distancing.  For each of these three studies, the baseline spread 

function was determined using Eq. (1c) informed by published infection data for the four scenarios.  

The baseline spread function was then modified using Eq. (2a) to consider different filtration 

efficiencies, Eq. (2b) to study different compliance rates, and Eq. (2d) to see the effect of changes in 

social distancing.   

The baseline outward filtration efficiency was taken to be 67% ([8,23]). In the modified scenarios, 

higher-efficiency masks with outward FE’s of 75%, 80%, and 90% were considered.  Only outward 

efficiency was modified, i.e., the ability of the different masks to perform source control was enhanced.   
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The baseline compliance rate, which varied with time as more people adopted mask use, is 

determined from Eq. (2c) once the fraction ϵκ is prescribed.  We took ϵκ to be 1/5, essentially saying 

that changes in droplet transmission 𝛽  (weight of 1- ϵκ) is four times as important as the droplet 

production 𝜅 (weight of ϵκ).  The transmission 𝛽 is influenced primarily by social distancing and the 

production 𝜅 primarily from the use of PPE.  The effect of different choices of ϵκ is discussed in [8].  

Here we comment that the results are not highly sensitive to the choice of ϵκ, provided ϵκ is small 

compared to 1.  Increases to the baseline compliance rate were affected by adjusting the factor F in Eq. 

(2c) so that the final compliance (at the end of the time interval) was 50%, 60%, and 70%. 

Changes in social distancing were implemented in a gradual manner, as follows.  A hypothesized 

decrease in the relative level of social contact (Eq. 2d), i.e. an increase in social distancing, was 

gradually applied through a temporal factor of the form (b(t)/0)
x , where b(t) is the baseline spread 

function and x is an exponent that produces the target value Lmod/Lb  at the end of the time window.  

That is, (b(tend)/0)
x = Lmod/Lb. Lmod/Lb values of 90%, 80%, and 70% were considered which are 

representative of a 10%, 20%, and 30% increase in social distancing, respectively. 

2.5 Uncertainty analysis 

The method for ascribing uncertainty to our estimated infection quantities in described in detail in 

the Appendix. Essentially, the uncertainty is derived by evaluating the variation in the input parameters 

 and R0 and observing the level to which the uncertainty propagates to model outputs. The space of 

possible parameter values is sampled using a Monte-Carlo-based technique. 

3.  Results 

As with most infection-spread models, the uncertainty in the calculations can be significant.  To 

minimize clutter due to overlap of error bars with neighboring plots, we provide uncertainties for a 

small number of time points, and sometimes for only some of the curves. Unless otherwise stated, the 

uncertainties provided can be taken as representative of the error at other time points and for other 

curves in the given figure. 

In the plots of numbers of daily new infections, values are normalized by the number at the 

beginning of the scenario. For New York City, New York State, and Diamond Princess, this also 

coincides with the initial time of the computations.  As noted above, for Harris County, the beginning 

of the scenario of interest was approximately 70 days beyond the initial time for the computations. 

3.1. Baseline dynamics 

The function (t)/2, which is the spread function in dimensional form, is plotted in Figure1a for 

all four of the scenarios considered.  The dimensional form is provided for ease in interpreting (in 

Section 4) the role of the spread function (t).   
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Figure 1a. Dynamic spread function for the four scenarios analyzed. 

The rates of new infections associated with these spread functions are plotted in Figure 1b.  The 

rates are normalized by the number of new infections occurring at the beginning of the scenario.   

 

Figure 1b. Baseline numbers of new infections per day, normalized by the value at the 

beginning of the scenario.   

3.2. Population compliance in mask usage  

Using the spread function for the four scenarios in Eq. (2c), and assuming an average outward 

filtration efficiency of 67%, the rate of mask adoption over time was estimated.  The results, plotted 

in Figure 2, indicate a compliance of about 40% in New York State at the end of the first peak in new 

infections.  At a given instant of time, the calculated compliance in New York State was about 1.3 
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times that of New York City, though at the end of each scenario (the time of peak number of new 

infections), the ratio was about 1.2   For the Diamond Princess, the calculated compliance at the end 

of the first peak (~ 20%) was about half of the calculated compliance for New York State at the end of 

its peak. In Harris County, the gradual acceptance of facemasks apparent in the other scenarios had 

already occurred prior to the scenario, and the compliance consequently varied more slowly and non-

monotonically (around a mean of about 20%) for the duration of the scenario of interest.   

 

Figure 2. Baseline facemask compliance for the four scenarios. 

3.3. Effect of increasing outward filtration efficiency 

 Increasing the FE from the baseline 67% to 90% reduced the calculated number of new 

infections (at the end of the time window) by about 24% for New York State, 40% for New York City, 

15% for the Diamond Princess, and 19% for Harris County (Figures 3a, b, c, d). 

 

Figure 3a.  Number of new infections for different outward filtration values, in the 

baseline and modified New York State scenarios. 
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Figure 3b. Number of new infections for different outward filtration values, in the baseline 

and modified New York City scenarios. 

 

Figure 3c.  Number of new infections for different outward filtration values, in the baseline 

and modified Diamond Princess scenarios. 

 

Figure 3d. Number of new infections for different outward filtration values, in the baseline 

and modified Harris County scenarios. 
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3.4.  Effect of increasing compliance 

   

In Figures 4a, b, c, d, the computed number of new infections per day (at the end of the time 

window) decreases by about 50% (relative to baseline) in New York State, 75% in New York City, 

70% aboard the Diamond Princess, and 84% in Harris County, when the compliance is increased from 

baseline to 70%. The large effect in moving from baseline to 50% compliance in the Diamond Princess 

and Harris County scenarios is due to the relatively low baseline compliance.  Increasing compliance 

to 70% decreases the computed time of peak number of new infections, to about half its baseline value 

for New York State (i.e. from day 15 to day 7) and New York City (i.e. from day 20 to day 9). For the 

lower-compliance Diamond Princess and Harris County scenarios, the peak is reduced less 

significantly, between 2 and 5 days.  The 70% compliance also reduces the number of new infections 

at the end of the scenario close to the initial value of 1.0. 

 

Figure 4a. Number of new infections for different compliances, in the baseline and 

modified New York State scenarios. 

 

Figure 4b. Number of new infections for different compliances, in the baseline and 

modified New York City scenarios. 
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Figure 4c.  Number of new infections for different compliances, in the baseline and 

modified Diamond Princess scenarios. 

 

Figure 4d. Number of new infections for different compliances, in the baseline and 

modified Harris County scenarios. 

3.5. Effect of enhanced social distancing 

The change in calculated daily new infections corresponding to increases in social distancing 

(reduced social contact) of 10%, 20%, and 30% are shown in Figures 5a, b, c, d.   
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Figure 5a.  Number of new infections for different levels of social distancing (SD), in 

the baseline and modified New York State scenarios. 

 

Figure 5b.  Number of new infections for different levels of social distancing (SD), in 

the baseline and modified New York City scenarios. 

 

Figure 5c.  Number of new infections for different levels of social distancing (SD), in the 

baseline and modified Diamond Princess scenarios. 
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Figure 5d.  Number of new infections for different levels of social distancing (SD), in 

the baseline and modified Harris County scenarios. 

For the 30% increase in social distancing, the calculated number of new infections decreased by 

about 56% in New York State, 76% in New York City, 63% aboard the Diamond Princess and 82% in 

Harris County.  The predicted day of peak new infections dropped to about a third of its baseline value 

in New York State (i.e. day 15 to day 6) and New York City (i.e. day 20 to day 8), and decreased less 

than 10% (about 2 days) aboard the Diamond Princess.   

4.  Discussion 

Compared with other SIR-type models, the dynamic-spread model possesses an advantage related 

to the uniqueness of the result when a parameter changes value.  To illustrate mathematically, we 

consider the number of new infections per day U to be a function of a parameter p (e.g. the filtration 

efficiency of a mask): 

𝑈 = 𝑓(𝑝)     .     (4a) 

Incrementing the baseline parameter value p0 to p0 + dp to simulate an enhanced intervention 

strategy, and assuming a relatively small change (dp/p0 << 1) , gives 

 

𝑈 ≈ 𝑓(𝑝0) +  
𝜕𝑓

𝜕𝑝
(𝑝0) 𝑑𝑝        (4b) 

or 

𝑑𝑈 ≈  
𝜕𝑓

𝜕𝑝
(𝑝0) 𝑑𝑝          (4c) 

Different SIR models will give comparable values for the baseline number of new infections per 

day,  𝑓(𝑝0) , since they are all calibrated with published infection data.  However, the parameter set 

selected (e.g. by a least-squares algorithm, or a “best guess”) in order to achieve proximity to the 

published infection rates is non-unique. Depending upon the values of the parameters, and to some 

extent the functional form of the parameter in the model, different SIR models that agree closely on 
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𝑓(𝑝0) can yield significantly different values of  
𝜕𝑓

𝜕𝑝
(𝑝0). As an example, in [5], the filtration efficiency 

is multiplied by an effective contact rate (as well as other parameters and independent variables), which 

must be prescribed.  Different prescriptions yield different values of dU (Eq. 4c).  We remark that even 

low-dimensional systems, containing 3 or 4 equations (the present model is derived from the 4-

equation model in [9]), usually contain clusters of parameters composed of numerous other parameters 

that must be prescribed. The model in [9], for example, requires that roughly (depending upon the 

droplet size of interest) 20 parameters be determined.  With the dynamic-spread model, the number of 

new infections per day U can considered to be a function of the spread-function  (i.e. U() ). Then 

dU is (using the chain rule) given by 

𝑑𝑈 ≈  
𝑑𝑈

𝑑𝛿
(𝛿(𝑝0))  

𝑑𝛿

𝑑𝑝
(𝑝0)  𝑑𝑝  ,     (5) 

where p again is a parameter such as filtration efficiency or level of social distancing.  The quantity 

dU/d is determined from the governing equations (1a, b, c) informed by published infection time 

traces.  No non-uniqueness is introduced by the process of determining dU/d.  The ratio d/dp is the 

dependence of the spread function upon the parameter of interest.  This is typically a linear dependence 

that arises naturally, e.g. the spread function depends linearly upon the level of social distancing and 

filtration efficiency of the barrier [8]. While there is still uncertainty associated with predictions 

(associated with uncertainties in the published values of reproduction number R0, the exponential 

grown rate M, and the recovery rate ) using the dynamic-spread model, the systematic approach of 

the dynamic-spread model avoids the non-uniqueness problems associated with many SIR models.  As 

discussed in [8], the dynamic-spread approach also naturally simulates the continuous process by 

which populations change behavior.  No decision need be made regarding when to update parameters 

(i.e. p0 to p0 + dp in Eq. (4)) to simulate changes in population behavior, as is the case with most SIR-

based models.   

Actual measurements of mask compliance in the locations considered, which would be valuable 

for comparing with the results in Figure 2, are difficult to perform. One observational survey conducted 

in New York City [24] at the end of July 2020 found that 75% of persons surveyed at 14 locations 

within the city were wearing masks.  The compliance varied widely between locations, from 20% to 

99%.  The study organizers indicated that the sampling locations were not chosen at random and were 

not necessarily representative of the whole city. They noted that the city-wide mask-wearing 

prevalence was probably lower. Another survey [25], this one self-reporting, found that 67% of 

respondents within New York City always wore masks when going out in public.  For the United States 

as a whole, the value was 48% to 51%.  A second nationwide poll, performed by Gallup [26], found 

that 44% of people across the United States claimed to wear masks in public all the time.  To compare 

with the survey results specific to New York City, our simulation in the New York City scenario was 

continued two additional months, to the end of July (Figure 6)   
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Figure 6.  Extended-time facemask compliance for the New York City scenario. 

As shown in Figure 6, calculated mask compliance plateaued at approximately 38% about one 

month into the epidemic. Variations around the 38% value are likely due to reporting uncertainties and 

the method of averaging employed (7-day in this case) and are likely not significant.  One reason why 

the calculated compliance may be low compared with survey values is the relatively small value (1/5) 

of ϵκ. As explained above, this value represents the fraction of the temporal change in the spread 

function due to changes in mask-wearing behavior.  Intuitively, we expect increased social distancing 

to decrease the spread function more intensely than improved barrier usage, especially when social 

distancing includes complete lockdown. Thus, we make ϵκ less than 1/2. However, the value of the 

fraction is somewhat uncertain.  Increasing ϵκ to 1/3 gives a compliance of about 62% in New York 

City in July of 2020.  This is comparable to the survey values, given the uncertainties associated with 

the computations and the surveys. The uncertainty in the calculated compliance (Figure 2) is on the 

order of 15%. Another important factor relevant to the comparison of compliance values is the filtration 

efficiency. The calculated compliance is based upon an outward filtration efficiency of 67%. While 

even many homemade mask designs can achieve this level in laboratory tests [27], the calculations 

represent an average over all times, including when masks might not be worn. These times include 

situations when the user is singing, conversing while eating or drinking, or taking relief from mask 

fatigue. During such situations, the filtration efficiency is zero, effectively lowering the laboratory 

value. Thus, an FE lower than 67% may be more appropriate for comparison with measurements. 

When detailed information regarding the average filtration efficiency of barriers deployed by the 

community is available, along with the compliance for the barrier use, Eq. (2c) can be used to prescribe ϵκ. 

The rate of spread of infection and the effectiveness of countermeasures are a function of both the 

spread function and its derivative.  A large value of the spread function, e.g. New York City (Figure1a), 

is associated with a high infection rate (Figure1b).  For New York state as a whole, the spread function 

was lower (Figure1a) and the per-capita number of new infections was lower (Figure1b). The 

exponential growth rate M (Section 2.3) was determined to be 0.46/day in New York City, compared 

with 0.36/day in New York State. In epidemiological terms, the results indicate that the residents of 

New York City engaged in more behaviors conducive to the spread of infection than did the residents 
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of the state in its entirety. Regarding the derivative of the spread function, even a small positive value 

is associated with a rapid increase in infection rate. In Harris County, the spread function is relatively 

flat until around day 4 (June 3, 2020), due to measures taken in the months prior to the Memorial Day 

weekend.  After opening of businesses and social gatherings around Memorial Day, the spread function 

began to increase.  The result was the large increase in new infections per day visible in Figure1b.  For 

the Diamond Princess scenario, a slight positive derivative of the spread function also occurred, 

commencing around day 7.  A rapid increase in new daily infections (Figure 1b) matched this increase 

in the value of the spread function.  Enhanced interventions that convert the spread function from 

increasing to decreasing are predicted to have a profound effect on the infection rate. For example, 

increasing the level of social distancing in the Harris County scenario by 10% nearly halved the number 

of new infections, and increasing social distancing by 30% completely eliminated the infection surge 

after Memorial Day (Figure 5d).  For the Diamond Princess, the 30% increase in social distancing is 

predicted to cut the number of new infections in half (Figure5c).  However, the intervention must be 

strong enough to convert the derivative of the spread function from positive to negative.  Increasing 

the filtration efficiency to 90% had a relatively minor effect in the Harris County (Figure 3d) and 

Diamond Princess (Figure 3c) scenarios.  This modest decrease is due to the fact that mask usage is a 

weaker countermeasure than social distancing (ϵκ <<1), and the mask compliance was relatively low 

(on the order of 20%) in both the Harris County and Diamond Princess scenarios (Figure 2).  An 

increase of compliance to 50% or more in the two scenarios would produce a much more profound 

effect (Figures 4c, 4d); however, this would require a substantial change in population behavior.  In 

cases where the derivative of the spread function is negative and large, i.e. in cases where the 

population responds quickly to mask recommendations/orders, enhanced interventions can have a 

pronounced effect. An example is the 40% reduction in number of new infections in New York City 

when the filtration efficiency is increased from baseline (67%) to 90% (Figure 3a.) 

The insights just presented regarding the infection dynamics for the four specific scenarios can be 

generalized to the following statements about the dynamics-spread-function approach: 

1)Scenarios in which the spread function is large will be associated with large infection rates. 

2)When the derivative of the spread function is large and negative (population highly adaptive to 

proposed countermeasures), enhanced intervention strategies will have a pronounced effect. 

3) When the derivative of the spread function is positive, the infection spread is rapid. 

4) Enhanced countermeasures that change the derivative of the spread function from positive to 

negative will produce a significant decrease in the predicted infection rate. 

5) The spread function can be used to compute mask compliance throughout the entire period for which 

calibration data (number of new infections, total infected population) is available.   

6) When the computed compliance is low (e.g. below 20%), enhanced mask filtration efficiency will 

be unlikely to change the sign of the spread-function derivative, and the reductions in infection rate 

will be modest. 

7) Statements 1–6 do not involve new simulations of the infection dynamics (e.g. the affected 

populations), only computation of the spread function for the time interval of interest. The spread 

function is thus a useful dimensionless parameter for understanding, and predicting the general features 
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of, the infection profile when new intervention strategies are contemplated, without having to 

perform calculations. 

We reiterate the caveat made in [8] that the dynamic-spread model is not a forecasting model, in 

terms of predicting the course of an ongoing epidemic assuming a given type of intervention. The 

dynamic-spread model is informed by the infection profile for a scenario that has already occurred.  

The infection rate depends upon the specific:  pathogen, population, time interval, set of environmental 

conditions, and intervention strategy. All of these influencing factors are accounted for, indirectly, in 

the spread function.  The model can then estimate the modified course of the infection for that same 

scenario, assuming a different intervention strategy.  The tradeoff for lack of forecasting capability is 

the ability to capture the baseline population behavior retrospectively in a precise and continuous way, 

which enables studies of hypothetical intervention strategies to proceed in a natural manner. The 

resulting information can be subsequently used for designing interventions to future scenarios. 

5.  Conclusion  

The dynamic-spread model was used to compare enhancements to baseline intervention strategies 

in four COVID-19 scenarios. The effectiveness of the same enhancement was strongly dependent upon 

the scenario involved. When the average outward filtration efficiency for facemasks worn in New York 

City during the first wave of COVID-19 was increased from an assumed baseline of 67% to a 

hypothesized 90%, the calculated peak number of new infections per day decreased by 40%.  For the 

same baseline and hypothesized filtration efficiencies aboard the Diamond Princess cruise ship, the 

calculated peak number of new infections per day decreased by about 15%.  An important factor 

contributing to the difference between the two scenarios is the lower mask compliance (derivable from 

the spread function) aboard the Diamond Princess.  The dynamic spread function can predict the gross 

features of the infection profile when alternative intervention strategies are implemented, without 

requiring computation of the relevant populations.  The dynamic spread function is thus a useful tool 

for enabling public-health officials and policy makers to estimate the benefits of a certain type of 

intervention, for their specific population. 
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